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Abstract

The Petersen graph is a Moore graph that has node de-
gree 3, diameter 2, and optimal network size 10. In this pa-
per, we present a class of interconnection networks, called
cyclic Petersen networks (CPNs), which efficiently extend
the Petersen graph to obtain larger networkswith small di-
ameter and node degree. e derive balanced routing al-
gorithms and efficient embeddings for CPNs. In particular,
we show that many normal mesh algorithms can be emu-
lated on CPNswith a slowdown factor of about 1.1. We also
show that compl ete CPNs can embed meshes, tori, meshes of
trees, and folded Petersen networks with dilation 3, hyper-
cubesand generalized hypercubeswith dilation 4, and pyra-
midswith dilation 5.

1 Introduction

The Petersen graph isaMoore graph that has 10 nodes of
degree 3 and adiameter of 2, is symmetric, and is the most
efficient small network in terms of node degree, diameter,
and network size (see Fig. 1). Dueto its unique and optimal
properties, several network topol ogiesbased on the Petersen
graph have been proposed and investigated in the literature
[3,4,5,7,8,9,10, 11, 16].

In this paper, we present a class of interconnection net-
works called cyclic Petersen networks (CPNs), which ef-
ficiently extend the Petersen graph to obtain larger net-
workswith diameter and node degree smaller than those of a
similar-sizehypercube. Thediametersof al-level CPN, a2-
level CPN, and |-level ring-CPNs, | > 3, are optimal within
factorsof 1, 1.25, and 1.8, respectively, given their node de-
grees; the “degree x diameter” costs [1] of a 1-level CPN,
a2-level CPN, and |-level CPNs, | > 3 are optimal within
factorsof 1, 1.25, and 1.8, respectively, for networks of any
degree. We present efficient algorithms for balanced rout-
ing, efficient emulations, and constant-dilation embeddings
in CPNs. In particular, we show that many normal mesh al-

Figure 1. The Petersen graph.

gorithms can be emulated on CPNs with a slowdown factor
of about 1.1. Moreover, compl ete-CPNscan embed meshes,
tori, meshes of trees, and folded Petersen networkswith di-
lation 3, hypercubes, and generalized hypercubeswith dila-
tion 4, and pyramidswith dilation 5. They can also emulate
an |-D mesh under the all-port communication model with a
factor of max (4,1 + 1) slowdown.

The remainder of this paper is organized as follows. In
Section 2, we present cyclic Petersen networks and derive
several basic properties and algorithms. In Section 3, we
present enhanced CPNs, and derive efficient embeddings
and emulation algorithmsfor them. In Section 4, we present
clustered CPNs, which have smaller step sizes. In Section 5,
we conclude the paper.

2 Basic Cyclic Petersen Networks

In this section, we define basic CPNs (also called ring-
CPNs), explore some of their topological properties, and in-
troduce the needed notation.

2.1 Dsefinition of Basic CPNs

For convenience, for any j; > j», we let Z;,.j, denote
Z,Zj,_1---Zj,, where Z can be any symbol, such asU,V
or X.

Definition 2.1 (Ring-CPN): Let P = (Vp,Ep) be the Pe-
tersen graph. Anl-level ring-cyclic Petersen network is de-
fined as (V,E), whereV = {1V € Vp,i =1,..,1}is
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Figure 2. The derivation of shift links (neighbors) of
a node X = X471 in a 4-level ring-CPN. Symbols X; €
[0,9],i=1,2,3,4, arerepresented by 4-bit binary numbers
Xai—1:4(i-1)-

the set of vertices, and E = {(U.1,Vi-1)| Ui,Vi € Vp,i =
1,2,..,1, satisfying U;., = V|- and (Ug,Vy) € Ep, or U =
Viimod 1)1+ OF Vi = Ui mod )41, for 1 <i <1} isthe set of
edges.

A 1-level CPN is the Petersen graph (see Fig. 1) and is
called a nucleus of a CPN. Two nodes U and V are con-
nected by an undirected link if and only if nodesU and V
are neighbors within the same nucleus P, or the address of
nodesU and V are cyclic shifts of the I-symbol addresses
of one another (see Fig. 2). Theformer link is called a nu-
cleus link and the latter is called a left- (right-) shift link.
CPNs form a subclass of cyclic-shift networks (also called
cyclic networks) [2, 17] that use the Petersen graph as the
nucleus graph; cyclic-shift networks, in turn, form a sub-
classof super-1P graphsthat use cyclic-shift operatorsasthe
super-generators[18, 20, 21].

