
The Robust-Algorithm Approach to Fault Tolerance on Processor Arrays:
Fault Models, Fault Diameter, and Basic Algorithms

Behrooz Parhami  and  Chi-Hsiang Yeh

Department of Electrical and Computer Engineering
U n i v e r s i t y  o f  C a l i f o r n i a

Santa Barbara, CA  93106-9560, USA

Abstract
With few exceptions, the two issues of algorithm design
and fault tolerance for processor arrays have been dealt with
separately, in that algorithm developers have assumed the
availability of complete fault-free arrays and fault tolerance
techniques have aimed at restoring such complete arrays by
reconfiguring faulty ones. We present the design of robust
algorithms that run efficiently on complete arrays but are
also tolerant of faulty processors/links in a degraded mode.
This is a complementary approach in that our algorithms
can be used on reconfigurable arrays that tolerate a certain
number of faults while maintaining their regularity, with
the graceful degradation feature kicking in once the fault
tolerance limit of the reconfiguration scheme is exceeded.
The fault models considered in this paper comprise of the
faulty processors/links being removed from the pool of
resources (removal model) or bypassed in their respective
rows/columns (bypass model). We discuss the two models,
derive tight upper bounds for the fault diameter of the
resulting networks, and present building-block algorithms
for semigroup computation, parallel prefix computation,
data rearrangement, matrix multiplication, and sorting.

Keywords: Adaptive parallel algorithms, Fault tolerance,
Faulty meshes, Graceful degradation, Incomplete meshes.

1. Introduction
Robust algorithms, that run correctly in the presence of
faults, have been extensively studied in two contexts. One
is in adaptive and fault-tolerant routing. The other is in
algorithm-based fault tolerance which is based on error
detection/correction via problem-specific encoded data.
Outside these particular domains, algorithm design and
fault tolerance have generally been dealt with separately in
that algorithm developers have assumed a fault-free mesh
and fault tolerance techniques have aimed at restoring such
a complete mesh by reconfiguring a faulty one.
Combined study of fault tolerance and algorithm design
issues in parallel systems has been limited [6, 9, 10, 11].
One approach uses embedding of a less powerful
architecture into a faulty array; e.g. a cube-connected cycles
subgraph within a faulty hypercube [1, 2]. Another is
based on an n´n mesh, containing a potentially large set
of faulty elements, emulating a mesh with log n times as
many processors with optimal O(log n) slowdown [5].
These approaches are theoretical and thus far have not lead
to practical robust algorithms.
In this paper, we focus on the design of robust algorithms
that can run directly on an incomplete or faulty mesh.
We develop robust algorithms for several building-block
computations (fan-in, parallel prefix, data routing, matrix
multiplication, sorting) that run at almost full speed when
the mesh is fault-free or when it contains a small number
of faults and that offer gracefully degrading performance as
more faults are encountered. Due to space limitation, all
theorems and algorithms are given without proof.

2. Architecture and Fault Models
We consider both processor and link faults and assume that
faults are detectable by any physically adjacent fault-free
processor. Faults are considered permanent and diagnosis is
off-line. Our algorithms adapt to fault conditions only in
the sense of being able to run on any incomplete
configuration (defined later). They do not tolerate faults
during execution, but rather rely on prompt fault detection
and rollback/restart for run-time fault tolerance.
We focus on m´n meshes (m rows, n columns, m £ n)
with north, east, west, south (NEWS) nearest neighbors.
We consider two fault models. The first one assumes that
faulty nodes/links become unusable and thus removed from
the resource pool, leading to gaps or holes in the regular
mesh structure (Fig. 1b). We refer to this as (incomplete)
removal mesh. Our second fault model assumes the ability
to bypass a faulty node (and associated links) in its
row/column (Fig. 1d). This logical fault model, which is
what the algorithm designer sees and designs for, is called
(incomplete) bypass mesh.
A removal mesh (Fig. 1b) can be disconnected by as few
as 2 faults. However, the disconnected mesh is likely to
have a sizable connected component that we use for
continued computation. To compute on a removal mesh,
we identify a submesh with a reasonably large number of
complete subrows and subcolumns. For example, the solid
nodes in Fig. 1c represent a 4´3 submesh of the 4´4
removal mesh of Fig. 1b which contains 2 complete
(sub)columns and 3 complete subrows, with 6 nodes at
their intersections. The submesh is chosen to maximize
the number of nodes at the intersections of complete
subrows and subcolumns, which are shaded in Fig. 1c. The
shaded nodes thus obtained form a virtual submesh in
which the virtual neighbors that are not physically adjacent
can communicate via dilated paths.

