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Abstract 

Multiplication is one of the most fundamental operations 
in arithmetic and algebraic computations. In this paper, 
we present depth-optimal circuits for performing mul- 
tiplication, multioperand addition, and symmetric func- 
tion evaluation with small size and restricted fan-in. In 
particular, we show that the product of two n-bit num- 
bers can be computed using a unit-weight threshold cir- 
cuit of fan-ink, depth 3 logk n + log2 d 

log2(1+&)-1 
+o(logkn+ 

lo&) + O(l), and edge complexity O(n2f’/d log(d + 
l)), for any integer d > 0. All the circuits proposed in 
this paper have constant depth when logkn is a constant 
and are depth-optimal within small constant factors for 
any fan-in k. 

1 Introduction 

Threshold circuits constitute a powerful computational 
model for arithmetic and other computations [ 12, 13, 16, 
201. A linear threshold function is defined as a Boolean 

%YQYX) > = 
1 if F(X) > 0; 
0 if F(X) < 0, 

function a - 

where X = (~1, . . ..xk) E (0, l}k is the vector of input 
variables, and F(X) = $ 1 wjxi + WO. The scalars wi, i = 
1,2,. . . , k, are called the weights, and wo is called the bias 
of the threshold function. A threshold circuit is defined 
as a computational network that consists of an acyclic 
interconnection of threshold gates, each of which com- 
putes a linear threshold function [ 10, 131. The depth of 
a circuit is defined as the length of (i.e., the number of 
nodes on) the longest path from any input to any output 
node of the circuit, while thefan-in of a circuit is defined 
as the largest fan-in among all the gates contained in it. 

E.A. Varvarigos, B. Parhami, and H. Lee 
Dept. of Electrical & Computer Engineering 

University of California 
Santa Barbara, CA 93106-9560, USA 

The edge complexity and the gate complexity of a circuit 
are defined as the number of edges and the number of 
gates in the circuit, respectively. 

In this paper, we propose unit-weight threshold cir- 
cuits to perform iterated addition and multiplication and 
to evaluate general symmetric functions. The circuits 
we propose have depths that are considerably smaller 
than those in [3, 13, 141. In particular, we present 
a unit-weight threshold circuit to compute the sum 
of m n-bit numbers, which has depth approximately 
equal to 2 log, m + logk n + 1.44 log2 d, edge complexity 
O(nm’+‘&og(d + 1)), and fan-in k, for any positive in- 
teger d. The parameter d can be selected to obtain the de- 
sired tradeoff between depth and edge complexity of the 
circuit. The depth of our iterated addition circuit is opti- 
mal within a factor of 1 + o( 1) when log:, d = o(logkn) 
and logk rn = o(logk n), and is optimal within a factor of 
1.5 + o( 1) when log2 d = o(logkn) and log, m z logk 11. 

We derive a unit-weight threshold circuit to compute 
the product of two n-bit integers, which has depth ap- 
proximately equal to 3 logkn + 1 .4410gz d, edge com- 
plexity O(n 2+1/‘log(d + l)), and fan-in k. The depth 
of this multiplication circuit is optimal within a factor 
of 1.5 + o( 1) for any circuit based on the grade-school 
method (i.e., bit-matrix reduction) and is optimal within 
a factor of 3 + o( 1) from a trivial lower bound, assuming 
log2d = o(logkm). Siu et al [ 14, 131 have given multi- 
plication threshold circuits of restricted fan-in, which re- 
quire depth (7 log? (d + 1) + 4) logkn + o(logdlogk rz> + * 
O(l), edge complexity O(&%z2ki), and fan-in k for 
any integer d 2 1. Our multiplication circuit improves 
on the results in [ 141 by reducing the required depth by 
a factor of 3.67 asymptotically for circuits of fan-in k 
when logE,n is not a cons tant and by a factor of 4.86 
asymptotically for circuits with similar fan-in and edge 
complexity when d is large. We also show that any 
symmetric function of n inputs can be evaluated usi ng a 
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unit-weight threshold circuit of fan-in k, depth approxi- 
mately equal to 2 lo gk n + 1.44 log2 d, and edge complex- 
ity O(n ‘+‘jd log(d + 1)). The depth of this circuit is opti- 
mal within a factor of 3 + o( 1) for the given fan-in when 
log,d = o(logkr2). The depth of our circuit for symmet- 
ric function evaluation is smaller than the depth of the 
corresponding circuit given in [3] by a factor of approxi- 
mately 4.17 for similar edge complexity and fan-in k = n. 

