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Abstract 

A data-driven method for error detection and fault diagnosis in processor arrays is proposed under the assumption that data streams can only be 
inserted and observed through the boundary processors. The method consists of attaching tags to data streams, thereby allowing the data items to 
carry their own control and error information. Our goal is to detect the malfunction of a specific processor at a specific time step. A tag, which 
initially contains control information to activate a testing process, is changed to indicate the occurrence of an error by a checking processor 
detecting an inconktency. To pinpoint a faulty processor, the front-end computer must go through the reverse process of identifying the 
processor that detected and signalled the inconsistency. Using two data streams, we can control every processor in the array and locate the 
faulty one. The resulting processor array is regular in structure, and the number of bits used to encode the control and error information is 
independent of the size of the array, thus leading to efficiency and scalability, 0 1997 Elxvicr Science B.V. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Fault tolerance in processor arrays requires provision of 
redundancy to detect, locate, and recover from errors. As 
classified in Ref. [I], redundancy is generally embodied in 
space, time, information, or algorithm. The simplicity of 
hardware implementation leads to various methods for on- 
line testing of processor arrays based on duplication with 
comparison [2]. The space redundancy technique is stated as 
follows. Consider a computation CzI done on processor PZ, 
whose result is needed by computations C,s and Ci2 at 
neighbouring processors P, and P3. respectively (see the 
space-time diagrams in Fig. 1). For error detection, the 
original computations are adapted in such a way that dupli- 
cate computations can be entered in adjacent (shaded) slots. 
This redundancy technique can be easily generalized by 
adding a second redundant version for each computation 
so as to provide fault masking by independent voting 
[3,4]. The duplicate and original computations are inter- 
spersed, thus constituting different states of each processor. 

Owing to their compact layout and limited input/output, 
processor arrays are inherently of limited observability and 
controllability. The approach proposed in Ref. [5] solved the 
problem by emitting a pipelined trigger signal to initiate the 
comparison of intermediate results from a neighbouring 
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processor, but it assumed that comparison outcomes at inter- 
ior processors can be directly observed. Such an approach is 
undesirable for scalability reasons. A more appropriate 
assumption is that the comparison outcomes can only be 
observed via the outermost processors at the boundaries of 
an array. Under such an assumption, if a data stream carry- 
ing error information is propagated through the array, faults 
can be detected by monitoring the error information. 

However, not all implementations possess the convenient 
property that fault effects are localized, as shown in Ref. [6]. 
If error signals are propagated downstream as tags attached 
to a single data stream, pinpointing the faulty processor 
would be impossible since the error signal could have 
been generated by any processor along that data stream. 

It has been suggested [7] that a linear array can be split 
into several segments and the error information monitored at 
segment boundaries to diagnose the fault to within one 
segment. In the extreme case of monitoring the error infor- 
mation at each processor interface, complete diagnostic 
capability is attained. This approach, however, requires 
additional access to the individual segments and is therefore 
impractical or at least inefficient. 

Algorithm-based fault tolerance [8,9] can be used to 
locate a faulty processor with insignificant space and time 
costs, but its application is restricted to specific algorithms 
and may fail in certain implementations [lo]. The band 
matrix-vector multiplication implemented on a bidirec- 
tional linear array, shown in the next section, is one such 
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Fig. I. Sp ace-time diagram of interleaved duplicate computations (f: time. p: processor). 

example. Detection of an error and location of a faulty 
processor after the entire computation is finished may not 
be desirable, especially as the processor arrays expand in 
size. A common divide-and-conquer solution to improve 
diagnostic efficiency is to add extra observation points. 
Unfortunately, the algorithm-based approach does not 
benefit from the addition of observation points. 

In this paper, we apply the idea of data-driven control of 
processor arrays to error detection and fault diagnosis. Our 
goal is to detect the malfunction of a specific processor at a 
specific time step. A tag, which initially contains control 
information, is attached to each data item and pipelined 
along with it. The tag is changed by a checking processor, 
which assumes this role because of the instruction on the 
tag, to indicate the occurrence of an error. To pinpoint a 
faulty processor, the front-end computer must go through 
the reverse process of identifying the checking processor 
that detected the inconsistency and signalled the error. In 
such a case, two data streams are used to carry the control 
and error information. The reason for this is obvious. The 
space-time diagram of any computation on a linear array 
can be represented on a two-dimensional plane; two one- 
dimensional data streams then suffice to identify every 
processor in the array. Similarly, computation on a mesh- 
connected array can be represented on a three-dimensional 
space-time diagram. The data stream, with data 
items moving in parallel, can be viewed as a two- 
dimensional plane. Again, two data streams suffice to 
control every processor and to locate the faulty one in 
such an array. 