(a)

0 1 2 3

4 5 7

9 10 11

12 13 14 15

   (b)

0 1 2 3

4 5 6

7 8 9

10 11 12 13

   (c)

0 1 2 3

4 5 6

7 8 9

10 11 12 13

(d)

0 1 2 3

4 5 6

7 8 9

10 11 12 13

  (e)

0 1 2 3

4 5 6

7 8 9

10 11 12 13

 (f)

0 1

2 3

5

6 7

4

Fig. 1. Incomplete mesh: (a) mesh with 2 faulty nodes,
(b) the removal fault model, (c) a 3´2 virtual submesh,
(d) the bypass fault model, (e) bypass mesh with snake-
like edge links added, (f) bypass mesh with many faults.

IPPS/SPDP 1998

 1063-7133/98 
$10.00 (c) 1998 IEEE



For a bypass mesh (Fig. 1d) to become disconnected, a
large number of faults must be present. We will at times
assume that snakelike edge links are added to our mesh
(Fig. 1e). These edge links do not increase the node degree,
or adversely affect the regular layout with short wires, but
make some of the algorithms significantly more efficient.
We require that a fault-free node remaining in operation
within a bypass mesh continue to have access to its NEWS
ports; although, due to bypassing, these ports in the faulty
configuration may lead to processors other than the
original neighbors in the fault-free mesh.
The removal fault model is realistic and easy to justify.
Once faulty elements become known to fault-free nodes,
the latter can simply avoid/ignore any communication
to/from the faulty elements. The bypass fault model, on
the other hand, may raise some questions about the ability
and capacity for bypassing faulty nodes/links. Thus, we
devote the rest of this section to justifying the bypass fault
model and its advantages over the removal model.
The bypass fault model, though more restrictive than the
removal fault model, leads to relatively cleaner and more
efficient parallel algorithms. It may thus be worthwhile to
include special hardware features in the mesh to guarantee
adherence to the bypass fault model. We have previously
discussed possible physical implementations that support
the bypass model [8]. From among these, the use of
separable row/column buses to circumvent faulty elements
appears to be the most practical and cost-effective.
Note that once the bypassing mechanism is in place, it can
be used not only for getting around faulty elements but
also for performance enhancement. For example, one of
our robust sorting algorithms is based on moving the data
into n/2 columns, ordering them on the narrower m´n/2
mesh, and finally distributing them back to their origins.
Since the n/2 columns used in the middle phase are not
necessarily contiguous, the ability to bypass intervening
columns leads to faster communications among the nodes
involved in executing this phase and, thus, to a more
efficient robust sorting algorithm.
Since link faults are handled in much the same way as
node faults, henceforth we focus mostly on node faults. If
in Fig. 1a, instead of node 6 being faulty, the link from
node 2 to node 6 is faulty, then node 6 could belong to a
complete (sub)row but not to a complete (sub)column.

3. A Basis for Robust Algorithms
Certain topological properties of removal and bypass
meshes are relevant to developing efficient robust
algorithms. A row/column of the mesh in which all nodes
and links are intact is called a complete row/column. Any
incomplete mesh is virtually guaranteed to have at least
one complete row/column and it has at least m/2 (n/2)
complete rows (columns) with high probability.
We call two adjacent columns pairwise complete if there
exists at least one path from the top row to the bottom
row of the mesh that visits the rows in ascending order and
is completely contained within the two columns. Pairwise
complete rows are defined analogously (e.g., the middle
two rows in Fig. 1b are pairwise complete). Pairwise
complete columns can be detected, and their nodes marked,
quite easily by a signal traveling down the column pair;
when the next available south link is unavailable or is a
bypass link, the signal switches to the other column,
where it continues its downward propagation. If the signal
reaches the bottom row, the two columns are pairwise
complete and the nodes on the path of the signal can be
used to emulate a complete column. This emulation is
more efficient if the emulating path constructed above has
a minimum number of bends.

