du..usmpwcm
October 27-31, 1996, Las Vegas, Nevads - USA

A Number Representation Scheme with Carry-Free Rounding
for Floating-Point Signal Processing Applications

Behrooz Parhami
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
parhami@ece.ucsb.edu

Abstract — In this paper, we present a new redundant
number representation called ‘“double-LSB”. The
representation is obtained by taking a normal binary
unsigned or 2’s-complement number and adding an extra
LSB with the same weight as the normal LSB (least
significant bit). The advantages and drawbacks of this
method are discussed and simple arithmetic algorithms
are shown. In particular, it is shown how floating-point
computation results can be properly rounded with no
carry propagation.

1. Introduction

Since the choice of number representation affects the
implementation cost and delay of all arithmetic
operations, many novel representation systems have been
studied and compared against conventional schemes with
respect to advantages and drawbacks [1]. In this paper, we
propose yet another such novel representation.

The double-LSB representation is obtained by adding an
extra bit to an unsigned or 2’s-complement number. This
extra bit has the same weight as the LSB. For example,
four bit number is represented as [a; a; a1 a a¢'].
Throughout the paper the extra LSB will be distinguished
by a prime; e.g., ao'. This gives a redundant representation
where all numbers, except the highest and lowest, have
two different representations. These numbers will be
referred to as k-bit double-LSB numbers.

A double-LSB number can be converted to an infinitely
long binary number by extending the number to the right,
with the extra LSB repeated infinitely many times. E.g.
{01101’} = [0110.11111...] is justified by the identity
x=x/2+x/4+x8+

Using the double-LSB format with 2’s-complement
numbers has the advantage that the range becomes
symmetrical. A standard k-bit 2’s-complement number
has the range [-2"', 2*'-1] but with double-LSB this
becomes [-2*", 2*']. This means that all numbers in this
range can be complemented without causing overflow.
Other ways of representing numbers with a symmetrical
range include one’s complement and sign magnitude.
These however have some drawbacks.

Rounding numbers sometimes requires the addition of one
in the least significant position. This normally requires a
full carry propagation but with double-LSB representation

Stefan Johansson
Department of Applied Electronics
Lund University
221 00 Lund, Sweden
sin@tde.Ith.se

this can be avoided. Rounding without full carry

propagation is one of the major advantages of the double-
LSB representation.

Conversion between standard representation and double-
LSB is very simple. To convert from standard
representation to double-LSB a zero is appended to the
number. To convert from double-LSB to standard
representation a full carry propagate adder or incrementer
is necessary. :

2. Addition and subtraction

Changing the sign of a two’s complement number requires
a full carry propagation. When using double-LSB
representation, complementing can be performed only by
inverting all bits in the number and thus no carry
propagation is necessary. This is important when the
complement is not followed by an addition, e.g in
convergence algorithms for division {2].

Addition and subtraction with carry propagate adders is
simple. Two k-bit double-LSB numbers, a and 4, can be
added to obtain their sum s, using one k-bit adder. This
can be done by using a,’ as a carry-in and letting 5o’ = by,
as seen in Figure 1. In the case of subtraction, the
subtrahend is negated (via bitwise complementation)
before performing addition. The double-LSB
representation also makes it possible to perform the
operation y = —a-b with a standard adder.

a N b .
EEERNREEEEN

——r

—

Figure 1. Addition of double-LSB integers.

Bit-serial adders can be used with the same principle as
above, a,' is used as carry-in in the first cycle and s, is set
to by'. To produce a result where the extra carry is always
zero however, the bit-serial adder must be redesigned
because two carry bits need to be propagated.

Parhami/Johansson, SIP'98, p. 1 of 3

3. Multiplication :

Multiplication by two is done by shifting the number to
the left, but instead of shifting in zeroes, the value of the
extra LSB is shifted in. The extra LSB remains
unchanged. This procedure can be understood by first
converting the number to an infinitely long binary
number, as discussed in Section 1, then shifting left, and
finally converting back to a double-LSB number.