2 Iterated Addition 

The addition of two operands is the most frequently en- 
countered operation in computer arithmetic units. We 
can show that addition can be performed using an AND- 
OR circuit that has almost linear edge complexity and is 
depth-optimal within a factor of 1 + o( 1) when logkn is 
not a constant. 

Theorem 2.1 
The sum of two n-bit integers can be computed using an 
A7V>-OR circuit of depth lo&n + o(logk n) + 0( 1), edge 

4 d-l 

complexity O(d2n(log* * ’ ’ ’ * n)2), andfan-in k, for any 
positive integer d = o(logkn) + 0( 1). 

In what follows, we focus on the (m, n) iterated (multi- 
operand) addition problem, which is the problem of com- 
puting the sum of m integers, each of which consists of 
n bits. A related problem is the (m,n) sum-reduction 
problem, where we want to produce two integers whose 
sum is equal to the sum of the original m n-bit numbers. 
Both problems have been considered extensively in the 
literature, and many constructions have been proposed to 
solve them [9, 18, 11, 171. 

2.1, The (m, IZ) Sum-Reduction Problem 

Given n one-bit numbers, an (n, [log2(n + l)l)-counter 
is a circuit that produces the [log2 (n + 1)1 -bit binary rep- 
resentation of the sum of the n bits [ 151. Parallel counters 
are important in our constructions, since they are used as 
subblocks in the circuits that we will propose for the sum- 
reduction problem. 

Lemma 2.2 An (n, [log,(n + l)l)-counter can be con- 
structed using a unit-weight threshold circuit of depth 2, 
edge complexity n2 -I- O(n), andfan-in n. 

We are now in a position to present circuits for the sum 
reduction problem. Using the techniques developed in 
[7, 91, we can reduce the number of operands that have 

to be added from m = pr to p [log2(r + I)]) by using 

(f-7 k%2k-+ 1>1> -counters. This reduction will be used 
repeatedly to reduce the number of operands. Note that 
the larger the ratio &,- can be made, given the con- 
straints on the fan-in of the circuits, the faster we will be 
able to perform the sum-reduction operation. 

We define the function f(t) as the unique integer x < t - 
that satisfies the condition 

i 
-&i 5 [*og2;+l)l for a11 y E [XT tlT .v 
TGizm-l < rlo&+l)l for all y < X, 

In other words, r = f(t) achieves the largest possible 

va1ue for p&iJi for any integer r < t. If multiple val- - 
ues of x maximize the ratio X 

bg2(x+l)l' 
then r is the small- 

est among them. The following lemma will be useful in 
our analysis. 

Lemma 2.3 The (m, n) sum-reduction problem can be 
executed using a unit-weight threshold circuit of depth 
2, edge complexity O(nm3/logm), and fan-in g(m) = 
m . 2[10g2(m-1)l . 

The following theorem supplies a tradeoff scheme be- 
tween depth and edge complexity in the (m,n) sum- 
reduction problem. It also gives flexibility in choosing 
the fan-in of the gates used, which is not the case in 
Lemma 2.3. The main idea of the following theorem is 
to use Lemma 2.2 repeatedly to reduce the number of 
operands to a small number, and then use Lemma 2.3 to 
obtain the final result. 

Theorem 2.4 The (m, n) sum-reduction problem can be 
solved using a unit-weight threshold circuit of depth 

log2 d 

210gkm+ log,(l+Js) - 1 
+ o(bgkm + logd) + 0( 1) 

Z 2 lo& yyt + 1.44 log, d, .b 

edge complexity O(nm ‘+‘&og(d + l)), andfan-in k, for 
any positive integer d. 

