
Efficient Designs for Multi-Input Counters

Chi-Hsiang Yeh
Dept. of Electrical & Computer Engineering,

Queen’s University
Kingston, Ontario, Canada, K7K 3N6

Abstract

A multi-input counter; or accumulative parallel counter;
represents a true generalization of a sequential counter
in that it incorporates the memory feature of an ordinary
counter; i.e., it adds the sum of its inputs to a stored value.
In this paper; we present eficient designs for simple multi-
input counters and their modular versions, which keep the
accumulated count modulo an arbitrary constant.

1 Introdiction

In its simplest form, a counter is a sequential circuit that
stores an integer value and can increment (and, in the case of
up/down counters, also decrement) it by 1 upon the receipt
of a special “enable” or “count” signal. Counters are among
the most widely used components in digital systems, with
applications in computer systems, communication equip-
ment, scientific instruments, and industrial process control,
to name a few. A vast variety of counter designs have been
proposed in the literature [3,6,12], patented [1,2,4], and/or
used in practice.

Although techniques are available for designing high-
speed counters with conventional number representations
[S], the-speeds that can be achieved are limited by the re-
quirement for carry propagation. Even with advanced de-
signs based on redundant number representations [6] or hi-
erarchical incrementation using small blocks at the right
end and increasingly wider blocks toward the left [11, 151,
speeds will be limited by the basic switching characteristics
of components and, perhaps, by the need for final conver-
sion of the redundant count into a conventional binary num-
ber. Even when no conversion is needed, to count the num-
ber of Is among many thousands of bits by feeding them se-
quentially to a high-speed counter would imply delays well
in excess of several microseconds and such a delay is unac-
ceptable in certain applications. Some form of parallelism in
handling the large number of input bits is needed to achieve
higher speeds.

In fact, there are indications that the reverse of the pro-
cess discussed above may be viable in counter design: In-

Behrooz Parhami
Dept. of Electrical & Computer Engineering,

University of California,
Santa Barbara, CA 93106-9560, USA

G-1 20

Binary Output

z=Y
y :=y+x
(y stored internally)

Lr

xr
Parallel . Xz .
Counter : .

X”

Count
&puts

Figure 1. Sequential and parallel counters.

stead of sequentializing n ,aturally parallel inputs to cut
on hardware complexity and cost, we mi ght want to

down
paral-

lelize high-frequency sequential inputs to allow the use of
relatively slow, and thus low-cost, compact, and/or power-
efficient, circuits. For example, a 400 MHz incoming signal,
when demultiplexed 32 ways, is transformed into a set of
12.5 MHz signals that can be handled by non-speed-critical
components. In this way, a complex circuit that would have
to be designed by paying meticulous attention to speed op-
timization at every juncture (with the attendant overheads
in design time, testing effort, VLSI area, and power con-
sumption) is replaced by a simple high-speed front end feed-
ing a lower-grade main part. With the unyielding pursuit of
high-throughput and low-power digital systems, this type of
“demultiplexed” computation has become the norm in cer-
tain areas (notably data communication) that, as recently as a
decade ago, used to rely on “multiplexed” hardware for rea-
sons of economy.

A parallel counter [131 has been defined as a combi-
national digital circuit having n binary inputs and m =
Llog, nj + 1 binary outputs, or alternatively, having between
2 I?t- 1 and 2”’ - 1 binary inputs for m binary outputs, where
the outputs correspond to the base-2 representation of the
sum of the lz input bits xl 92, . . .,x,~; i.e., a number between 0
and n. Such parallel counters have been studied extensively
in connection with counting of multiple responders in asso-
ciative devices and finding the sum of a column of 1s in fast
parallel muitipliers, with numerous implementation alterna-
tives investigated.

0-7803-5700-0/99/$10.00©1999 IEEE

1340

However, the above definition does not represent a true
generalization of serial counters in the sense that the mem-
ory feature of serial counters is not carried over. In effect,
the corresponding sequential counter is one whose count is
reset to zero after every n cycles. We define a multi-input
counter (MC), also called an accumulative parallel counter
(AK) [S], as a sequential circuit with a single q-bit word
of memory holding, at the end of each counting cycle, the
sum of its previous content and its n single-bit inputs or more
generally, the sum of its previous content and its weighted
inputs. Thus, in each cycle, the stored or output count of the
former will be incremented by a value between 0 and n. The
sum can be defined to be modulo 29 or modulo some other
arbitrary number p, with or without a wraparound (over-
flow) indication output. MICs can be used to replace parallel
counters in many applications in order to reduce the hard-
ware cost and/or store the output values for future use.