Theorem 1: If columns j and j+1 are pairwise complete,
then the greedy path building algorithm in which the
signal stays in one column until forced to switch, when
applied with each of the columns as the starting point,
yields a path with the minimum number of bends. ❚
A general method that we use for developing robust
algorithms is virtual submesh emulation. We develop this
method using complete rows/columns (Fig. 2a), but it can
be applied with pairwise complete rows/columns (Fig. 2b)
or even blockwise complete rows/columns, making their
tolerance level, and survival probability, quite high.

(a) (b)

1 1

19

28

6

16

31

1

0      1      2      3      4      5      6 0      1      2      3      4      5      6
0

1

2

3

4

5

Column Row Column

19

28

6

16

31

1

Fig. 2. Virtual submesh examples with (a) complete
rows/columns and (b) pairwise complete rows/columns.

Once complete rows/columns have been identified in the
entire m´n mesh or in a smaller m'´n' submesh, the nodes
at their intersections comprise a virtual submesh, so
named because they may have to communicate with their
virtual NEWS neighbors via dilated paths. Typically, such
a virtual submesh is composed of a large fraction of the
original mn processors (say, p' = m'n' ³ mn/2). Thus, one
strategy for executing mesh algorithms is to transfer all
the data to the nodes of the virtual submesh, perform the
algorithm on this virtual complete mesh, and route the
results back to the original nodes.

Robust mesh algorithm via virtual submesh emulation
Stage 1 (Data packing): Data items are redistributed from
healthy nodes to nodes on the virtual submesh, such that
each node holds roughly the same number of items.
Stage 2 (Computation): The virtual submesh emulates
the corresponding algorithm of a complete m'´n' mesh.
Stage 3 (Data unpacking): The computed results are
distributed, in proper order, from the virtual submesh
back to the healthy processors, if needed.

The fault diameter of a network is defined as the diameter
of its surviving part after the occurrence of certain faults.
The following theorems suggest that the fault diameters of
removal and bypass meshes are quite small. While the
fault diameter of k-ary n-cube has been studied before [4],
we know of no corresponding result for meshes. Extreme
cases, such as Fig. 1f, make these results non-trivial.
Theorem 2: The diameter of any connected component
of an m´n removal mesh with f faulty nodes is at most
m+nÐ2+2f. This bound is asymptotically tight; i.e., there
exist removal meshes whose diameters are m+n+2fÐo(f). ❚
Theorem 3: The diameter of any connected component
of an m´n bypass mesh is at most m+nÐ2, regardless of
the number f of faults. This bound is tight. ❚
To use virtual submesh emulation, we need to specify the
data packing (Stage 1) and complete submesh emulation
(Stage 2) strategies. These will be discussed in Sections 5
and 6 of the paper. Data unpacking need not be dealt with
separately as it is simply the reverse of Stage 1. Before
considering the packing problem, which is a special case
of data routing, we discuss data routing in general.



4. Robust Routing on Bypass Meshes
Data routing on faulty (removal) meshes has received a
great deal of attention and many algorithms are available
for this purpose. Any routing algorithm that works on a
removal mesh is trivially applicable to a bypass mesh.
Thus, in this section, we focus on algorithms for routing
on bypass meshes that are simpler and/or more efficient
than those for removal meshes.
One routing strategy is based on complete rows/columns.
We assume that each node not on a complete row/column
knows in which direction the nearest such row/column can
be reached (ties are broken randomly). Routing is then
accomplished by the following local decisions within each
node (choice of direction is implicit):

Robust data routing algorithm for a bypass mesh
if data is at the destination row and column
then remove data
else if data is in the destination row or column

then send along the destination row or column
else if data is in a complete row/column