Proof: We denote the ifh Fibonacci number by F(i) = 
F( i - 1) + F(i - 2), where F(2) = F(1) = 1, and let 

ri=f(mY). The (m, n) sum-reduction operation can 
be performed in three phases: 

l Phase 1: This phase is subdivided into 4 stages, 
F(q+U 

where 4 is the smallest integer satisfying rn7 > 
k. At stage i, i = 1,2,. . . ,q, we use (ri, [logz(ri + 
l)] )-counters to reduce the number of operands that 
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have to be added. Since an output bit of a counter 
at stage i is a linear combination of at most ri edges 
(Lemma 2.2) a gate in the counter has fan-in at most 
ri (see Lemma 2.2), where riri-1 < k for i _< q - 1. 
As a result, we can merge the second layer of the 
counters at stage i - 1 with the first layer of the 
counters at stage i for i = 2,3,4,. . . ,q - 1, with- 
out exceeding the available fan-in k. Therefore, a 
threshold circuit of depth 9 + 2 suffices for Phase 1. 

After the reduction in the number of operands 
achieved in Phase 1, we can use counters of fan-in 
f(k) to continue reducing the number of operands, 

which requires edge complexity o(nm’+i) per 
stage. 

l Phase 2: In 
this phase we use (f(k), [log2(f (k) + l)l)-counters 
to continue reducing the number of operands for an- 
other x stages until there are only 

.- mq+x < min (O(mv logm),g-l(k)) (1) 

operands left, where the function g- 1 (k) is the in- 
verse of the function g(m) defined in Lemma 2.3. 

l Phase 3: At the beginning of phase 3 we are left 
witll mq+x p o erands that have to be added. The 
sum-reduction problem can now be solved using 
Lemma 2.3. 

From Lemma 2.2, Phase 1 can be executed using a 
unit-weight threshold circuit of depth 4 + 2. Also, since 
the circuit at each stage in Phase 1 has edge complex- 
ity O(nm’+ i), the total edge complexity for Phase 1 is 

o( nni’+i log(d + 1)). From Lemma 2.2, the x stages of 
Phase 2 have depth equal to 2x, fan-in equal to f(k), and 
edge complexity o(nm I+ lid). The depth required to im- 
plement Phase 3 is equal to 2, We denote by mi the num- 
ber of operands left after stage i of Phase 2 that have to 
be added to obtain the result. It can be seen that an upper 
bound on mi, for i > q, is given by 

(2) 

Since from Eq. (1) the number mq+x of operands left 

after Phase 2 is O(mw logm), Phase 3 has edge com- 
plexity at most O(nml+ f ) from Lemma 2.3. Since mq+,x 
is no more than g-’ (k), the fan-in of the circuit that 
implements Phase 3 is at most equal to g(g-‘(k)) = 
k from Lemma 2.3. Since the depth of each stage in 

Phases 2 and 3 is equal to two, the threshold circuit con- 
structed above for the (m, n) reduction problem has depth 
4 + 2x + 4, fan-in no more than k, and edge complexity 
O(nml+‘ldlog(d + 1)). 

To find the depth of the circuit, we need to compute 
the numbers of stages 4 and x required for Phases 1 and 

2, respectively. Since rq+l = f( rnw) >kandF(q+ 

1) = @q+’ - $q+‘)/& [8], we have 

1 
Js 

((p+’ -qjq+l) > fg.!g, 

where @ = (1 + fi)/2 and 4 = (1 - fi)/2. Therefore, 
the value of q is given by 

log, d - (log, log2 m - lo& lo& k) q= y 
” log2 0 

+o(logd+loglogk 

We can also show that 

x< log2 f-n 
- log2 k - log2 [log2(k + I)1 1 + o(I), 

and the result follows. The details are omitted in this pa- 
per. cl 

The depth of our circuit is smaller than the depth of 
the circuit given in [3] when the fan-in k = m (the results 
in [3] were developed only for the case k = HZ), and is 
smaller than that given in [3] by a factor of 4.17 asymp- 
totically. Theorem 2.4 provides a way to trade off depth 
for edge complexity with any restricted fan-in k not ex- 
ceeding m. Such flexibility is also provided in the (n, ~2) 