Let X() be the address obtained from node X by per-
forming i right cyclic shifts. That is, X(© = X and X() =
Xi-1Xip1 for 1 <i < |, where X = X.1. Note that X() =
X(imodl) " The addresses of left- (right-) shift neighbors of
node X can be represented as X~ (or XV, respectively).
Let X = X.1 beanodein aring-CPN, where X; € Vp and
X # X0 fori=1,2,...,1 — 1. It can be seen that by the def-
inition of ring-CPN’s, nodes X, X, X2 ... X(-1) form an
[-node ring, connected through shift links. In general, the
majority of rings formed by the shift links are of this type.
However, when | is not a prime number, there will also be
shorter ringswith | ; nodes, wherel; divides| (see Fig. 3a).
Sincethe addressesof shift links(neighbors) are obtained by
performing cyclic shift on the address of a node, and these
derived neighborsform aring, we call such networks*ring-
cyclic” Petersen networks. Theringswith | nodesare called
the cyclic-shift (CS) graphs of the ring-CPN; the rings with

I+ nodes are called the degenerate CS graphs of the ring-
CPN.

Note that a node with the same | symbolsin its address
has no shift links (or, alternatively, has shift links connect-
ing to itself) and is called a leader. Leaders can be used
as /O ports or be connected to other leaders via their un-
used ports to provide better fault tolerance or to improve
the performanceand reducethe diameter of ring-CPNswith-
out increasing the node degree of the network. Varying the
connectivity between leadersresultsin other classes of ring-
CPNs.

2.2 Routing and Topological Properties

The number of nodesin aring-CPN isincreased by afac-
tor of 10 when the level isincreased by 1, and the nucleus
Petersen graph has 10 nodes. Thus, the number of nodes N
of anl-level ring-CPN is

N =10 (1)

From Eqg. 1, the level of an N-nodering-CPN is

The node degree of an |-level ring-CPN is
3whenl =1,
d=<¢ 4whenl =2 (3)
5whenl| > 3.

Suppose that a routing algorithm for the nucleus P is
known. Let theaddressesof nodes X andY withinthel-level
ring-CPN be X,.; and Y}.1, respectively, where X;,Y; € Vg.
In what follows, we present a routing algorithm to route a
packet from node X to nodeY in an I-level ring-CPN using
left- (right-) shift links and nucleuslinks.

Route(X,Y)

Fori=1Idowntol(ori=1tol)
Route the packet to node Y; (or Yi mog1y+1)

within the nucleusin which the packet currently resides.
Ifi#£1(ori#l), send the packet

through the left-shift link (or right-shift link).

If the routing a gorithm on the nucleus P requires at most
Tr(P) time, the routing algorithm on an |-level ring-CPN re-
quirestime at most

Tr(l) = ITR(P) +1 — 1.

Since the diameter of the Petersen graph is 2, an optimal
routing algorithm requirestime at most Tr(P) = 2, leading
to

Tr()=31-1. 4



Thisleadsto the diameter of an |-level ring-CPN, whichis

3
3l—1=-—-—1l0g,N—1~0.9log,N—1.
log, 10 00 09,

Theexpected traffic onthe network linksof aring-CPN is
approximately balanced when the sources and destinations
of the packetsare uniformly distributed over network nodes.
This can be intuitively justified by observing that the aver-
agetimefor anintra-nucleusrouting phaseis 1.5, therouting
algorithm uses roughly the same number of intra-nucleus
and shift routing phases, and each node has 1.5 times more
nucleus links than shift links (3 versus 2). When| = 2 and
theexternal arrival rateisA, the averagetraffic on anetwork
link is 0.972\, while the traffic on a shift link is A and the
traffic on any nucleuslink is smaller than A. Therefore, the
expected traffic on any network link is no more than 2.9%
abovethe averagetraffic on all network links. For any | > 3
the expected traffic on anetwork link inan | -level ring-CPN
exceeds the average traffic on all network links by no more
than 6%.