then send along the complete row/column
else send toward a complete row/column

The analysis for routing can be performed in three ways.
First, with sparse transfers, we ignore conflicts and base
the analysis solely on graph-theoretic routing distances.
With m, n ³ 3, the worst-case routing distance becomes
m+nÐ5+max(m ,n) or 3nÐ5 for an n´n mesh. In small
meshes, it is relatively easy to construct reasonably sized
fault patterns that lead to this worst case, but with larger
meshes we almost never even get close to this bound.
Note that the worst-case distance above is greater than the
diameter of the bypass mesh (Theorem 3) since the local
routing decisions may be globally suboptimal.
A second analysis method is to estimate the worst-case
excess communication load placed on nodes belonging to
complete rows/columns. Suppose that in an n´n mesh,
there are nÐ2d complete rows and nÐ2d complete columns,
with the 2d incomplete rows/columns being consecutive.
Then, traffic on the complete rows/columns that sandwich
the incomplete ones can increase by a factor d+1. This
need not be the case if, once a message is in a complete
row/column, it does not necessarily stay there until it gets
to the destination column/row. One can modify lines 5- 6
of the algorithm to force switching between various
complete rows/columns for traffic balancing. For example,
if the number of complete columns among the next few
columns is known, turning can be done probabilistically.
An experimental approach shows the performance to be
much better than the above upper bounds for random
routing problems and random faults. Most packets, e.g.
those with source nodes on a complete row/column, are
routed along a shortest path and from the remaining
packets, most will experience only slight increases in path
lengths or routing delays. Fig. 3 shows that the average
change in routing delay compared to that of a complete
mesh is indeed small; the change can be negative due to
some paths becoming shorter in the bypass mesh.
The path selection process discussed for packet routing can
be used for wormhole routing as well; the simplicity of
the decision algorithm for selecting one of the four
outgoing channels in our routing algorithm ensures that
wormhole routing can be performed quite efficiently. As in
complete meshes, deadlocks can be dealt with in two ways:
(1) detection followed by recovery, and (2) avoidance.
Methods based on detection and recovery are no different
for bypass meshes than for complete meshes. Deadlock
avoidance is also quite simple if we use a modified form of
the dimension-ordered routing.

2
4

8

16
32

0 1 2 3 4Ð4 Ð3 Ð2 Ð1

100

80

60

40

20

0

Percent
of
Occurrence

Extra Routing Steps

Number
of
Faults

Fig. 3. Distribution of the change in routing time on a
32´32 bypass mesh compared to complete mesh.

In the modified row-first routing algorithm, all messages
are routed to the nearest complete row, then to the
destination column, and finally to the destination node.
The initial column routing phase that takes the message to
a nearest complete row cannot lead to deadlock since in any
intermediate (incomplete) row, the cross message traffic is
limited to those destined for that row and thus require no
further direction change. In a similar fashion, other mesh
routing algorithms can be adapted for a bypass mesh.
Again, the initial column or row routing phase to get the
message to a nearest complete row or column will not
create additional opportunities for deadlock. The same
observation applies to collective communication using
either packet routing or wormhole routing methods.

5. Packing Data onto a Virtual Submesh
When each of the pÐf healthy processors has one data item,
packing consists of sending the data items to the p' = m'n'
processors of the virtual submesh such that each processor
holds at most a' = é(pÐf)/p'ù  items. The load factor a'
satisfies a'£2 with high probability and packing, if needed,
is often a 1-2 routing problem. When each healthy
processor begins with a load factor a, where a is relatively
large, then a' = éa(pÐf)/p'ù will be very close to a.
Packing is simple and very efficient on a bypass mesh.
Since the nodes of the virtual submesh belong to complete
rows and complete columns, either row-first or column-
first routing can pack the data onto the virtual submesh
with virtually no conflict.
Since, to our knowledge, no existing adaptive routing
algorithm provides a guaranteed upper bound for the time
required for our data packing problem with O(n1/2) faults
on a removal mesh, we propose and analyze an optimal
algorithm for this purpose. For simplicity, we restrict our
discussion to square n´n meshes.
Theorem 4: In an n´n removal mesh with Q(n1/2) faulty
nodes, no algorithm can pack the data to complete
rows/columns in o(n) time for arbitrary fault patterns. ❚
The following algorithm packs the data with a guaranteed
delay upper bound when the number of faults is O(n1/2).
For this algorithm, the n´n  mesh is divided into
submeshes of size Q(n1/2)´Q(n1/2). A working subrow is
simply a complete subrow within a submesh. A working
subcolumn is a subcolumn that is part of a complete
column in the entire mesh. Note that a working subrow
can be part of an incomplete row and that there are Q(n1/2)
of each if the sub meshes are made large enough.