We will introduce our method by applying it to a 
particular linear array which follows the fault model of 
previous work where errors are assumed to result from 
stuck-at faults or short transients affecting a single proces- 
sor. The error manifests itself as a discrepancy between one 
output of the faulty processor and the redundant output in an 
adjacent processor. The rest of the paper is organized as 
follows. In Section 2, we introduce a bidirectional linear 
array for matrix-vector multiplication. Section 3 deals 
with the error detection method and its associated synthesis 
procedure. In Section 4, we extend the method to 
provide fault diagnosis capability. Section 5 contains our 
conclusions. 

2. Matrix-vector multiplication 

We now consider a particular architecture for band 
matrix-vector multiplication which allows each output to 
be calculated in each of two adjacent processors. The 
matrix-vector multiplicationy = Ax consists of a sequence 
of inner product step (IPS) operations. It can be written as a 
set of uniform recurrence equations as follows: 

L’y ti- I’ - 4’; + aijxl”- ‘1 

where A = (ai,) is an m X n matrix, x = [x1 x~...x,,]~ is an 
n-vector, and y = Iv, yz.. .y,JT is an m-vector. Fig. 2 shows 
the dependence graph in a two-dimensional Cartesian coor- 
dinate for the band matrix-vector multiplication when the 
band width (the number of diagonals) is M: = 3. The nodes in 
the graph represent the inner product steps and the arcs 
denote the movement of data items. 

The algorithm can be implemented using an array of IPS 
cells, each with three data streams. A complete discussion of 
different types of IPS cells can be found in Ref. [ 111. The 
resulting design forms a regular bidirectional linear array 
(BLA) that uses two data streams flowing in opposite direc- 
tions. One of the data streams is the output data stream y. 
This implementation requires additional input/output time 

r j iY,i-& o 

Fig. 2. Dependence graph for matrix-vector multiplication. The projection 
direction and scheduling (diagonal dotted lines) are also shown. 
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Fig. 3. Regular BLA for matrix-vector multiplication. Each block is an IPS cell. 

p\1 0 
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Fig. 4. Space-time diagram of the BLA executing the band matrix-vector 
multiplication. The symbol “ - ” denotes that the input or output is 
unspecified or irrelevant. 

for some data items to move to where the first computation 
takes place or to exit from where the last computation 
finishes. The transformation from a set of uniform recur- 
rence equations to a processor array is a linear mapping 
onto space and time domains. The method is described, 
for example, in Refs. [lo] and [12]. Fig. 3 shows the BLA 
with its associated data flow [13]. 

The space-time diagram of the BLA is shown in Fig. 4. 
Time steps 0 and 6 have been added to correspond to the 
input of xi and the output of ~‘3. From Fig. 4, we note that at 
every time step, either odd-numbered processors or even- 
numbered processors are idle. Thus, if the idle processors 
are allowed to do the same operations as the active ones and 
the results are compared at the next time step, no loss of 
speed or efficiency occurs. During the computation, an error 
is detected if a discrepancy exists between these two results. 
To allow this, the processors must be equipped with 
mechanisms to detect and report the error to the front-end 
computer. 

3. Error detection 

If we use processor P, to check the computation result for 
P?, and P2 to check Pj, we will need another processor to do 

the checking for PI. A redundant processor (denoted as PO) 
is added to the left end of the BLA as shown in Fig. 5. After 
completing an inner product step, the checking processor 
not only sends the result to its left neighbour but also stores 
the result in its local storage. At the next time step, it 
compares the received data value with its stored value 
while at the same time performing the inner product step 
for newly received data items. A partial order exists between 
these two node operations. The first requires the processor to 
store the computation result and operand, and the second 
consists of a comparison of the stored value with the 
received data values. 

These two node operations correspond to two different 
types of nodes in the dependence graph. The dependence 
graph is derived by duplicating the original dependence 
graph of Fig. 2 and interleaving the two along dotted equi- 
temporal lines, as shown in Fig. 6. The dark node computes 
the inner product step, passes it on to the right as usual, and 
also sends the result diagonally to a clear node. The clear 
node compares the horizontally and diagonally incoming 
data values while at the same time computing the inner 
product using the received data values. The diagonal 
transfer in Fig. 6 corresponds to a saving of local values 
from one time step to the next in the BLA. Hence, the 
clear and dark nodes are associated with “compute-and- 
store’ ’ and “compare-and-compute” processor functions, 
respectively. 

