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Abstract 
Convergence methods are widely used for division, 
reciprocation, and square-rooting. With such methods, it is 
common to use an initial table lookup step for obtaining an 
approximate result that leads to faster convergence. In the 
case of division and reciprocation, the required table size has 
been extensively analyzed and closed form formulas are 
available for the table length and width, given a desired 
maximum error. In this paper, we offer similar analyses for 
square-rooting, deriving necessary and sufficient conditions 
on the length and width of a lookup table that yields a result 
with-a maximum error of r -n, where r is the radix, or that 
provides the first h digits of the square root correctly. 

Keywords: Computer arithmetic, convergence algorithm, 
error analysis, starting approximation, table lookup. 

1. Introduction 

Like division, the most common implementations of 
square-rooting are based on digit-recurrence or convergence 
schemes [ParhOO]. In digit-recurrence schemes, digits of the 
square root are determined one at a time, beginning with the 
most significant one. The latency is proportional to the 
number k of digits in the square root, with the constant of 
proportionality ranging from a few gate delays, for schemes 
based on redundant digit sets and carry-save addition, to 
slightly more than the delay of a k-bit adder, when a full 
addition/subtraction is required in each cycle. 

Convergence schemes, on the other hand, often require fewer 
(say, O(log k)) cycles, but each cycle typically involves 
multiplications and/or divisions. To make such schemes 
competitive for common word widths, a table lookup step 
is used to produce an initial approximation to the root, thus 
reducing the latency by ensuring faster convergence. 

The required accuracy or lookup table size for the starting 
approximation in convergence division and reciprocation has 
been extensively analyzed in the literature, to the extent that 
they are even treated in textbooks [Wase82], [Parh87], 

[Wong92], [DasS94], [Ito97], ParhOO]. The relationship 
between the accuracy of the starting approximation and the 
number of iterations in convergence square-rooting has 
likewise been studied [Schw96], Dto96], [Ito97]. 

However, accuracy, though related to the required table size, 
does not directly lead to the determination of the length and 
width of the smallest possible lookup table. The reason is 
that there are two error sources in the initial approximation: 
(1) Incomplete knowledge of the radicand due to inspecting 
only part of it, and (2) Reading out a value that is not a 
full-width word. These two elements must be carefully 
chosen to minimize the table size (Fig. 1). 
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Fig. 1. Approximating &via table lookup. 

Table lookup can also be used at the start of digit-recurrence 
algorithms for square-rooting. In an early paper on the 
topic, Nienhaus [Nien89] studied the table size in order to 
obtain a few (3 or 4) bits of the square root at the start of a 
digit-recurrence scheme. He did not go beyond 4 bits 
because he felt that the hardware complexity would become 
excessive. At about the same time, a small PLA was being 
used for the determination of the first few bits in radix-4 
square-rooting (see the references in prce90]). 

We use methods akin to those used for our analysis of the 
lookup table size in convergence division parh87] to derive 
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results for convergence square-rooting. The contributions of 
this paper consist of a pair of theorems for square-rooting 
that mirror those in [ParhS7]. Besides, an additional theorem 
is proven that is useful when the approximate square root 
must be guaranteed to have h correct digits (as opposed to 
being within I-~ of the correct value, from either side). 

The main notation used is defined below and in Fig. 1: 

4 = (.q-1q-f2 . . . q&; square root, q E [l/r, 1) 
r Number representation radix; r 2 2 
x@) Fraction x, truncated to v digits; x@)rv is an integer 
z = (.2-12-z l . . z.&; unsigned radicand, z E [l/r2, 1) 

. 

Other notation will be defined when needed. 

2. Looking up the First h Digits of q 

We first focus on the problem of determining the first h 
digits of q = & via table lookup. The resulting digits (i.e., 
q-1 through q-h) provide an approximation to q that is 
guaranteed to be in the interval (q - reh, q]. Note, however, 
that an approximation guaranteed to be within the one-sided 

’ h interval (q - r- , q] does not imply agreement in h digits and 
is, therefore, a laxer condition than the latter. Still laxer is 
the requirement that the approximation have an error of less 
than reh, as this would allow the approximate value to lie 
in (q - rmh , q + rBh). This last type of approximation will be 
discussed in Section 3. 

z 

extraction algorithm (2k-digit radicand, k-digit square root). 
Because we have assumed fractional operands with specific 
ranges, we prove this result for completeness. 

Theorem 1: To derive the first h radix-r digits of q = & 
exactly, it is necessary and sufficient to inspect 2h radix-r 
digits of the radicand z. 