2.3 Emulation of Normal Mesh Algorithms

If a mesh agorithm executes t operations (or routing
steps) on the average along adimension before executing an
operation along the next consecutive dimension (cyclicly),
we call it a normal mesh algorithm with (an average of) t
row operations. Note that a node can send data to both its
west and east neighbors along the same dimension at the
same time. Many mesh algorithms naturally fal into this
category. Many other agorithms can be easily transformed
to a normal mesh algorithm without affecting the leading
constant of the running time.

In what follows, we show that normal mesh algorithms
can be emulated on CPNs efficiently.

Theorem 2.1 A normal mesh algorithm for |-dimensional
10 x 10 x - -- x 10 meshes with an average of t row opera-
tions can be emulated on an |-level ring-CPN with a slow-
down factor of 1+ .

Proof: The Petersen graph contains a 10-node linear array
so transmissions along dimension-1 mesh links can be per-
formed directly. To emulate operations along dimension a,
anode X in the guest mesh is mapped onto node X(@-1) of
the host CPN. Since operations are performed along con-
secutive dimensions when the dimension is changed, only
one transmission along cyclic-shift linksis required for the
change of mapping. Note that we assume that the data held
by a node for future computation can be transmitted in one
unit of time, which is true for some algorithms such as sort-
ing. If the required transmission time isincreased, the over-
head for emulation is simply increased accordingly. Since

left-shift link right-shift link ) o
of node X ode X left-shift link  right-shift link

of node X of node X

! I XXDROKO
X S Y SRS T @
X© % X X0 AOX@ XX
(a.1) (a.2) (a,c.3)
X
X2 1) XX X, Xa,) /\’(4,) +©
X6 X )((3,))((7 X(l])X(S) @
X(S /\)(4) X(S) X(z,) X(S) X(l’) X(3,) Xﬁz X(7)
(b.1) (b.2) (b.3)
XX
2) () 1£6)
en e XX
XNO °
(c.) (c.2) (a,b,c.4)

Figure 3. Various CS graphs and degenerate CS graphs
containing a node X within 8-level CPNs. (a) (degenerate)
CSgraphsthat are simplerings. (b) (degenerate) CS graphs
that are complete graphs. (c) (degenerate) CS graphs that
are chordal rings. (x.1) for node X with X # X(4). (x.2) for
node X = Xg.q With Xg5 = X4 and X # X, (x.3) for node
X with Xg.7 = Xg5 = Xa:3 = Xp.1 and X £ XY (x.4) for
node X with X = X (i.e, X = Xj,i,j = 1,2,...,8).

% — 1 additional steps are required for routing along cyclic-
shift linksonthe averageduring T steps of the normal mesh
algorithm the slowdown factor is 1 + 1. O

In many normal mesh algorithms of interest t is close to
9 so the dowdown factor iscloseto 1.1.

3 Enhanced Cyclic Peter sen Networks

In this section we generalize the definition of basic CPNs
to enhanced CPNs. We derive a variety of efficient em-
beddings and emulation algorithms for them and propose a
schemefor routing in enhanced CPNs with balanced utiliza-
tion over network links.

3.1 Definition of Enhanced CPNs

An enhanced CPN is usually obtained by adding more
links to the original CS graphs (i.e., the |-node rings) of
aring-CPN. More precisely, the original CS graph formed
by nodes X, XM, X@ ... X(U-D and their shift links



are replaced by another graph (or hypergraph), such as
a complete graph or a chordal ring, that connects nodes
X, XD, X@ . XU-D: a degenerate CS graph is replaced
by the degenerate version of the new CS graph. The nucleus
links remain unchanged.

In what follows we formally define enhanced CPNs that
use complete graphs as the CS graphs.

Definition 3.1 (Complete-CPN): Let the nucleus graph be
a Petersen graph P = (Vp,Ep). An Il-level complete-
cyclic Petersen network is defined as the graph complete-
CPN = (V,E), whereV = {M4|Vi € Vp,i =1,...1,} is
the set of vertices, and E = {(U}-1,V:1)|Ui,Vi € Vp,i =
1,2,....1, satisfyingU;., = Vi, and (U1, V;) € Ep, orV =
U®, for someintegeri,1 <i < |} isthe set of edges.