Since each data stream x or y flows in a regular fashion 
without meeting more than one type of node operation, it is 
sufficient to use only one of the data streams (either x or y) 
to carry instructions to each processor for the two different 
node operations. We can assign a tag bit “0” to specify that 
the processor should do the “compare-and-compute” 
operation and “1” to mandate that the processor do the 
“compute-and-store” operation. The method can be gener- 
alized to synthesize pipelined control signals if multiple and 

x3 x3 Xl x2 Xl Xl --b 
p2 - Yl YI Y2 Y2 Y3 Y3 

Fig. 5. Regular BLA capable of detecting errors in the processors. along with its associated data flow. 
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Fig. 6. Dependence graph for matrix-vector multiplication with space 
redundancy. The two types of nodes are interleaved along the equitemporal 
lines. 

more complex functions are implemented on the processor 
array [14-161. 

With the data-driven control scheme, a tag containing 
control information is attached to each data item. When a 
processor receives a data item, it first examines the tag and 
then decides which operation it should perform. The redun- 
dant operations for error detection are to compare or to store 
the intermediate results. Since neither the comparator nor 
the latch is more complex than an adder, the hardware costs 
to the regular BLA are clearly seen to be modest. The 
space-time diagram in Fig. 7 shows the execution of 
matrix-vector multiplication on the BLA of Fig. 5. At 
each time step, two processors perform the same inner 
product step. One processor in each such pair also compares 
the intermediate result received from a neighbouring pro- 
cessor to its stored value from the previous time step. Here 
we have chosen to provide tags on data stream y to control 
the operations to be performed by the processors. 

If we allow the processors to modify the tags once they 
detect incompatible results, the tags can also indicate 
whether any error has occurred during the computation. 

p\r 0 1 2 3 

The comparison operation on a data item is performed 
only when the processor receives a tag bit 0 (or a “com- 
pare-and-compute” instruction). We can simply invert the 
bit from 0 to 1 to indicate the occurrence of an error. The tag 
bit 1 also mandates the processors downstream to stop 
checking the output data item. Because the error propagates 
along the data flow path and each successive comparison 
would certainly yield incompatible results, it is not neces- 
sary to continue the comparison operation for this data item. 

The tag values T1, . . ., T,,, are then compared to the 
preassigned values Z’(F), . ., T,(O) (m is the number of out- 
puts), and the error vector e = (e , . . ., e,) is computed where 
for 1 5 i 5 m: 

( 0 Ti = T/O) 

- ~ 1 Ti # T,‘o’ 

The error signal e, at position index i indicates that at least 
one of the two y, outputs is incorrect. Hence, an error is 
detectable if and only if the m-bit error vector is not equal 
to (0, . . ., 0). The modified tags propagate with the data 
items to the boundary processor. It can be seen that error 
detection is not postponed until the whole computation is 
completed. Rather, an error is signalled with the appearance 
of the first 1 in the error vector. 

For example, let us suppose that a transient error occurs in 
processor P2 at time step 4 (see Fig. 7). Processor Pi, after 
comparing the data value from P2 with its own stored data 
value (calculated locally at time step 4), finds the discre- 
pancy. It then changes the tag on y2 to 1 at time step 5. We 
can deduce from the tag attached to the data stream y which 
is changed from T,,(O) = (000) to Ty = (010) a nonzero error 
vector eY = (010) indicating an error in ~2. Unfortunately, 
we are unable to determine which processor changed the tag 
on y2. Since the tagged data item y2 flows to P3 at time step 
3, P2 at time step 4, Pi at time step 5, and PO at time step 6, 
any of the four processors could have changed the tag. 

Note that if all of the tags attached to the data items are set 

4 5 6 7 8 

Fig. 7. Space-time diagram of the BLA capable of detecting errors. The tag is shown in parentheses. L is a data latch in each processor. The comparison 
operation is denoted by “? = “. 
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at the same value and the error signals are ignored, then the 
BLA can do two different matrix-vector multiplications 
concurrently. The data items for these computations are 
interspersed and the throughput is twice that of the original 
one. However, selective insertion of a duplicate compu- 
tation leads to periodic application of concurrent error 
detection, which offers a trade off between promptness of 
error detection and performance [ 17,181. Thus, the above 
fault detection scheme is both efficient (uses excess node 
capacity to perform the duplicate computations) and flexible 
(allows for trading the error detection capability to increase 
computational throughput). 

4. Fault diagnosis 

Our approach to diagnosing the faults to the level of 
individual processors is based on attaching (“error”) tags 
to the data stream X, in addition to those attached to the data 
stream y. Tags on the data stream x have no effect on the 
functions performed by processors; they are just carriers of 
error messages. The functionality of each processor is still 
determined by the tags on the data streamy. To indicate that 
the data items are initially error free, all tags on the data 
stream x are set to 0. 

