
MKUOPROCESSORS AND

MICROSYSTEMS

ELSEVIER Microprocessors and Microsystems 20 (1997) 423-428

An on-line fault diagnosis scheme for linear processor arrays

Ding-Ming Kwai, Behrooz Parhami*
Department cf Electricul and Computer Engineering. Universitv of Calijkniu. Santa Burboru, CA 93106-9560. USA

Received September 1995; revised November 1996; accepted December 1996

Abstract

A data-driven method for error detection and fault diagnosis in processor arrays is proposed under the assumption that data streams can only be
inserted and observed through the boundary processors. The method consists of attaching tags to data streams, thereby allowing the data items to
carry their own control and error information. Our goal is to detect the malfunction of a specific processor at a specific time step. A tag, which
initially contains control information to activate a testing process, is changed to indicate the occurrence of an error by a checking processor
detecting an inconktency. To pinpoint a faulty processor, the front-end computer must go through the reverse process of identifying the
processor that detected and signalled the inconsistency. Using two data streams, we can control every processor in the array and locate the
faulty one. The resulting processor array is regular in structure, and the number of bits used to encode the control and error information is
independent of the size of the array, thus leading to efficiency and scalability, 0 1997 Elxvicr Science B.V. 0 1997 Elsevier Science B.V.

Keywords: Data-driven control: Error detection; Fault diagnosis; Fault tolerance; Processor array; Scalability: Systolic computation

1. Introduction

Fault tolerance in processor arrays requires provision of
redundancy to detect, locate, and recover from errors. As
classified in Ref. [I], redundancy is generally embodied in
space, time, information, or algorithm. The simplicity of
hardware implementation leads to various methods for on-
line testing of processor arrays based on duplication with
comparison [2]. The space redundancy technique is stated as
follows. Consider a computation CzI done on processor PZ,
whose result is needed by computations C,s and Ci2 at
neighbouring processors P, and P3. respectively (see the
space-time diagrams in Fig. 1). For error detection, the
original computations are adapted in such a way that dupli-
cate computations can be entered in adjacent (shaded) slots.
This redundancy technique can be easily generalized by
adding a second redundant version for each computation
so as to provide fault masking by independent voting
[3,4]. The duplicate and original computations are inter-
spersed, thus constituting different states of each processor.

Owing to their compact layout and limited input/output,
processor arrays are inherently of limited observability and
controllability. The approach proposed in Ref. [5] solved the
problem by emitting a pipelined trigger signal to initiate the
comparison of intermediate results from a neighbouring

* Corresponding author. Tel: +I 805 893 3211: fax: +I 805 893 3262;
e-mail: parhami@ece.ucsb.edu.

0141.9331/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SO14L9331(96)01 124-6

processor, but it assumed that comparison outcomes at inter-
ior processors can be directly observed. Such an approach is
undesirable for scalability reasons. A more appropriate
assumption is that the comparison outcomes can only be
observed via the outermost processors at the boundaries of
an array. Under such an assumption, if a data stream carry-
ing error information is propagated through the array, faults
can be detected by monitoring the error information.

However, not all implementations possess the convenient
property that fault effects are localized, as shown in Ref. [6].
If error signals are propagated downstream as tags attached
to a single data stream, pinpointing the faulty processor
would be impossible since the error signal could have
been generated by any processor along that data stream.

It has been suggested [7] that a linear array can be split
into several segments and the error information monitored at
segment boundaries to diagnose the fault to within one
segment. In the extreme case of monitoring the error infor-
mation at each processor interface, complete diagnostic
capability is attained. This approach, however, requires
additional access to the individual segments and is therefore
impractical or at least inefficient.

Algorithm-based fault tolerance [8,9] can be used to
locate a faulty processor with insignificant space and time
costs, but its application is restricted to specific algorithms
and may fail in certain implementations [lo]. The band
matrix-vector multiplication implemented on a bidirec-
tional linear array, shown in the next section, is one such

424 D.-M. Kvwi, B. Parhami/Microproce.wm and Microswtem~ 20 (1997) 423-428

Fig. I. Sp ace-time diagram of interleaved duplicate computations (f: time. p: processor).

example. Detection of an error and location of a faulty
processor after the entire computation is finished may not
be desirable, especially as the processor arrays expand in
size. A common divide-and-conquer solution to improve
diagnostic efficiency is to add extra observation points.
Unfortunately, the algorithm-based approach does not
benefit from the addition of observation points.

