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Abstract 

Using a unified framework, we show that a pruned 3D torus can be. explicitly specified by its pruning direction along which 
the links are uniformly removed from a complete 3D torus. The resulting networks, that offer the advantages of lower node 
degree and simpler layout, are inherently node-symmetric and maintain the same diameter as the original torus. It nuns out that 
the simplest pruning scheme is also best in preserving regularity, symmetry, and performance properties of the torus. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The links of a richly connected network can be re- 
moved in a periodic fashion for reduced complexity 
and hence increased performance. Such incomplete 
networks derived from pruning 3D meshes have been 
shown to be quite effective [5,9]. Let us denote the 
forward/backward connections along each of the three 
dimensions X, Y, Z with +/- signs. A simple pruning 
scheme, used in the Tera MTA interconnection net- 
work [l], is to alternately remove the fX and fY 
links along dimension Z so that the node degree is re- 
duced from six to four. (We refer to this type of net- 
work as T1 in Section 2.) 

Pruning a 3D torus, as done in [l], has advantages 
over pruning a 3D mesh in view of the node symmetry 
resulting from the inclusion of wraparound links. 
Except for the 2 x 2 x 2 torus, whose pruned version 
degenerates into a ring of eight nodes, the longest 
distance between nodes, or the diameter, remains the 
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same as that of the complete 3D torus, while the 
average internode distance increases only slightly. The 

negative effect of the bisection width being reduced 
to half can be more than compensated for by the 

increased channel capacity and more compact layout. 
The same pruning scheme is equally applicable 

to the unidirectional version of a torus, known as 
Manhattan street network [4,8]. In fact, the Manhattan 

street network can itself be viewed as a pruned torus 

if each bidirectional link in the torus consists of 

two unidirectional links. More complicated pruning 
schemes may be devised for both bidirectional and 
unidirectional tori by arranging the link removals 

along other directions. In essence, these variations 

are manipulations of connections within the Euclidean 
3-space and the resulting networks share common 

properties. 
Pruning higher-dimensional tori, and variants that 

replace the point-to-point connections along each di- 
mension with buses, have been shown in [6] and [lo], 
respectively. In this paper, we focus on the bidirec- 
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tional3D torus and unveil several interesting topolog- 
ical properties related to such pruned 3D tori. Our pre- 
sentation is organized as follows. Section 2 contains 

the definitions of the various types of pruned tori. Sec- 
tion 3 proves that the resulting networks belong to the 
class of Cayley graphs and thus with wraparound links 
included, they become not only regular but also node- 
symmetric. Section 4 includes results on the diameter 
and average internode distance of the pruned tori. Sec- 

tion 5 contains our conclusion. 

(xfl,y,z) ifz=even, 

(x,yfl,z) ifz=odd 

and in T2 to 

( 

(x+l,y,z)and(x,y+l,z) ifx+y+z=even, 

(x-l,y,z)and(x,y-1,~) ifx+y+z=odd. 

2. Preliminaries 

Let us denote each node in the 3D k-torus as 
(x,y,z), where 0 < x, y,z < k - 1. In a complete 
3D k-torus, each node (x, y, z) is connected to six 
neighbors, namely, (x f 1, y, z), (x, y f 1, z), and 
(x, y, z f 1). Here and throughout, it will be under- 

stood that all node-index expressions are calculated 
modulo k. Furthermore, we require k to be an even 

number to ensure that the pruned torus is regular and 
of degree four. 

The conditions for the X and Y connections in Tl 

and T2 define the pruning directions as z and x + y + 

z, respectively. It is easy to verify that both pruned 
networks are regular and of degree four. Furthermore, 

both are Hamiltonian, meaning that they contain a 
ring, encompassing all the nodes, as a subgraph. 
Constructive proof of Hamiltonicity is quite simple 
and is omitted here. 

3. Symmetry properties 

Fig. 1 shows examples of pruned 4 x 4 x 4 tori Tl 

and T2, where the nodes are shaded if their positions 
along the pruning direction are odd-numbered. The 
wraparound links are not shown to avoid clutter. 

Consider two types of pruned tori, Tl and T2, de- 

fined as follows. For these pruned 3D k-tori consid- 
ered in this paper, each node (x, y, z) is connected 
to its two neighbors (x, y, z & 1) along dimension 2. 
In addition, each node (x, y, z) in Tl is also connec- 

ted to 

Let * be an associative binary operator and 0 be a 

set of generators for a finite group r (Q C f) such 

that 
(i) the identity L +! ~2; 

(ii) if w E 52, then its inverse 0-l E 52, where 
w*w-1=1. 

Fig. 1. Pruned 3D 4-tori obtained by pruning along (a) the z direction and (b) the x + y + z direction. 
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In our case, the finite group is the node set of the 3D sets are closed under inverse, thus making the links 
k-torus, bidirectional. q 

f={(x,y,z): O<x,y,zGk-1). 

A Cayley graph is defined as a graph whose nodes 
Q and a! * w((Y, a! * o E r) are connected if and 
only if o E 52. The cardinality of the generator set 
Q determines the node degree. It is well known 
that Cayley graphs are node-symmetric [2,3]. For a 
detailed discussion on the symmetry properties of 
Cayley graphs, we refer the reader to [3,7]. 

Theorem 1. The pruned 3D k-tori Tl and T2 are 
Cayley graphs. 