sum-reduction circuit presented in [ 14, 131, which re- 
quires depth 7 log2(d + 1) log, n + o(logd log, n) + 0( 1), 

edge complexity O(d d n !!@ 2ki) and fan-in k for any in- , 
teger d > 1. Theorem 2.4 improves on the results in 
[ 14, 131, by reducing the required depth by a factor of 
about 3.5 asymptotically for the same fan-in k (and d = 
1) when lo&n is not a constant and by a factor of about 
4.86 asymptotically for circuits of similar size and edge 
complexity when d is large. 

2.2 Iterated Addition 

In this subsection, we turn our attention to the iterated ad- 
dition problem, which is the problem of computing the 
sum of m n-bit integers. 

Theorem 2.5 The sum of m n-bit integers can be com- 
puted using a unit- weight threshold circuit of depth 

2 lo& m + lo&n + log, d 

logz(l+ -\/5) - I 

> . 
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+o(logkm + logkn + logd) + o( 1) 

= 2 lo& m + log, ?I + 1.44 lo& d, 

edge complexity O(nml+‘i’log(d + l)), andfan-in k, for 
any positive integer d. 

Proof: We first use the (m,n) sum-reduction circuit of 
Theorem 2.4 to reduce the number of operands from m to 
two, and then compute the sum of the two numbers using 
the adder of Theorem 2.1. cl 

A trivial lower bound on the depth required to perform 
iterated addition is logk m + logk n since there are mn in- 
put bits. The depth of our iterated addition circuit is op- 
timal within a factor of 1 + o( 1) when log, d = o(logk n) 
and log, n2 = o(logn), and is optimal within a factor of 
1.5 + o( 1) when log2 d = o(logkn) and log2 m F=: log3 12. 

3 Symmetric Functions 

A B6olean function f is said to be symmetric if 
fh** 
( 

. , +) = f (xnc 1 >, . . . ,x+,) for any permutation 
Xn( 1) 7 ’ l l 7 %(n) ) of (Xl). . . , x,J . An important property 

of symmetric Boolean functions is that they are com- 
pletely specified by the number of ones in their inputs 
(that is, by the sum &xi>. Therefore, the threshold - 
circuits for iterated addition lead to efficient circuits for 
evaluating general symmetric functions. 

Lemma 3.1 Any Boolean function of 12 inputs can be 
evaluated by an AND-OR circuit of depth & + 

o(&) + O(l), edg e complexity 2” + 0(2”), and fan-in 
k. 

The&em 
evaluated 

3.2 A 
using 

ny symmetric function of n inputs can be 
a unit-weight threshold circuit of depth 

log, d 

310gkn+ log,(l +JJ, - 1 
+O(~O&n+lOgd)+o(1) 

e 3 logk n i- 1.44 log, d, L 

edge complexity O(nl+‘ldlog(d + 1)), andfan-in k, for 
any positive integer d. 

Proof: We can evaluate a symmetric function in two 
phases: 

l Phase 1: We use Theorems 2.4 and 2.1 to find the 
sum xy=, xi of the inputs. Note that the output value 
of the symmetric function is completely determined 
by xy=, xi. 