Robust data packing on a removal mesh
Phase 1: In each submesh, any data item in a node that
is not on a working subrow or a working subcolumn is
routed to one of the working subrows/subcolumns.
Phase 2: In each submesh, if a processor that does not
belong to a working subrow has more than a small
constant number of data items, its data items are routed
along working subcolumns to a nearby working subrow.
Phase 3: In each submesh, all data items are spread
(approximately) evenly along the working subrows to
the nodes at the intersection of working subrows and
working subcolumns. At this point, a working
subcolumn has Q(n1/2) data items.
Phase 4: Each data item is sent along the complete
column where it resides to the complete row where it
will reside following data packing.
Phase 5: Each data item is sent from the complete row
where it resides to the desired final position.

Theorem 5: The above robust data packing algorithm
can pack data from fault-free processors each having O(1)
data items onto the virtual submesh in optimal O(n) time
in an n´n mesh with O(n1/2) faulty processors for arbitrary
fault patterns. Furthermore, when f = W(n1/2) and f = o(n),
the data packing time is O(f2) which is optimal. ❚

6. Simple Parallel Algorithms
In this section we show that semigroup computation,
parallel prefix computation, matrix multiplication, and
FFT can be performed on incomplete meshes in optimal
time. Note, in particular, that the robust algorithms run at
full speed when there is no fault, since in this case packing
or unpacking becomes unnecessary.
Clearly, the virtual submesh can perform a semigroup
computation in a'+2m+2nÐ4 steps. On a bypass mesh,
semigroup computation can be performed efficiently
without packing or unpacking. Using strict unidirectional
communication, a bypass mesh with f faulty nodes can
perform a semigroup computation, with no slowdown, in
a+2m+2nÐ4 steps, where a is the load factor of each fault-
free node. We skip the description of a simple algorithm
that uses a complete column for its computation and go
directly to an asymptotically optimal algorithm that can
use any column j with at least m/2 nodes to perform the
combining of row results. Any row that does not have a
node in column j must send its partial result to a node in
that column. There are at most mÐ1 items to be sent
which can be pipelined in O(m+n) steps. After combining
takes place in column j, the computation result is
broadcast to every node in m+nÐ2 steps.

Semigroup computation on a bypass mesh
Phase 1: The operation is applied in a steps to the a
values held in each node.
Phase 2: Values in each row are combined in nÐ1 steps,
such that a node in Column j, or in another column if
there is no node in Column j, obtains the value of the
sub-expression corresponding to its row.
Phase 3: A processor not in Column j but holding a
partial row result sends its value, tagged with its row
number i, to any processor in Column j.
Phase 4: A processor in Column j upon obtaining or
receiving a partial result for row i forwards it to the
ëi/2ûth fault-free processor in its column.
Phase 5: A fault-free node in Column j that holds two
partial results (necessarily coming from consecutive
rows) combines them before the final column reduction.

Phase 3 of the algorithm, where some values are sent to
the nodes in column j, needs elaboration. One way to do
this in O(m+n) steps is to associate a ÒColumn-jÓ tag with
each node. The value of this tag is the direction of a
shortest path to some node in Column j. By Theorem 3,
the longest such path to Column j has length m+nÐ2.
Contention adds no more than mÐ1 steps to the delay.
Assume that the parallel prefix algorithm is to generate si
in the node initially holding ai. Again we skip the simpler
algorithm based on the use of a complete column, which
requires m+2n+dÐ3 steps with unidirectional or m+nÐ2
steps with bidirectional communication, and go directly to
a more robust, but less efficient, version that runs on any
mesh with snakelike edge links as in Fig. 1e.
For clarity, we describe the algorithm for the case n = pÐf;
i.e., when each fault-free node holds one element. Starting
with 0 for the topmost node in Column nÐ1, the first m
nodes along the column snake are given sequence numbers.

Parallel prefix computation on a bypass mesh
Phase 1: Local prefixes for rows are computed in nÐ1
steps, with the rightmost node of each row holding the
partial prefix result for the entire row.
Phase 2: The rightmost node in each row sends its result
to a node in Column nÐ1; O(m+n) steps with pipelining.
Phase 3: Upon obtaining or receiving a row-i result, a
node in Column nÐ1 shifts it forward or backward along
the snakelike path until it occupies the ith fault-free
processor. The values may be spread over several
columns due to bypassing along the snake.
Phase 4: Parallel prefix computation is performed along
the snakelike path in mÐ1 steps.
Phase 5: The node that got its value from Row i sends
its result to Row i where it is broadcast and merged with
row prefixes. This phase takes O(m+n) steps.