In this paper, we apply the idea of data-driven control of
processor arrays to error detection and fault diagnosis. Our
goal is to detect the malfunction of a specific processor at a
specific time step. A tag, which initially contains control
information, is attached to each data item and pipelined
along with it. The tag is changed by a checking processor,
which assumes this role because of the instruction on the
tag, to indicate the occurrence of an error. To pinpoint a
faulty processor, the front-end computer must go through
the reverse process of identifying the checking processor
that detected the inconsistency and signalled the error. In
such a case, two data streams are used to carry the control
and error information. The reason for this is obvious. The
space-time diagram of any computation on a linear array
can be represented on a two-dimensional plane; two one-
dimensional data streams then suffice to identify every
processor in the array. Similarly, computation on a mesh-
connected array can be represented on a three-dimensional
space-time diagram. The data stream, with data
items moving in parallel, can be viewed as a two-
dimensional plane. Again, two data streams suffice to
control every processor and to locate the faulty one in
such an array.

We will introduce our method by applying it to a
particular linear array which follows the fault model of
previous work where errors are assumed to result from
stuck-at faults or short transients affecting a single proces-
sor. The error manifests itself as a discrepancy between one
output of the faulty processor and the redundant output in an
adjacent processor. The rest of the paper is organized as
follows. In Section 2, we introduce a bidirectional linear
array for matrix-vector multiplication. Section 3 deals
with the error detection method and its associated synthesis
procedure. In Section 4, we extend the method to
provide fault diagnosis capability. Section 5 contains our
conclusions.

2. Matrix-vector multiplication

We now consider a particular architecture for band
matrix-vector multiplication which allows each output to
be calculated in each of two adjacent processors. The
matrix-vector multiplicationy = Ax consists of a sequence
of inner product step (IPS) operations. It can be written as a
set of uniform recurrence equations as follows:

L’y ti- I’ - 4’; + aijxl”- ‘1

where A = (ai,) is an m X n matrix, x = [x1 x~...x,,]~ is an
n-vector, and y = Iv, yz.. .y,JT is an m-vector. Fig. 2 shows
the dependence graph in a two-dimensional Cartesian coor-
dinate for the band matrix-vector multiplication when the
band width (the number of diagonals) is M: = 3. The nodes in
the graph represent the inner product steps and the arcs
denote the movement of data items.

The algorithm can be implemented using an array of IPS
cells, each with three data streams. A complete discussion of
different types of IPS cells can be found in Ref. [111. The
resulting design forms a regular bidirectional linear array
(BLA) that uses two data streams flowing in opposite direc-
tions. One of the data streams is the output data stream y.
This implementation requires additional input/output time

r j iY,i-& o

Fig. 2. Dependence graph for matrix-vector multiplication. The projection
direction and scheduling (diagonal dotted lines) are also shown.

D.-M. Kwai. B. Parhami/Microprocessors and Microsystems 20 (I 997) 423-428 425

Fig. 3. Regular BLA for matrix-vector multiplication. Each block is an IPS cell.