In this paper, we focus on designs for simple MICs
whose inputs are single-bit numbers. Most of the proposed
techniques can also be applied to the general case. We
discuss modulo-p multi-input counters, concentrating ini-
tially on providing the accumulative property for the sim-
pler modulo-24 or modulo-(29 - 1) parallel counters. We
demonstrate ‘that such MICs are only slightly more com-
plex than their combinational versions. Our merged de-
signs can considerably reduce the delay for readout of the
naive designs that combine an ordinary combinationa par-
allel counter (CPC) with a register and a fast adder in a two-
stage arrangement. while offering lower cost at the same
time. The results are then extended to the case of an arbi-
trary modulus p. All of our designs compare favorably with
n-input, ordinary and modulo-p, CPCs and are considerably
more efficient than those obtained by incorporating the ac-
cumulative property after that fact.

2 Parallel Incrementers/Decrementers and
MICs

SW -

In this section, we discuss the design of (n, m) paral-
lel incrementers with n single-bit inputs xl ,x2,x.~ (incre-
ment signals), an m-bit binary input ynt- 1. ..yl yo, and an m-
bit binary output znt- 1 . ..zl~ which is the sum of y and the n
single-bit inputs modulo 2” or 2”’ - 1 (Fig. 2a). Since mod-
(2”’ - 1) addition can be performed by using end-around car-
ries in intermediate computation steps with no added com-
plexity, the modular reduction aspect of the design will be
implicit in our discussion. A parallel decrementer is simi-
larly defined to compute y - xxi, where the xi are now called
the decrement signak and y is either an unsigned value that
wraps around (underflows) when it reaches zero or else it is
a suitably encoded signed integer. We will not discuss par-
allel decrementers explicitly, as they can be easily derived
from the designs offered for parallel incrementers.

Clearly, an (n,q) MIC can be implemented by an (n, q)
s

ym-1 YO

.

(n,m)

2

Parallel :
lncrementer :

.

.

0tfeflow zmel
(optional)

=o

Xi
x?

X”

Zkq n-l zo

.

Xf

hlogn) . 3
Parallel

D

lncremente f
.

‘n
.

(1 a (b)

Figure 2. (a) An (n,m) parallel incrementer and (b) an
(4 4) ME

parallel incrementer connected to a q-bit register. When q
is large, however, the delay of such a design would be sig-
nificant and can be considerably improved by suitably con-
necting an (n, [log2 nl) parallel incrementer to a [log2 nl -bit
register and a (q - [log2 nl)-bit sequential counter (Fig. 2b),
which can be any design with small delay [11, 151. Since
the design of fast counters has been studied extensively, in
what follows, we concentrate primarily on the synthesizing
of parallel incrementers in order to complete the MIC design
of Fig. 2b.

Clearly, a parallel incrementer can be designed by com-
bining an ordinary CPC with a fast adder. The delay and cost
of such an (n,m) parallel incrementer are increased by the
delay and cost of the m-bit fast adder, compared to the re-
spective parameters of an (n - 1)-input CPC (one of the n
increment signals can be accommodated by using the carry-
in input of the fast adder). The overhead of such a design
is quite high for moderate m. Direct synthesis of a parallel
incrementer leads to more efficient designs.

We present a synthesis procedure based on full and half
adders (FAs, HAS) when m is not much larger than log2n;
this is clearly the case for the intended use in Fig. 2b. An
(n, m) parallel incrementer of this type consists of an (n - l)-
input CPC and an m-bit ripple-carry adder, as shown for a
(32,7) parallel incrementer in Fig. 3. The CPC part of the
design is based on a divide-and-conquer strategy: given two
CPCs each with I inputs, a (21+ I)-input CPC is obtained
by the use of a ripple-carry adder of length Llog2 IJ + 1 =
[log2(21 + l)j . Similarly, two such (21+ I)-input CPCs can
be combined with a ([log, r] + 2)-bit ripple-carry adder to
produce a (41+ 3)-input CPC. This procedure is repeated
until a CPC of size 2 n - 1 is obtained.