We note that there does not exist a pruning direc- 
tion f (x , y , z) that combines two out of the three di- 
rections, since such selections leave the resulting net- 
works unconnected. Fig. 2 shows an example that 
pruning along x + y makes the shaded and non-shaded 
sub-networks disjoint. As a consequence of Theo- 
rem 1, an exhaustive check through all possibilities 
confirms that permuting X, Y, and Z dimensions leads 
to networks that are isomorphic to either Tl or T2. Per- 
muting the X and Z dimensions, while still maintain- 
ing the same generator set as for Tl, leads to Theo- 
rem 2. 

Proof. To facilitate our discussion, node indices will 
be expressed as 3-vectors. Let [x, y, zlT E r and 
[a, b, clT E 0. Define the group operator * as a semi- 
directed product. 

Theorem 2. The pruned 3D k-torus TI is edge-sym- 
metric. 

Informally, the edge symmetry makes all links look 
alike. This property distinguishes Tl from T2. Observe 
that the fZ link in T2 is always within a cycle of 
length k, but there is no such cycle for fX or fY 
links. Thus, the pruned 3D k-torus T2 is not edge- 
symmetric. 

where 

0 -1 o- 
@=-1 0 0, 

[ 1 0 0 1 

a permutation matrix with the periodic property Q2 = 
I, is raised to the integer power f (x, y, z). In other 
words, @f(xJ,z) is either the identity matrix or 0, 
based on the chosen function f and the values of the 
coordinates x, y and z. As before, the calculations are 
performed component-wise modulo k. 

In each case, we specify the pruning direction 
f (x, y, a) and derive the associated generator set R 
whose cardinal&y is equal to four. 
(i) Tr: f(x,y,z)=z and 

~=([K].[-‘].[8].[1]}. 

(ii) T2: f(x,y,z)=x+y+z and 

~=([a]~[~]~[~]~[~l]}~ 

The identity 1 can be easily shown to be (0, 0,O). The 
proof is complete by noting that the derived generator 

4, Diameter and average distance 

Theorem 3. For k > 4, the diameter of pruned 3D k-- 
tori Tl and T2 is exactly 3k/2. 

Fig. 2. Pruned 3D 4-torus obtained by pruning along the 
direction. 
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Proof. Before deriving the diameter, it is helpful to 
discuss a routing algorithm for such networks. The 
routing algorithm is based on clustering pairs of 
nodes into groups along the Z dimension. Each group 
possesses a complete set of dimensional links and 
allows routing in all directions. Then the pruned 3D 
k-torus can be viewed as a complete 3D torus with 
k x k x k/2 nodes. Recall that k is an even number. 

The number of routing steps taken along dimensions 
X and Y is at most k/2 + k/2 = k. The worst case 

needs [k/41 steps to move between groups along 
dimension Z and [k/41 steps to move within groups. 

The diameter is thus upper bounded by k + Lk/4] + 
[k/41 = 3k/2. Since Tl and T2 are subgraphs of the 
complete 3D k-torus with diameter 3k/2, this is also a 
lower bound for the diameter. q 

Theorem 3 states that the two pruned 3D k-tori Tl 

and T2 have the same diameter. Again, we can dis- 
tinguish them by the difference between their average 

distances. The average distance of Tl can be deter- 
mined analytically. 

Theorem 4. The average distance of the pruned 3D 

k-torus Tl is 3k/4 + 2(k-’ - kP2). 

Proof. Without loss of generality, we select node 
(0, 0,O) as the source and route from this node to every 
other node (x, y, z) along a shortest path. Consider the 
increase in the sum of distances compared to 3k4/4 
for the complete 3D k-torus. ‘Iwo extra routing steps 
need to be taken if the destination node (x, y, z) has 
y # 0 and z = 0. For all other cases, the shortest path 
in Tl is of the same length as is in the complete torus. 
In the 3D k-torus, there are k2 - k nodes with y # 0 
and z = 0. Thus the sum of distances is increased 
by 2(k2 - k), leading to the average distance 3k/4 + 

2(k-’ -k-2). q 

Table 1 lists the diameter values and average dis- 
tances of the pruned 3D k-tori Tl and T2 with k chosen 
as successive powers of two from 4 to 64. We have not 
been able to find a closed-form expression for the av- 
erage distance of T2, but curve fitting leads to a slope 
of 0.86k (compared to 0.75k for the complete 3D k- 

torus and 0.7513k for Tl). The advantage of Tl over 
T2 in terms of average internode distance grows as k 
increases. 

Table 1 

Diameter d and average distance 2 of pruned 3D k-tori 

k dV1) = d(Tz) ;i(Torus) z(Tl) %T2) 

= d(Torus) 

4 6 3 3.38 3.31 

8 12 6 6.22 6.83 

16 24 12 12.12 13.74 

32 48 24 24.06 27.52 

64 96 48 48.03 55.07 

5. Conclusion 

The pruned networks considered in this paper are 
subgraphs of 3D tori in which some of the links 
have been removed from nodes. Previous work has 
demonstrated that such networks offer advantages in 
terms of reduced node complexity [9] and allowing 
low-cost implementation for domain decomposition 

[5]. We have shown that by removing links in a 
periodic fashion, desirable topological properties such 
as symmetry and Hamiltonicity can be preserved, with 
no penalty in diameter and with negligible increase 
in average internode distance, particularly for large 
k. It is interesting that the simpler, more intuitive 
architecture Tl is better than T2, in terms of both 
regularity and performance. 
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