The add and shift method requires one more addition but
no additional hardware if a carry propagate adder is used.
The result can always be represented with 2k bits, given
that 2** 2%= 2%

Tree multiplier can also be used but it generally requires
more hardware. Figure 2 shows a 4-bit standard 2’s-
complement multiplier that computes p = a * b, using
Baugh and Wooley’s method [3].

AXy GyXe GX; GpX,

ax, ay ax ax
axX;, a4y ax; agx
ax, ax, ax, ax
a, a4

1 X x,

Figure 2. Multiplication of 4-bit 2's-complement numbers
using Baugh and Wooley’s method.

Figure 3 shows the same multiplier using double-LSB
representation for both a and x.

AXy X, GX, X,

'

ax' ax) ax' a'x
aX 4y ax 4% aX%

broed 1) 1
Xy A%y, aX, GpX, G, X, 4y X,
L— — — '
1 ax ax, ax, ax a)'x,

-t
a4 G X

Figure 3. Multiplication of 4-bit double-LSB numbers.

Comparing Figures 2 and 3, we note that the height of the
highest column has not changed which means no added
delay. The matrix size for this particular example is
approximately 50% larger which means that 50% more
hardware is required. For a k-bit mulitiplier the hardware
increase is approximately 2k/k* = 2/k. This implies that
for a wide multiplier, the cost increase is minimal.

Multiplication using Booth’s recoding [4] is very simple.
Adding an extra LSB of 1 is the same thing as extending
the number to the right with an infinite string of 1’s.
Therefore, when doing the recoding, instead of extending
the number with zeros to the right, it is extended with the
value of the extra LSB.

lasa;a1a0ad] = [y az a1 av.ay’ ay’ a0’]

Recoding replaces all the repeated fractional digits with Os
and adjusts the first recoded digit accordingly. With this
provision, both recoding and multiplication are performed
in the normal way.

It is possible to design multipliers for double-LSB number
using AMMs (additive multiply modules) if they are
slightly modified. Multiplying two 4-bit double-LSB
numbers, 4 and B, can be written as:

AB ={a3y a; a; ap}*{b3 by by bo} + ay'{b3 by b; by} + by'{as
az ay ao} + ao'bol.

This can be seen as a normal 2’s-complement
multiplication but with the addition of two extra 4-bit
numbers and a one bit number. Similarly, multiplying two
8-bit numbers requires the addition of two 8-bit numbers
due two the two extra LSB’s. An 8-bit multiplier built
with AMMs has 16 unused inputs. With some
modifications to the AMMs these can be used to add the
two extra numbers. The remaining bit a,'6,' is used as the
extra LSB of the result. The extra numbers are formed by
a set of AND gates. These AND gates can be built into the
AMMs. When the AND function is not needed, the
control input ¢, or ¢, is set to one.

X Y

. Cy
4 4
ANDs ANDs
B

4x4 AMM

Cx |

s
|
Figure 4. Additive multiply module for double-LSB

numbers.

Bq-B, l Aq-Ay B;-Bi ,A3-Ao
AOI—_‘ ?0’ Aol—- —-—BO/
As-Ao ™ — —B,-B
3 0 I 7'B4 A3'A0 I 3 0
17 — 1
A7-A4 I B3-B0
| |1
A7‘A4 B7-B4

Figure 5. Double-length multiplication of double-LSB
numbers using single length additive multiply modules.

Figure 4 shows the modified AMM. The dotted box
contains the original AMM. The modified AMM now
performs the operation 4B + c,X + ¢,Y. By setting c, and
¢, to one it can be used as a normal AMM. Figure 5 shows
an example of an 8*8 multiplier built of four 4*4 AMM:s.

Parhami/Johansson, SIP'98, p. 2 of 3

4. Division

Dividing by 2 is done by a right shift. For correct
rounding, it can be shown that the extra LSB should be set
to the AND of itself and all the bits that are shifted out.

Double-LSB representation can be used together with all
the standard division algorithms but sometimes this might
require extra considerations. When doing division with
standard restoring or non-restoring algorithms, the partial
reminder is kept in double-LSB format. Since the quotient
digit is dependent on the sign of the partial reminder, the
sign detector must be designed to correctly detect the sign
of a double-LSB number.