The preceding designs are easily extended to the case of
modulo-p parallel incrementers, where the modulus p sat-
isfies 2”‘-’ < p 5 2”‘. An (n,m;p) modular parallel incre-
menter computes the m-bit module-p sum of the n single-bit
increment signals and an m-bit binary input. An (n,m;p)

1341

Figure 4. Modulo-p parallel incrementer.

Figure 3. Design of a (32,q) parallel incrementer.

modular parallel incrementer can be realized by using an
(n,m) parallel incrementer followed by a modulo-p reduc-
tion circuit [7]. However, as before, a merged design signif-
icantly reduce2 the delay and cost overhead.

Assuming m > log2n, the modular reduction is essen-
tially equivalent zdetecting if the sum has exceeded p - 1
and to subtract p from it (add 2”’ - p) if it has. Overflow is
detected by observing the carry-out.

A straightforward implementation of a modular parallel
incrementer consists of an (n - l)-input CPC followed by
two m-bit ripple-carry adders and an m-bit multiplexer: the
first m-bit adder adds the output of the CPC and a single-bit
increment signal (only needed if n is a power of 2) to the ad-
ditive binary input; the second m-bit adder adds the constant
2 n* - p to the result of the first one; the multiplexer selects
the result of one of the m-bit adders based on the sign of the
second one (Fig. 4).

an area of about

The added’ cost for an (n,m;p) modular parallel incre-
menter with respect to an (n,m) parallel incrementer is the
cost of an m&it ripple-carry adder and an m-bit multiplexer;
the delay overhead is less than 2 units (1 FA delay plus a
multipIexer delay). The cost and delay can both be some-
what reduced if one uses custom FA cells incorporating the
selection function in their sum logic in lieu of standard FA
and multiplexer cells at the bottom of Fig. 4.

When m is large and high speed is desired, computation
of the sums, except for their least-significant LIog2(n - 1) j +
1 bits, can be accelerated using standard speedup techniques
(carry-select, carry-skip, etc), alone or in combinations. The
use of carry-select is particularly attractive in terms of both
speed and cost.

In what follows we derive the layout area of the preceding
parallel incrementer design under the Thompson model us-
ing two layers of wires (see [141 for details). If an FA can be
laid out within an a x b rectangle, and the width of a wire is
1, then an (n,m) parallel incrementer can be laid out within

I Z

y(alog2n+ $og:n)n+mab.

More precisely, we need at most 2 tracks for wires connect-
ing the first and the second level of FAs, 3 tracks for wires
connecting the second and the third level of FAs, i tracks for
wires connecting the (i - l)rh and the ith level of FAs, and
so on (see Fig. 3). Since there are [log,nl - I levels of FAs
other than the ripple-carry adder at the last stage, the total
number of tracks required for these wires is

2
2+3+~*~+([log2n] - 1) = F.

Therefore, the height of the layout is about

1
a log2 n + 2 logs n.

The width of the layout is easily seen to be about

y(b+ 1) + $ = $(b+2).

Note that we have implicitly assumed a > 2 and b > 2; con-
ditions that are certain to hold in practice. When mis large,
we can utilize the empty space at the lower left of the preced-
ing layout to accommodate the FAs of the final ripple-carry
adder or even wrap the ripple-carry adder around other parts
of the layout. The increase in area is at most about mab, so
the result follows.

Note that the preceding is only an upper bound on the lay-
out area of our design and the actual layout may be even
more compact if done using a software router. Note also
that the layout of an (n,m) parallel incrementer requires n
input lines and m output lines so the circumference of the
layout must be at least n + m. Moreover, the n inputs have
to be combined to obtain the output, which requires O(logn)
levels when using constant fan-in devices such as FAs. For
this, we need a minimum of about n FAs, as argued above.
Therefore, it is impossible for the layout of any parallel in-
crementer design to have significantly smaller layout than
that of our design.