Proof= Suppose 2h digits of z are inspected to deduce q@). 
From the conditions 

l/r5q(hkq=ILq(h)+rdh5 1 

and the requirement that qch) not change for the entire 
interval [z(~~), z(2h) + r- 2h) of z values that share the 
initial 2h digits (Fig. 2, with w = 2h), we get: 

(qChQ2 5 ,(2h) < 2 < ,(2h) + re2h < (qCh> + rah)2 - - 

These inequalities yield the following bounds for qth)rk 

$ J,(W + r-2h - 1 5 qth)rh c rh &GG - 

Note that the width of the permissible interval for qch)rh, 
defined by the inequalities above, is strictly less than 1, so 
the existence of an integer qch)rh in the interval is not 
automatically guaranteed. A necessary and sufficient 
condition for the existence of an integer qch)rh between the 
bounds given above is: 

$ -\I#9 + r-2h - 1 c Lrh &PVJ - 

Let z(2h) = (q(h))2 + 6, where 8 satisfies 0 < 8 < 2qchkh - - 
The upper bound provided for the residual 6 is justified by 
noting that 6 is a 2h-digit number and that increasing its 
value beyond 2qchkh, even by only r-2h, would make 
z(2h) > (qch) + rvh)2 thus contradicting the premise that - ? 
4 ch) matches the first h digits of q. The right-hand side of 
our preceding necessary and sufficient condition is qch)rh, 
thereby turning the condition into 

IW z(w) 1 
Radicand 

Fig. 2. Requirements for approximation to A& 
matching the exact value in h digits. 

The lookup table supplying the first h digits of q (or q@)) 
must, of course, be h digits wide. Theorem 1 provides a 
lower bound of r2h on the length of the lookup table and 
shows that this bound can be matched, thus solving the 
problem completely. Note that the need for using 2h digits 
of the radicand to determine h digits of the square root is 
implicit in the workings of the pencil-and-paper square root 

&W + +h 5 q(h) + rDh 

which is always satisfied (proof via squaring). To show that 
2h digits are necessary, consider a radicand z such that: 

,(2h-2) = (q(h-l))2 + 6 = (qCh-lQ2 + 2qCh-l)rwh 

As an example, for h = 3 and r = 10, we might choose 
d4) = .2034, leading to q c2) = . 45 and 6 = .0009. If the next 
two digits of z are 00 (i.e., z-zh+l = Z-2h = 0), we have: 

,(2h) = (q(h))2 + y = 2 (2hm2) = (q(h-1))2 + 24(hB1)rmh 

Hence, qch) = qthml), as expected. On the other hand, if the 
next two digits of z are 01, the identities 
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,w = ,W-2) + r-2h = (q(h-1) + ,h)2 = (q(h)>’ 

suggest that qch) = qch-l) + reh. Since in the two cases 
above that led to different results for qch), the respective 
z(~~) values differed only in z,2h, the insufficiency of 
inspecting 2h - 1 digits of z is proven. For our numerical 
example, if .2034 is extended to .203400, its 3-digit square 
root is .450, while .203401 leads to .451. n 

Based on Theorem 1, except in the uninteresting case of 
r = 2 and h = 1, determining the first h digits of q always 
requires a lookup table of size r 2h words, with the word 
width being h - 1 bits for radix 2 (q-1 is always 1 in this 
case) and h digits otherwise. 

3. Approximation in (q - rh, q + rh) 

In convergence methods, we really do not need the first h 
digits of q but rather are interested in an approximate initial 
value q’ that is close enough to q; say, it is in the interval 

(4 - reh,-q + rBh). We say that such a value q’ offers h digits - 
of convergence. Of course, to be this accurate, q’ must have 
h or more digits. Note that h - 1 radix-r digits might have 
sufficed for an approximation that is based on inspecting all 
the digits of z (i.e., for w = k), since in this case the only 
source of error is rounding of the exact value of & to h - 1 
digits. But the latter is not a useful approximation, given 
that the table size to look up the exact (rounded) value of & 
would be only a factor of k/(h - 1) larger. 

14 =dF 
1 

llr 
I /r 2 z(h 1 

Radicand 

Fig. 3. Requirements for approximation to & 
accurate to within r -? 

The requirements for our desired approximation are given in 
Theorem 2. What distinguishes our result from previous 
analyses is that we find a lower bound and show that it can 
be matched, whereas analyses based on worst-case error 
bounds do not guarantee optimality. 

Theorem 2: To find an approximation q’ to q = & that 
offers h digits of convergence in radix r, meaning that the 
approximate value lies within the interval (q - rh, q + I-~), 
it is sufficient to inspect h digits of z. Furthermore, the 
resulting rh-entry table of h-digit words is optimal for r 13 
(for r = 2, see Theorem 3). 