This problem does not arise when using binary [5] or
high-radix [6] SRT division. In this case, only a few of the
most significant bits or digits are used to determine the
next quotient digit, and having the extra LSB will not
make a difference.

5. Floating point arithmetic

In floating point arithmetic the resulting mantissa often
contains more bits than necessary and has to be shortened
to the appropriate length for the ALU output. This is done
by removing the extra bits beyond the desired LSB and
rounding. This rounding can in a worst-case scenario
result in full carry propagation if rounding up takes place.
This is where the double-LSB number representation
shows it’s biggest advantage. Assume the number
(X1 Xg2.. . X1 X0.X1X2.. . XX0') is to be rounded to
(X1Xi2...x1Xo%g'). In case of rounding up, instead of
adding a one, which may result in a carry propagation, xo’
is set to one. The size of the fractional part
f = (x,x3..xnx,") determines whether to round up or
down. The following rule gives the size of f.

f<%iffx;=0andanyofx,;tox, =0
f>%iffx;=1and any of x;tox, =
f= " otherwise

Rounding to nearest even [7] can be done by setting:

xo =1liff>Yoriff="2andx, =1
x =0iff<Yoriff=Y2andx,=0

Other rounding schemes, notably downward-directed and
upward directed rounding [7] that are useful for interval
arithmetic, can be similarly accommodated.

6. Conclusions

We have presented a new redundant number
representation called double-LSB obtained by adding an
extra LSB to standard unsigned or 2’s-complement
numbers. This requires the use of one additional bit for
storage as well as extra cost of arithmetic in the form of
increased hardware or delay.

All numbers, including zero, have two different
representations. Although both representations can be
used in arithmetic operations, special considerations are
required for zero and sign detection.

The major advantage is that rounding, which often
requires an addition of one in the least significant position,
can be done without carry propagation. If double-LSB is
used with two’s complement numbers it gives the added
benefit of a symmetric range.

Even though the numbers contain k+1 bits, many
arithmetic operation can be performed with little increase
in hardware or delay. Addition and subtraction require no
extra cost and complementation is even simpler since it
can be done by bitwise inversion.

Shift-and-add multiplication requires one extra cycle.
Booth’s recoding can be used with no extra cost at all.
Tree multipliers however require some extra hardware
(but there is no increase in delay). Restoring and non-
restoring as well as SRT division algorithms can be used
with double-LSB representation with only minor
modifications.

Each 4-bit double-LSB number can be viewed as a
redundant radix-2*digit, with its value in [0, 2¢] or (-2,
2*"']. This viewpoint allows multi-precision arithmetic to
be performed in a carry-free manner using the rules of
generalized signed-digit (8] arithmetic.

References

{11 B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, 1998
(to appear).

{2] D. Ferrari, “A division method using a parallel
multiplier,” /EEE Trans. Computers, vol. 16, pp.
224-226, Apr. 1967.

(3] C. R. Baugh and B. A Wooley, “A two’s
complement parallel array multiplication algorithm,”
IEEE Trans. Computers, vol. 22, pp. 1045-1047,
Dec. 1973.

[4] A. D. Booth. A signed binary multiplication
technique,” Quarterly J. Mech. Appl. Math., vol. 4,
part 2, pp. 236-240, 1951.

{51 1. Koren, Computer Arithmetic Algorithms, Prentice
Hall, 1993, pp. 127-133.

[6] J. E. Robertson, “A new class of digital division
methods,” IRE Trans. Electronic Computers, vol. 7,
pp. 218-222, Sep. 1958.

{71 Standard for Binary Floating-Point Arithmetic,
ANSVIEEE 754, 1985

[8] B. Parhami, “Generalized signed-digit number
systems: A unifying framework for redundant
number representations,” JEEE Trans. Computers,
vol. 39, pp. 89-98, Jan 1990.

Parhami/Johansson, SIP'98, p. 3 of 3