p\1 0

~~~1 

Fig. 4. Space-time diagram of the BLA executing the band matrix-vector 
multiplication. The symbol “ - ” denotes that the input or output is 
unspecified or irrelevant. 

for some data items to move to where the first computation 
takes place or to exit from where the last computation 
finishes. The transformation from a set of uniform recur- 
rence equations to a processor array is a linear mapping 
onto space and time domains. The method is described, 
for example, in Refs. [lo] and [12]. Fig. 3 shows the BLA 
with its associated data flow [13]. 

The space-time diagram of the BLA is shown in Fig. 4. 
Time steps 0 and 6 have been added to correspond to the 
input of xi and the output of ~‘3. From Fig. 4, we note that at 
every time step, either odd-numbered processors or even- 
numbered processors are idle. Thus, if the idle processors 
are allowed to do the same operations as the active ones and 
the results are compared at the next time step, no loss of 
speed or efficiency occurs. During the computation, an error 
is detected if a discrepancy exists between these two results. 
To allow this, the processors must be equipped with 
mechanisms to detect and report the error to the front-end 
computer. 

3. Error detection 

If we use processor P, to check the computation result for 
P?, and P2 to check Pj, we will need another processor to do 

the checking for PI. A redundant processor (denoted as PO) 
is added to the left end of the BLA as shown in Fig. 5. After 
completing an inner product step, the checking processor 
not only sends the result to its left neighbour but also stores 
the result in its local storage. At the next time step, it 
compares the received data value with its stored value 
while at the same time performing the inner product step 
for newly received data items. A partial order exists between 
these two node operations. The first requires the processor to 
store the computation result and operand, and the second 
consists of a comparison of the stored value with the 
received data values. 

These two node operations correspond to two different 
types of nodes in the dependence graph. The dependence 
graph is derived by duplicating the original dependence 
graph of Fig. 2 and interleaving the two along dotted equi- 
temporal lines, as shown in Fig. 6. The dark node computes 
the inner product step, passes it on to the right as usual, and 
also sends the result diagonally to a clear node. The clear 
node compares the horizontally and diagonally incoming 
data values while at the same time computing the inner 
product using the received data values. The diagonal 
transfer in Fig. 6 corresponds to a saving of local values 
from one time step to the next in the BLA. Hence, the 
clear and dark nodes are associated with “compute-and- 
store’ ’ and “compare-and-compute” processor functions, 
respectively. 

Since each data stream x or y flows in a regular fashion 
without meeting more than one type of node operation, it is 
sufficient to use only one of the data streams (either x or y) 
to carry instructions to each processor for the two different 
node operations. We can assign a tag bit “0” to specify that 
the processor should do the “compare-and-compute” 
operation and “1” to mandate that the processor do the 
“compute-and-store” operation. The method can be gener- 
alized to synthesize pipelined control signals if multiple and 

x3 x3 Xl x2 Xl Xl --b 
p2 - Yl YI Y2 Y2 Y3 Y3 

Fig. 5. Regular BLA capable of detecting errors in the processors. along with its associated data flow. 



426 D.-M. Ku,ai, B. Parhumi/Microprocessors and Micms~stems 20 (19971 423-428 

j 
i 

Fig. 6. Dependence graph for matrix-vector multiplication with space 
redundancy. The two types of nodes are interleaved along the equitemporal 
lines. 

more complex functions are implemented on the processor 
array [14-161. 

With the data-driven control scheme, a tag containing 
control information is attached to each data item. When a 
processor receives a data item, it first examines the tag and 
then decides which operation it should perform. The redun- 
dant operations for error detection are to compare or to store 
the intermediate results. Since neither the comparator nor 
the latch is more complex than an adder, the hardware costs 
to the regular BLA are clearly seen to be modest. The 
space-time diagram in Fig. 7 shows the execution of 
matrix-vector multiplication on the BLA of Fig. 5. At 
each time step, two processors perform the same inner 