Proof: Let the table entry q’ for z(~) be the h-digit rounded 
version of the midpoint m defied as: 

m= (mL= - Am)/2 

Since the rounding error for m is upper bounded by reh/2, 
it suffices to choose w such that m is less than reh/2 away 
from the extremes w) and w. Achieving this 
goal requires that 

which can be written as: 

m[(l + Y-~/J%)~~ - l] < rBh 

In view of the following inequality (easily proven by 
squaring both sides) 

(1 + P/-G~>1/2 < 1 + ,“l(2@9) 

it is sufficient to guarantee rBw/2 5 reh. This last inequality 
is clearly satisfied for w = h. 

We have already discussed why the table width cannot be 
reduced below h digits (see the first paragraph in Section 3). 
We now show that the table length cannot be reduced below 
rh words for r >, 3, when digits of z must be dealt with in 
their entirety; that is, q’ cannot be properly chosen based on 
h - 1 digits of z, no matter how wide the table (i.e., even 
when the rounding error is zero). For this, it is sufficient to 
show that for some value of ~(~~~1, we have: 

z(h-1) + r-t h-1) - &FV > 2+ - 

Choosing z( h--1) = l/r2 > turns the preceding inequality into 

r/4 > r-l + rh 

which always holds for r 2 3. This concludes the proof that 
an rhoentry table of h-digit words is optimal for r 2 3. n 

Theorem 3 shows that in most cases, the table size of rh 
words by h digits can be reduced by a factor of 2, including 
in the important special case of r = 2 for which the table 
size becomes 2 h-l(h - 1) bits, given the aforementioned 
factor-of-2 reduction in length combined with the fact that 
the leading bit q-1 = 1 need not be stored. 
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Theorem 3: To find an approximation 9’ to 4 = TL that 
offers h digits of convergence in radix r, meaning that the 
approximate value lies within the interval (4 - rh, 4 + +), 
it is necessary and sufficient to inspect h rlogZrl - 1 bits of 
the binary encoding of z, where each radix-r digit of z is 
separately encoded as a [log&bit binary number. 

Proof: We proceed as in the proof of Theorem 2, except 
that we assume the inspection of w - 1 whole digits and the 
most-significant rlogZrl - 1 bits of the encoding of the wth 
digit in z. Everything remains the same, except that the 
uncertainty in the value of z becomes about 2r” (one rmw 
contributed by all the uninspected digits beyond the wth and 
another by the ignored least significant bit of z+). Our 
sufficient condition then becomes 

llxz= - 42 < r-h 
or, equivalently, 

fi [(l +-2?-W/G)1/2- l] c rh 

where Z’ is the value of z based on the first h rlogZrl - 1 bits 
in its binary encoding (note that here we cannot use the 
notation z(~), given that the first w digits of z are not 
inspected in full). 

Proceeding in the same way as in the proof of Theorem 2, 
we get the sufficient condition r -w < rBh, which is clearly - 
satisfied for w = h. 

The proof that the table size cannot be further reduced is 
similar to that in Theorem 2. Ignoring one more bit of the 
encoding of z in the table lookup increases the uncertaintly 
in the value of z to about 4rw. Thus, the optimality of the 
preceding result on lookup table size would follow from 
proving that the following inequality holds for some z’: a - 

T z’ + 4r-h - fi 2 zr-h 

4. Conclusion 

Using interval analysis, we have derived the minimal 
lookup table size for obtaining an initial approximation to 
the square root function that provides the first h digits of the 
root (Theorem 1) or that offers h digits of convergence 
(Theorems 2 and 3). Contents of the required tables are also 
explicitly given in the respective proofs. 

An interesting question that might be considered for further 
research is whether a maximum error of E that is not a 
negative integral power of r could lead to a smaller table. 
This might be useful, for example, in iterative schemes for 
word widths that are not powers of 2. 

pass941 
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[parh87] 
Choosing z’ = l/r2 turns the preceding inequality into: 

1 > r-l + Th 
[Schw96] 

This last inequality cannot hold for r 2 3 or for r = 2 if we 
exclude the uninteresting case of h = 1. m 

Based on Theorem 3, in the common case when radix-r 
digits are encoded in binary, the table size can be reduced by 
a factor of 2 relative to what Theorem 2 suggests. 
Interestingly, the fact that for r = 2, the table length can be 
reduced to 2 h-1 (as observed in the proof of Theorem 2) also 
follows as a corollary to Theorem 3. 
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