Both FFT and matrix multiplication algorithms can be
performed on the virtual submesh in asymptotically
optimal time, because the communication requirements of
these algorithms are such that messages can be pipelined
along the complete rows and columns of the virtual
submesh, with the dilation penalty paid only once. Thus,
the slowdown for these algorithms is dictated by the
packing/unpacking phase. In particular, when the mesh
contains O(n1/2) faults, both of these algorithms will have
optimal total running times based on Theorem 5.

7. Robust Sorting and Selection
For removal meshes, efficient robust sorting algorithms
exist [11]. For example, 1-1 sorting on removal meshes,
where each fault-free processor begins & ends with 1 item,
needs 3n+o(n) communication and comparison steps on an
n´n mesh with an arbitrary pattern of o(n1/2) faulty nodes.
Any removal-mesh algorithm can be used on a bypass
mesh with no modification or with minor changes that do
not affect the asymptotic time complexity but lead to
constant-factor improvements. Thus, in the rest of this
section, we focus on alternate methods for bypass meshes.
We have previously reported [9] a shearsort-based robust
sorting algorithm for bypass meshes which, instead of
guaranteeing sorted order after élog2 mù iterations of row
and column sorts, places a bound on the number of Òdirty
rowsÓ (in the terminology of the proof method based on
the 0-1 principle), thus allowing sorting to be completed
with a limited number of odd-even transposition steps
along the row-wise snake in Fig. 1e. However, shearsort is
slow and robust shearsort imposes non-trivial performance
penalties even with a fairly small number of faults.



A condition that allows us to sort fairly efficiently on a
bypass mesh is to have at least n/2 complete columns (or
m/2 complete rows). We assume, for simplicity, that there
are f faulty nodes and that mnÐf values, initially distributed
one per fault-free node, must be sorted (Fig. 4a).

Bypass-mesh robust sorting with n/2 complete columns
Phase 1: Values are shifted to n/2 complete columns in
at most n/2 steps such that each node gets two values
(one may be the padding value ¥). Prefix computations
are performed over the n /2 complete columns to
determine the number u of ¥ elements at or before each
node along the row-wise snake (Fig. 4b)
Phase 2: Any 2-2 sorting algorithm (snakelike order) is
used within the rectangular submesh formed by the n/2
complete columns. After sorting, the ¥ values reside in
the last éf/2ù nodes (Fig. 4c). To rearrange the items so
that nodes end up with their initial number of elements,
a node routes its smaller (larger) value é(uÐ1)/2ù (éu/2ù)
steps forward along the snakelike path (Fig. 4d).
Phase 3: The sorted values are distributed to the entire
mesh by shifting along the rows.

To reduce the penalty in row/column sorts stemming from
the non-adjacency of complete columns/rows, we use
compaction/expansion [11], described below for rows.

Compaction/expansion method to speed up row sorts
Step 1: Row prefix computations yield the number l of
good nodes on incomplete columns to the left of a node.
Step 2 (compaction): Shift left in row by l positions.
Step 3: Do row sort on the nodes which have items.
Step 4 (expansion): Sorted values are shifted to the right
by the same amount as in Step 2.

In this way, row sort can be performed in O(n) steps. Note
that we need to do Step 1 once at reconfiguration time, so
row sort requires at most 4fr additional steps, where fr is
the maximum value of l (see Step 1). Since items are
shifted back to processors located on complete columns
after being sorted within the rows, column sort is done
normally. Hence, we can use shearsort for sorting the
items on the m´n/2 mesh quite efficiently.

1

0 14 20 10 3 19

7 18 26 21 28

4 13 8 6111

29 22 27 1612

32 30 242 5

25 23 17 319 15

(a)

1

0
14 20

10 3
19

7 18
26

21
28

4
13 8

6
11

1

29
22

27
1612

32 30
242 5

25 23
17
31

9 15

(b)

¥

¥

¥

1

0

14

20

10

3

19

7

18

26

21

28

4

13

8 6

11

1

29

22

27

1612

32 30

24

2
5

2523

17

31

9

15

(d)

Ð

Ð

Ð

s=0 0 0

001

1 1 1

122

2 2 3

333

1

(c)

s=0 0 0

001

1 1 1

122

2 2 3

333

0

14

20

10

3

19

7

18

26

21

28

4

13

8 6
11

1

29

22

27

1612

24

2
5

25

23

17

9

15

¥
¥
¥ 32 30

31

Fig. 4. Example of the 3-phase sorting algorithm using
n/2 complete columns. (a) The original keys. (b) Keys
packed onto 3 complete columns. (c) Sorted keys on the
6´3 mesh. (d) Keys redistributed per the row capacities.