product step. One processor in each such pair also compares 
the intermediate result received from a neighbouring pro- 
cessor to its stored value from the previous time step. Here 
we have chosen to provide tags on data stream y to control 
the operations to be performed by the processors. 

If we allow the processors to modify the tags once they 
detect incompatible results, the tags can also indicate 
whether any error has occurred during the computation. 

p\r 0 1 2 3 

The comparison operation on a data item is performed 
only when the processor receives a tag bit 0 (or a “com- 
pare-and-compute” instruction). We can simply invert the 
bit from 0 to 1 to indicate the occurrence of an error. The tag 
bit 1 also mandates the processors downstream to stop 
checking the output data item. Because the error propagates 
along the data flow path and each successive comparison 
would certainly yield incompatible results, it is not neces- 
sary to continue the comparison operation for this data item. 

The tag values T1, . . ., T,,, are then compared to the 
preassigned values Z’(F), . ., T,(O) (m is the number of out- 
puts), and the error vector e = (e , . . ., e,) is computed where 
for 1 5 i 5 m: 

( 0 Ti = T/O) 

- ~ 1 Ti # T,‘o’ 

The error signal e, at position index i indicates that at least 
one of the two y, outputs is incorrect. Hence, an error is 
detectable if and only if the m-bit error vector is not equal 
to (0, . . ., 0). The modified tags propagate with the data 
items to the boundary processor. It can be seen that error 
detection is not postponed until the whole computation is 
completed. Rather, an error is signalled with the appearance 
of the first 1 in the error vector. 

For example, let us suppose that a transient error occurs in 
processor P2 at time step 4 (see Fig. 7). Processor Pi, after 
comparing the data value from P2 with its own stored data 
value (calculated locally at time step 4), finds the discre- 
pancy. It then changes the tag on y2 to 1 at time step 5. We 
can deduce from the tag attached to the data stream y which 
is changed from T,,(O) = (000) to Ty = (010) a nonzero error 
vector eY = (010) indicating an error in ~2. Unfortunately, 
we are unable to determine which processor changed the tag 
on y2. Since the tagged data item y2 flows to P3 at time step 
3, P2 at time step 4, Pi at time step 5, and PO at time step 6, 
any of the four processors could have changed the tag. 

Note that if all of the tags attached to the data items are set 

4 5 6 7 8 

Fig. 7. Space-time diagram of the BLA capable of detecting errors. The tag is shown in parentheses. L is a data latch in each processor. The comparison 
operation is denoted by “? = “. 



D.-M. Kwai. B. Parhami/Microprocesson and Microsystems 20 (1997) 423-428 427 

at the same value and the error signals are ignored, then the 
BLA can do two different matrix-vector multiplications 
concurrently. The data items for these computations are 
interspersed and the throughput is twice that of the original 
one. However, selective insertion of a duplicate compu- 
tation leads to periodic application of concurrent error 
detection, which offers a trade off between promptness of 
error detection and performance [ 17,181. Thus, the above 
fault detection scheme is both efficient (uses excess node 
capacity to perform the duplicate computations) and flexible 
(allows for trading the error detection capability to increase 
computational throughput). 

4. Fault diagnosis 

Our approach to diagnosing the faults to the level of 
individual processors is based on attaching (“error”) tags 
to the data stream X, in addition to those attached to the data 
stream y. Tags on the data stream x have no effect on the 
functions performed by processors; they are just carriers of 
error messages. The functionality of each processor is still 
determined by the tags on the data streamy. To indicate that 
the data items are initially error free, all tags on the data 
stream x are set to 0. 

If one of two processors, P, or P,+r, is unable to perform 
the computation properly or both processors are faulty but 
produce different results, the tag bits will be inverted by P, 
from 0 to 1. The modified tags propagate with the data items 
to the boundary processors at both ends of the array. There- 
fore, the modified tag appearing at the end of the array means 
that at least one of the two output data items is incorrect. 
Modified tag bits emerging from both directions are used to 
find out which processor first reported the error. The compu- 