The directed link connecting nodeU to nodeV = U (-1
is called link C', which correspondsto i right cyclic shifts.
Link C~' represent a shift link correspondingto i left cyclic
shiftsand C = C1. The rule to construct an enhanced CPN
using other CS graphsissimilar (see Fig. 3 for examplesus-
ing loop-based topologies[13, 14]). Note that there may be
multiple links between two nodesin adegenerate CS graph.
For example, nodeV = 0101 in a 4-level complete-CPN is
connected to nodeU = 1010 with two links sinceV = U(D)
andV = U®). Several examplesillustrating multiple links
in degenerate CS graphs of 8-level CPNs are given in Fig.
3.

A complete-CPN has the strongest embedding and em-
ulation capacity among all CPNs and also the highest node
degree, which is equal to log;gN+ 2 = 0.3log, N + 2. But
the degree of a complete-CPN is till a small number (e.g.,
d < 7) for networks of practical size (e.g., N < 100K).

3.2 Embeddingsand Algorithms Emulation

Embeddings and emulation between hypercubic net-
works and for new network topol ogies have been an impor-
tant and intensively studied research area[6, 12, 15]. Inthis
subsection, we present efficient emulation algorithms for
complete-CPNs under the all-port communication model.
We also derive constant dilation embeddings and packings
of trees, meshes, tori, hypercubes, meshes of trees, pyra
mids, generalized hypercubes, folded Petersen networks, as
well as any product network in complete-CPNs.

Theorem 3.1 Any algorithmin a 10't x 10'2 x --- x 10'm
mesh under the all-port communication model can be em-
ulated on an I-level complete-CPN with a slowdown factor
of at most max(4,1 + 1), where 3™, i =1.

Proof: The emulation algorithm under the all-port commu-
nication model simply performs single-dimension emula-
tionfor all dimensionsat the sametimewith proper schedul-

Links of a | Dimension J of the mesh being emulated

complete-CPN - lE WZE W3E W4E WSE

Step 1 WEC!'— — C¥C3— — C*

Step 2 W C'C*E —C’C*—

Step 3 C'E WCl————

Step 4 c'c® w——E

Step 5 C'E W'

Step 6 cic!

(@)

Links of a | Dimension j of the mesh being emulated
1 2 3 4

complete-CPN| WEWE WEWE

Step 1 WEC!— —CC*—
Step 2 W C!C*E —C*
Step 3 CP—W C—E
Step 4 EC® wc'
Step 5 c? C!
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Figure 4. Schedules for emulating meshes on complete-
CPNs under the all-port communication model. Note that
acertain link appears at most once in arow, and each col-
umn for dimension j > 2 consists of linksCi=1, w,C1~1 or
cl-1 E,cl1. (a) Emulating a5-dimensional mesh on a5-
level complete-CPN. (b) Emulating a 4-dimensional mesh
on a4-level complete-CPN.

ing to avoid congestion. Let W (or E) represent the di-
rected nucleuslink that is connected to a node' swest neigh-
bor (or east neighbor, respectively), in the emulated |-D
mesh. A packet for adimension-j west (or east) neighbor,
2 < j <, in the emulated mesh will be sent through links
Cci-1,w,C i (or CI-1,E,Ct 1, respectively). A possible
schedule for emulating an [-D 10 x 10 x --- x 10 mesh can
be obtained as follows.

We first consider the case when | is odd.

e At time 1, each node sends the packets
for its dimension-1 neighbors (in the emulated mesh)
through linksW and E.

e Attime 1, each node also sendsthe packetsfor itswest
neighborsof even dimension and east neighborsof odd
dimensioni, i =2,3,4,...,1, through linksC'—1.

e At time 2, each node sends the packets for its east
neighbors of even dimension and west neighbors of
odd dimensioni, i = 2,3,4,...,1, through linksC 1.

e Ateventimet = 2,4,...,1 — 1, each node forwards
the packets for its west neighbors of even dimension
t through links W and then at the next time step, each
node forwards the packets through links C1 .



e Ateventimet =2,4,...,|1 —1, eachnodealsoforwards
the packetsfor its east neighborsof odd dimensiont +
1 through links E and then at the next time step, each
node forwards the packets through links C .

e At odd timet = 3,5,...,], each node forwards the
packets for its east neighbors of even dimensiont — 1
through links E and then at the next time step, each
node forwards the packets through links C2t

e At odd timet = 3,5,...,], each node forwards the
packets for its west neighbors of odd dimension t
through links W and then at the next time step, each
node forwards the packets through links C1 .