1342

Figure 5. Design of a pipelined (16,q) MIC.

3 Pipelined Multi-Input Counters

A parallel incrementer or MIC may be used to accumu-
late--the count for multiple sets of n inputs. The multiple
sets could be independent, resulting from a computation in
which things to be counted are obtained in multiple stages,
or due to input partitioning in order to reduce the implemen-
tation cost of the MIC. Pipelining the multiple inputs is a nat-
ural way to reduce the total MIC delay.

In the pipelined version of our modulo-2s MIC (Fig. 5),
full-adder sum and carry outputs are connected to latches.
The carry out of the leftmost FA in each shaded group (form-
ing a ripple-carry adder) is connected to a second latch be-
fore going to the next level. In Fig. 6, the integer shown in-
side each latch indicates the number of clock cycles from the
application of inputs to the first loading of the latch. Latches
with identical integer labels define a computational wave-
front tiiat incorporates all the partial parallel counting re-
sults for one set of inputs. By removing every other layer
of latches (say those with odd labels), a more economical,
and correspondingly slower, pipelined implementation can
be obtained.

If the latency of the serial counter part is d clock cycles,
then we add d + 1 latches to the most significant sum bit
of the pipelined ripple-carry adder in the last level, d + 2
latches to the second most significant sum bit, d + 3 latches
to the third, and so on. Then the outputs of the serial counter
and those of the last latches of the various sum bits collec-
tively represent the current count of the pipelined MIC. For
a 2’-input MIC, the count will be available for read out af-
ter 21-t d - 1 cycles. For example, in the particular MIC
given in Fig. 5, the number of inputs is 16 and the latency of
the serial counter is 1, so the count will appear at the lower-
most sum latches and counter outputs after 8 cycles, no mat-
ter how large q is. Since serial counters with d = 1 are avail-
able, the readout delay is only 21 for 2’ inputs, which is very

Figure 6. Computation wavefronts in the pipelined MIC
of Fig. 5.

close to the minimum.
The preceding pipelined design for simple MICs can be

extended to obtain pipelined modular MICs with high count-
ing and sampling rate and low latency. To obtain a pipelined
(n,q;p) MIC, we need two additional q-bit accumulative
adders with fixed input -2p, the left one with initial value
A= 0 and the right one with initial value B = -p (Fig.
7). The outputs of a pipelined (n,q) MIC are fed to two
pipelined (fast) adders, one adding A, and the other adding
B, to the intermediate count of the pipelined (n, q) MIC. The
outputs of the two adders are then fed to a multiplexer with
a simple control logic whose inputs consist of the overflow
signals from the pipelined (n,q) MIC and the two pipelined
adders at the final stage.

Initially, the output of the fast adder on the left holds the
correct count. After at least p/n cycles, the adder on the left
may overflow and the outputs of the other become the cor-
rect count; an event that can be detected by examining the
three overflow signals in Fig. 7. Then the content of the left
accumulative adder has to be reduced to A = -2~. Since the
output of the right adder will continue to be the correct count
for at least another p/n cycles, the accumulative adders do
not need to be very fast. Note that a fast q-bit adder can
have latency as small as O(log q) = O(log logp), which is
considerably smaller than p/n > p/ log2 p. In usual cases, a
ripple-carry adder, which has latency log2 p = o(p/ logp), is
sufficient so the complexity introduced by the accumulative
adders is small. Moreover, the inputs of the accumulative
adders are fixed, which may further reduce the implemen-
tation cost. When the right adder overflows, the left adder
will again supply the correct count and the the content of the
right accumulative adder has to be reduced to B = -3~. The
computation thus flip-flops between the left and right paths
in Fig. 7.

1343

Input Count Signals

f=-l

Pipelined Fast Adder Pipelined Fast Adder

oyls**
(Left) WW)

celerated development as well as additional domain-specific
designs and optimizations.

References

[l] D. Chu and M. Ward, “Data capture in an uninterrupted
counter,” U.S. Patent No. 4,.519,091, May 1985.

[2] D.H. Eby, “Synchronous programmable two-stage serial/
parallel counter,” U.S. Patent No. 4,905,262, Feb. 1990.