tation results can then be checked by the front-end computer 
to decide which processor in the disagreeing pair is faulty. 

Let us resume the example started in Section 3. In addition 
to the change in tags on data stream y, we also observe that 
the tags on data stream x have been changed from TX”’ = 
(000) to T, = (001). The error vector associated withy is 
eY = (010) and the error vector for x is e, = (001). We denote 
the position of the leading 1 in ey as y and the position of the 
leading 1 in e, as x. From x and y, we can derive the location 

Yl Y2 YS Y4 
,,O 1 2 3 4 5 6 7 8 9 10 

5. Conclusion 

Fig. 8. The space-time diagram represented in two-dimensional Cartesian We have presented a method for introducing fault diagnosis 
coordinates. into systolic computations. Error detection is based on dupli- 

of the processor P, first reporting the error and the time step t 
when the disagreement was detected. 

The space-time diagram can be represented in two- 
dimensional Cartesian coordinates, as shown in Fig. 8. 
The data streams x and y are represented by two families 
of lines running in parallel. The position indices x and y 
become the displacements of the lines. Clearly, given x 
and y, t and p can be obtained (1 5 x I n, 1 I y 5 m): 

t=x+y 

and 

p=y-x+po 

where the constant pO is the index of the processor in which 
the first computation takes place (1 5 pO 5 N, N is the total 
number of processors in the augmented linear array). In 
our example, y = 2, x = 3, pO = 2, and N = 4 yield p = 1 
and t = 5. Hence, the error tags point to processor PI at time 
step 5, and lead us to the conclusion that processors PI and 
P? have generated incompatible results at time step 4. 

If the error persists at the output of the faulty processor in 
consecutive time steps, then there will be more than a single 1 
in each error vector. The following 1 provides another set of 
equations to resolve the ambiguity. Since the error is also 
detected at the next time step, the set of equations must include 

i = x’ + 4” = t + 1 

Depending on the following 1 appearing in the error vector 
of data stream x or in the error vector of data stream y, we 
can derive 

p’=y-(x+l)+pa=p-1 if x’=x+l and y’=y+l 
or 

p’=(y+l)-x+ppo=p+l if x’=x and y’=y+l 

which indicates that the faulty processor is also within the 
pair of processors, P,-, and P, (or P,,,, and P,,+z). In such 
cases, the faulty processor P, (or P,,,) is uniquely identified 
and the correct results can be selected at the output. 

As mentioned earlier, the error detection process does not 
require that the entire computation be completed, but rather 
takes effect when the first 1 appears in the error vector. To 
detect an error we are only concerned with the change of 
tags; thus, we can add observation points for tags before 
they reach the boundary processors. This is illustrated in 
Fig. 9. The diagnostic efficiency is improved by the addition 
of a small number of observation points. Fault detection 
latency is then reduced, thereby decreasing the likelihood 
of a second fault disabling the system. The cost for the extra 
output pins is low, since a small number of tag bits are often 
used to carry the control and error information. 



D.-M. Kwai, B. Parhami/Microprocessors and Microsystems 20 (1997) 423-428 428 

Fig. 9. Adding observation points to reduce the fault detection latency. 

cation with comparison. Error reporting is done by modifying 
function tags attached to the data items or by introducing 
“error” tags where no such function tags are used. Once a 
processor finds an error, it changes the function or error tag 
value as a signal. In either case, the error indication is propa- 
gated through the processor array and is examined by the front- 
end computer when it emerges from a boundary processor. If 
the tags have remained intact, then the results are assumed 
correct and nothing is done; otherwise, the error syndromes 
obtained from the tags are used to pinpoint the fault to within a 
pair of processors and a particular time step. 

The examples we used show that for simple and regular 
operations of a systolic computation, such as matrix-vector 
multiplication and matrix multiplication, a small number of 
bits are sufficient to encode the control and error informa- 
tion (two bits in our case). The number of bits used is inde- 
pendent of the size of the processor array. Since the array is 
composed of identical processing elements and we access it 
only through the boundary processors to control and observe 