Phase 2: The symmetric function can be viewed 
as a Boolean function of [log?(n + 1)1 variables 
(namely, the bits in the binary representation of 
c n . 

i=l xi computed m Phase 1). Therefore, we can 
use Lemma 3.1 to find the desired result. 

cl 

The depth of our circuit for k = n is smaller than the The depth of our circuit for k = n is smaller than the 
depth of the circuit given in [3] by a factor of 4.17 asymp- depth of the circuit given in [3] by a factor of 4.17 asymp- 
totically. Theorem 2.4 also provides a mechanism to totically. Theorem 2.4 also provides a mechanism to 
trade off depth for edge complexity with any restricted trade off depth for edge complexity with any restricted 
fan-in k not exceeding m. The depth of our circuit for fan-in k not exceeding m. The depth of our circuit for 
symmetric function evaluation is optimal within a fac- symmetric function evaluation is optimal within a fac- 
tor of 3 + o( 1) from the trivial lower bound logk n when tor of 3 + o( 1) from the trivial lower bound logk n when 
log2 d = o( lo& 12). log2 d = o( lo& 12). 

4 Multiplication 4 Multiplication 

The results obtained in Section 2 for iterated addition The results obtained in Section 2 for iterated addition 
give rise to a fast and edge-efficient multiplier that uses give rise to a fast and edge-efficient multiplier that uses 
threshold gates of restricted fan-in, as described in the threshold gates of restricted fan-in, as described in the 
following theorem. following theorem. 

Theorem 4.1 The product of two n-bit numbers can be 
computed using a unit-weight threshold circuit of depth 

log, d 
310gkn+ log2(1 +Js) - 1 

+o(lO&n+lOgd)+o(1) 

’ E 310gkn+ 1.4410g2d, 

edge complexity O(n2+‘ldlog(d + 1)), and fan-in k, for 
any positive integer d. 

Proof: Let X = (xn_I,...,x1,xo)2 and Y = (yn-I,..., 
yr , y& be the two integers to be multiplied. We will 
transform the problem into the problem of finding the 
sum of n n-bit numbers by means of bit-matrix reduction 
(i.e., the grade-school method). The binary numbers 

Pj,i+j ~xiAYj=Sgn(Xi+Yj-2), 

fori=O,l,..., n-l, j=O,l,..., n-l,canbecom- 
puted using a unit-weight threshold circuit of depth one. 
We then have 

n- 1 
X-Y= CPj, (3) 

j=O 

i 
where pj = (Pj ~log2nz~~+j-l~~*~~Pj,j~0,~*~,0)2, forj = 
O,l,...,n- 1. T’he construction is completed by observ- 
ing that the summation in Eq. (3) corresponds to an 
(n,2n - 1) iterated addition, and using Theorem 2.5. •I 
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Siu et al [13, 141 have given mu1 tip1 ication thresh- 
old circuits of restricted fan-in, which require depth 
(7logz(d + 1) + 4) logp + o(logdlogp) + O(l), edge 

complexity 0( $$%?k~), and fan-in k for any integer 
d > 1. Theorem 4.1 improves on the results in [ 141, by - 
reducing the required depth by a factor of 3.67 asymptot- 
ically for circuits of fan-in k (and d = 1) when log,n is 
not a constant and by a factor of 4.86 asymptotically for 
circuits with similar fan-in and edge complexity when d 
is large. 

The depth of our circuit for multiplication is optimal 
within a factor of 3 + o( 1) from a trivial lower bound 
1ogk2n when log2d = 0 (log, n) . Since any multiplica- 
tion circuit based on bit-matrix reduction has n2 interme- 
diate values, each of which may affect the most signifi- 
cant bit of the product, the depth of our circuit is optimal 
within a factor of 1.5 + o( 1) from the lower bound for 
any multiplication circuit using bit-matrix reduction. 

5 Conclusion 

We have proposed several threshold circuits to perform 
iterated addition and multiplication and to evaluate sym- 
metric functions. Our constructions provide effective 
tradeoffs among edge complexity, circuit depth, and 
maximum fan-in through the flexibility provided in the 
choice of the parameters k (fan-in) and d (levels of hierar- 
chy). Our circuits appear to be considerably more depth- 
efficient than the best previous circuits, assuming similar 
edge complexity and fan-in (or, alternatively, consider- 
ably more cost-effective for similar circuit depth). More- 
over, the depths of all the circuits presented in this paper 
are optimal within a small constant factor with any fan-in 
restrid tion. 
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