By using row compaction/expansion to emulate the
modified Schnorr/Shamir algorithm [Niga95], sorting on
an n´n bypass mesh with o(n1/4) faults in a row can be
done in 2.5ntr+3 tc+o(n) or 5ntr+3 tc+o(n) steps for
bidirectional or strict unidirectional meshes, respectively.
More generally, if we compact to n/k complete columns,
the number of communication steps approaches 2n+O(kfr)
or 4n+O(kfr), respectively, for large k. We see that the
performance of the above sorting algorithm is similar to
the best known results for a fault-free n´n mesh.
To select the Mth largest element among N items (e.g.
finding the median when M = ëN/2û), one can use sorting.
This is viewed as inefficient on other models of parallel
computation as there exist simpler selection algorithms.
However, 2-D meshes, even with row/column buses,
cannot do much better for selection than for sorting.

8. Conclusions
By designing robust algorithms that run directly on an
incomplete bypass or removal mesh, we have demonstrated
that certain computations can be performed efficiently, and
with graceful degradation, on faulty meshes. These results
pave the way for implementing more complex algorithms
on incomplete meshes and lead to a novel fault tolerance
strategy based on robust algorithms; a strategy that can
replace or augment other fault tolerance schemes such as
those based on reconfiguration. Extension of our results to
higher-dimensional removal meshes is straightforward since
virtual submeshes can be defined in much the same way.
Higher-dimensional bypass meshes require further study.

Acknowledgments
Our sincere thanks go to Dr. Ching-Yu Hung, who contributed
to the proof of Theorem 3 and to routing simulation of Fig. 3,
and to Dr. Ding-Ming Kwai, who built counter-examples that
helped in correcting an error in Theorem 2.

References
 [1] N Bagherzadeh, M Dowd (1995), Computation in faulty

stars, IEEE Trans. Reliability, vol 44, pp 114-119.
 [2] J Bruck, R Cypher, D Soroker (1990), Running algorithms

efficiently on faulty hypercubes, ACM Symp. Parallel
Algorithms & Architectures, pp 36-44.

 [3] R Cole, B Maggs, R Sitaraman (1993), Multi-scale self-
simulation: a technique for reconfiguring arrays with
faults, ACM Symp. Theory of Computing, pp 561-572.

 [4] K Day, A Al-Ayyoub (1997), Fault diameter of k-ary n-cube
networks, IEEE Trans. Parallel & Distributed Systems,
vol 8, pp 903-907.

 [5] C Kaklamanis et al (1990), Asymptotically tight bounds
for computing with faulty arrays of processors, Symp.
Foundations of Computer Science, pp 285-296.

 [6] A Mishra, Y Chang, L Bhuyan, F Lombardi (1995), Fault-
tolerant sorting on SIMD hypercubes, IntÕl Parallel
Processing Symp., pp. 312-318.

 [7] M Nigam, S Sahni (1995), Sorting n2 numbers on n´n
meshes, IEEE Trans. Parallel & Distributed Systems,
vol 6, pp 1221-1225.

 [8] B Parhami (1993), Fault tolerance properties of mesh-
connected parallel computers with separable row/column
buses, Midwest Symp. Circuits Systems, pp 1128-1131.

 [9] B Parhamii, C Y Hung (1995), Robust shearsort on
incomplete bypass meshes, In t Õ l  Parallel Processing
Symp.,  pp 304-311.

[10] J-P Sheu, Y-S Chen, C-Y Chang (1992), Fault-tolerant
sorting algorithm on hypercube multicomputers,
J. Parallel & Distributed Computing, vol 16, pp 185-197.

[11] C-H Yeh, B Parhami (1997), Optimal sorting algorithms
on incomplete meshes with arbitrary fault patterns,
IntÕl Conf. Parallel Processing, pp 4-11.