If one of two processors, P, or P,+r, is unable to perform 
the computation properly or both processors are faulty but 
produce different results, the tag bits will be inverted by P, 
from 0 to 1. The modified tags propagate with the data items 
to the boundary processors at both ends of the array. There- 
fore, the modified tag appearing at the end of the array means 
that at least one of the two output data items is incorrect. 
Modified tag bits emerging from both directions are used to 
find out which processor first reported the error. The compu- 
tation results can then be checked by the front-end computer 
to decide which processor in the disagreeing pair is faulty. 

Let us resume the example started in Section 3. In addition 
to the change in tags on data stream y, we also observe that 
the tags on data stream x have been changed from TX”’ = 
(000) to T, = (001). The error vector associated withy is 
eY = (010) and the error vector for x is e, = (001). We denote 
the position of the leading 1 in ey as y and the position of the 
leading 1 in e, as x. From x and y, we can derive the location 

Yl Y2 YS Y4 
,,O 1 2 3 4 5 6 7 8 9 10 

5. Conclusion 

Fig. 8. The space-time diagram represented in two-dimensional Cartesian We have presented a method for introducing fault diagnosis 
coordinates. into systolic computations. Error detection is based on dupli- 

of the processor P, first reporting the error and the time step t 
when the disagreement was detected. 

The space-time diagram can be represented in two- 
dimensional Cartesian coordinates, as shown in Fig. 8. 
The data streams x and y are represented by two families 
of lines running in parallel. The position indices x and y 
become the displacements of the lines. Clearly, given x 
and y, t and p can be obtained (1 5 x I n, 1 I y 5 m): 

t=x+y 

and 

p=y-x+po 

where the constant pO is the index of the processor in which 
the first computation takes place (1 5 pO 5 N, N is the total 
number of processors in the augmented linear array). In 
our example, y = 2, x = 3, pO = 2, and N = 4 yield p = 1 
and t = 5. Hence, the error tags point to processor PI at time 
step 5, and lead us to the conclusion that processors PI and 
P? have generated incompatible results at time step 4. 

If the error persists at the output of the faulty processor in 
consecutive time steps, then there will be more than a single 1 
in each error vector. The following 1 provides another set of 
equations to resolve the ambiguity. Since the error is also 
detected at the next time step, the set of equations must include 

i = x’ + 4” = t + 1 

Depending on the following 1 appearing in the error vector 
of data stream x or in the error vector of data stream y, we 
can derive 

p’=y-(x+l)+pa=p-1 if x’=x+l and y’=y+l 
or 

p’=(y+l)-x+ppo=p+l if x’=x and y’=y+l 

which indicates that the faulty processor is also within the 
pair of processors, P,-, and P, (or P,,,, and P,,+z). In such 
cases, the faulty processor P, (or P,,,) is uniquely identified 
and the correct results can be selected at the output. 

As mentioned earlier, the error detection process does not 
require that the entire computation be completed, but rather 
takes effect when the first 1 appears in the error vector. To 
detect an error we are only concerned with the change of 
tags; thus, we can add observation points for tags before 
they reach the boundary processors. This is illustrated in 
Fig. 9. The diagnostic efficiency is improved by the addition 
of a small number of observation points. Fault detection 
latency is then reduced, thereby decreasing the likelihood 
of a second fault disabling the system. The cost for the extra 
output pins is low, since a small number of tag bits are often 
used to carry the control and error information. 
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Fig. 9. Adding observation points to reduce the fault detection latency. 

cation with comparison. Error reporting is done by modifying 
function tags attached to the data items or by introducing 
“error” tags where no such function tags are used. Once a 
processor finds an error, it changes the function or error tag 
value as a signal. In either case, the error indication is propa- 
gated through the processor array and is examined by the front- 
end computer when it emerges from a boundary processor. If 
the tags have remained intact, then the results are assumed 
correct and nothing is done; otherwise, the error syndromes 
obtained from the tags are used to pinpoint the fault to within a 
pair of processors and a particular time step. 

The examples we used show that for simple and regular 
operations of a systolic computation, such as matrix-vector 
multiplication and matrix multiplication, a small number of 
bits are sufficient to encode the control and error informa- 
tion (two bits in our case). The number of bits used is inde- 
pendent of the size of the processor array. Since the array is 
composed of identical processing elements and we access it 
only through the boundary processors to control and observe 
the interior processors, this data-driven approach provides 
scalability. Once a processor array is built, it can be 
expanded easily as the problem size increases. 
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