the interior processors, this data-driven approach provides 
scalability. Once a processor array is built, it can be 
expanded easily as the problem size increases. 

References 

[1] B.W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, 
Addison-Wesley, Reading, MA, 1989. 

[2] M. Peercy and P. Banedee, Fault-tolerant VLSI systems, Proc. IEEE, 
81 (1993) 745-758. 

[3] A. Majumdar. C.S. Raghavendra and M.A. Breuer, Fault tolerence in 
linear systolic arrays using time redundancy, IEEE Trans. Comput., 39 
(1990) 269-276. 

[4] M.O. Esonu, A.J. Al-Khalili, S. Hariri and D. Al-Khalili, Fault-toler- 
ant design methodology for systolic array architectures, IEE Proc. 
Comput. Digital Techn., 141 (1994) 17-28. 

[5] Y.-H. Choi, S.-H. Han and M. Malek, Fault diagnosis of recontigur- 
able systolic arrays, in Proc. IEEE Int. Conf. Computer Design, Octo- 
ber 1984, Port Chester, Silver Spring, MD, USA: IEEE Comput. Sot. 
Press, pp. 45 l-455. 

[6] R.J. Cosentino, Concurrent error correction in systolic architectures, 
IEEE Trans. Comput.-Aided Design, 7 (1988) 117-125. 

[7] L. Li, Systolic computation with fault diagnosis, Parallel Comput., 14 
(1990) 235-243. 

[8] K.-H. Fluang and J.A. Abraham, Algorithm-based fault tolerance for 
matrix operations, IEEE Trans. Comput. C, 33 (1984) 297-311. 

[9] J.-Y. Jou and J.A. Abraham, Fault-tolerant matrix arithmetic and 
signal processing on highly concurrent computing structures, Proc. 
IEEE, 72 (1986) 732-741. 

[lo] S.Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, 
NJ, 1988. 

[1 1] M. Gusev and D.J. Evans, YLSI processor array IPS cells, Parallel 
Comput., 18 (1992) 997-1007. 

[ 121 S.K. Rao and T. Kailath, Regular iterative algorithms and their imple- 
mentation on processor array, Proc. IEEE, 76 (1988) 259-269. 

[ 131 H.T. Kung and C.E. Leiserson, Algorithms for VLSI processor arrays, 
in C. Mead and L. Conway (Eds.), Introduction to VLSI Systems, 
Addison-Wesley, Reading, MA, 1980, pp. 27 l-292. 

[ 141 J. Xue and C. Lengauer, The synthesis of control signals for one- 
dimensional systolic arrays, Integration, VLSI J., 14 (1992) l-32. 

[ 151 D.-M. Kwai and B. Parhami, A data-driven control scheme for linear 
processor arrays, Parallel Comput., in press. 

[16] D.M. Kwai and B. Parhami, Fault-tolerant processor arrays using 
space and time redundancy, in Proc. IEEE 2nd Int. Conf. Algorithm 
and Architectures for Parallel Processing, June 1996, Singapore, New 
York, NY, USA: IEEE, pp. 303-310. 

[ 171 Y.-M. Wang, P.-Y, Chung and W.K. Fuchs, Scheduling for periodic 
concurrent error detection in processor arrays, J. Parallel Distrib. 
Comput., 23 (1994) 306-313. 

[18] P.P. Chen, A.N. Mourad and W.K. Fuchs, Probability of correctness 
of processor-array outputs using periodic concurrent error detection, 
IEEE Trans. Reliab., 45 (1996) 285-296. 

Ding-Ming Kwai received the B.S. degree from 
Narional Ckeng Kung University, Tainnn, Taiwan, 
in 1987, and the MS. degree from the Insrilure of 
Electronics, Narional Chiao Tung Universify, 
Hsinchu, Taiwan, in 1989. He was with the 
Chung Cheng Insrirure of Technology, Taoyuan, 
Taiwan, as a reserve ofJ;cer from 1989 to 1991, 
and with rke H&on Microelectronics Corpora- 
tion, Hsinchu, Taiwan, as a design engineer from 
1991 to 1993. He is currently pursuing the Ph.D. 
degree in Computer Engineering al the University 
of California, Santa Barbara, USA. His research 
interests include parallel processing, VLSI archi- 
lecture, and fault-tolerant computing. 

Behrooz Parhami received the Ph.D. degree 
from the University of California, Los Angeles, 
USA, in 1973. During his 14.year afiliarion with 
Sharif Universiry of Technology, Tehran, Iran. 
he carried out research in several areas of com- 
puter archilecrure, and was also instrumental in 
national projects in rechnology transfer, educa- 
tional planning, curriculum development, and 
standardizution. He was rhe principal founder 
of rhe Informurics Society of Iran and served 
as its first President and Editor-in-Chief for 
f;ve years, while af the same time guiding the 

IEEE Iran Section through a turbulent decade. Since 1988, he has been 
Professor of Computer Engineering al the University of California. 
Santa Barbara, with research interests in computer arithmetic, parallel 
processing, and fault-tolerant computing. His current projects in these 
areas emphasize arckiredures and algorithms for scalable massively 
parallel systems, and their VLSI implementations. Dr Parkami is a 
Fellow of both rhe IEEE and the British Computer Society. 