[3] M. Ercegovac and T. Lang, “Binary counter with counting

Figure 7. Design of a pipelined (n, q; p) MIC.

Note that the most significant bit of the pipelined (n,q)
MIC is discarded so that the intermediate count is a multi-
ple of 24 smaller than the true sum of the input signals since
the ME was initialized. Although 29 is not a multiple of
p, this does not pose any problem since at least one of the
two values ‘A or 43 will be truncated by exactly the same
amount, so that the effect is always canceled. This is the rea-
son we need to use accumulative adders of width 4, the num-
ber of bits in the output of our (n, 4) MIC. Note also that the
latches at the final stages of the (n,q) MIC part can be re-
moved, if so desired, while an appropriate number of latches
must be added to each output bit of the two adders at the fi-
nal stage of the modular MIC. Clearly, both the counting and
sampling periods are dictated by only the delay of a FA and a
latch. The latency of a modular (n, q; p) parallel incrementer
is only increased by O(log q) = O(log log p) compared to a
simple (n, q) parallel incrementer when fast adders are used
at the final stage.

4 Conclusion

In this paper, we have proposed efficient pipelined de-
signs of simple and modular MICs. They improve pre-
vious designs significantly in terms of sampling rate and
read-out latency, while requiring smaller cost at the same
time. Further research is warranted on several aspects of
MICs. While the designs presented in this paper are area-
and time-efficient, they are not strictly optimal in either re-
spect. Therefore, improving the latency or VLSI layout area
of our designs might be attempted, although we conjecture
that the much greater complexity of faster designs will likely
make them highly cost-ineffective. Actual hardwarerealiza-
tion and VLSI layout may also provide additional insights
and optimizations at a finer level. Finally, identification and
evaluation of new application areas for parallel counters,
and their generalized forms suggested here, might lead to ac-

period of one half adder independent of counter size,” IEEE
Trans. Circuits andSystems, Vol. 36, No. 6, pp. 924-926, June
1989.

M.W. Evans, “Minimal logic synchronous up/down counter
implementations ‘for CMOS,” U.S. Patent No. 4,611,337,
Sep. 1986.

[5] R.M.M. Oberman, Counting and Counters, Wiley, New
York, 1981.

[6] B. Parhami, “Systolic up/down counters with zero and sign
detection,” Proc. Symp. Computer Arithmetic, pp. 174-178,
1987.

B. Parhami, “Analysis of tabular methods for modular reduc-
tion,” Proc. Asilomar Conf: Signals, Systems, and Comput-
ers, pp. 526-530, 1994.

B. Parhami and C.-H. Yeh, “Accumulative parallel counters,”
Proc. Asilomar Con& Signals, Systems, and Computers, pp.
966-970, 1995.

[9] B. Parhami, Computer Arithmetic: Algorithms and Hard-
ware Designs, Oxford University Press, 2000.

[lo] N. Pippenger, “The complexity of computations by net-
works,” IBM J. Res. Develop., Vol. 31, No. 2, pp. 235-243,
Mar. 1987.

M.R. Stan, “Synchronous up/down counter with clock period
independent of counter size,” Proc. IEEE Symp. Computer
Arithmetic, pp. 274-28 1, 1997.

M.R. Stan, A.F. Tenca, and M.D. Ercegovac, “Long and fast
up/down counters,” IEEE Transactions on Computers, Vol.
47, No. 7, pp. 722-735, July 1998.

[13] E.E. Swartzlander, Jr., “Parallel counters,” IEEE Trans. Com-
puters, Vol. 22, pp. 1021- 1024, Nov. 1973.

[141 Thompson, C.D., “Area-time complexity for VLSI,” Proc.
ACM Symp. Theory of Computing, 1979, pp. 81-88.

[151 J.E. Vuillemin, “Constant time arbitrary length synchronous
binary counters,” Proc. Int ‘1 Symp. Computer Arithmetic, pp.
180-183, 1991.

[161 C.-H. Yeh and B. Parhami, “Efficient pipelined multioperand
adders with high throughput and low latency: designs and
applications,” Proc. Asilomar Con. Signals, Systems, and
Computers, pp. 894-898, 1996.

1344