Figure 4a shows such a schedule for emulating a 5-
dimensional mesh on a 5-level complete-CPN.

In what follows we extend the previous schedule to the
case when | iseven and | > 4. We initialy start with
the schedule for an (I + 1)-level complete-CPN. Clearly,
the transmissions corresponding to the emulation of dimen-
sion | +1intheinitial schedule are not used by the |-level
complete-CPN. Therefore, we can now reschedule the link
E of dimension| (fromtimel) totimel — 1. We then swap
the time for the rescheduled link E with that of a link E
of smaller dimension. Due to the previous modifications
for dimensions j, we aso have to modify the schedule for
somelinksCY~} and maybelinksCi—2. Inparticular, wewill
movelink C1~J to the step after the use of link E for the em-
ulation of dimension-I link E in the mesh. As aresult, the
time required for emulation under the all-port communica
tionmodel isequal tol +1whenl > 4, andisequal to4 when
| =2 or 3. Figure 4b shows such a schedule for emulating a
4-dimensional mesh on a4-level complete-CPN.

Sincean mD 10't x 102 x - - - x 10'™ mesh is a subgraph
of anl-D 10 x 10 x - -- x 10 mesh, theresultsfollow. O

An |-level folded Petersen network [11], a re-
cently proposed competitor for the hypercube, is de-
fined asP x P x ---P, whichistheiterative Cartesian prod-

%,—/

|

uct on the Petersen graph P. An |-level folded Petersen net-
work is symmetric and has node degree 3| =~ 0.9log, N, di-
ameter 2| =~ 0.6log, N, and average distance about 1.5 ~
0.45log, N, al of which are smaller than those of asimilar-
size hypercube. Some efficient algorithms have been devel-
oped for folded Petersen networks[5, 10, 11].

Theorem 3.2 Any algorithmin an I-level folded Petersen
network under theall-port communication model can beem-
ulated on an I-level complete-CPN with a slowdown factor
of max(6,! +1).

Proof: The proof issimilar to the proof of Theorem 3.1 and
the corresponding proofsin [19, 21]. m|

Inwhat follows, we present constant dil ation embeddings
and packings of avariety of popular topologiesin complete-
CPNs.

Theorem 3.3 Anl-level complete-CPN can embed a 10't x
10'2 x - -- x 10'm mesh or an |-level folded Petersen network
with load 1, expansion 1, and dilation 3, where ", I; = 1.

Proof: Any link of an |-level folded Petersen network can
be mapped to a cyclic shift link, anucleuslink, followed by
another cyclic shift link (similar to the emulation of Theo-
rem 3.2). Since an |-level folded Petersen network contains
a10't x 10'2 x - - - x 10'™ mesh the results follow. |

Theorem 3.4 An I-level complete-CPN can pack ( : >
copies of an

mxmx ---mx (10—m) x (10—m) x ---(10—m)
%,—/ ~ /

i I—i
torusfor eachi =0,1,2,...,I withload 1, expansion 1, and
dilation 3, wherem= 8 or 9. An |-level complete-CPN can
pack 2' copies of a 5-ary |-cube with load 1, expansion 1,
and dilation 3.

Proof: Since a Petersen graph can pack two 5-node rings,

or an 8-node and a 2-node ring, or a 9-node and a 1-node
ring as subgraphs, : copies of an
mxmx---mx (10—m) x (10— m) x --- (10 —m)
N————

~ v
~~

torus,

i i
i=0,1,2,...,l, form node and edge digoint subgraphs of
an |-level folded Petersen network, where m = 5,8, or 9.
Therefore, the embedding results follow from Theorem 3.3
for embedding a folded Petersen network in a complete-
CPN. Since these tori collectively have 10' nodes, the ex-
pansionisequal to 1. |

Theorem 3.5 An I-level complete-CPN can embed an |-
dimensional radix-10 generalized hypercube, or any I-
dimensional Cartesian product network with 10-nodefactor
graphswith load 1, expansion 1, and dilation at most equal
to 4.

Proof: Since the diameter of the Petersen graph is equal to
2, any link of the above graphs can be mapped to a cyclic
shift link, two links of a nucleus Petersen graph, followed
by another cyclic shift link. O

Theorem 3.6 An I-level complete-CPN can pack < :

copies of a (31 — 2i)-dimensional hypercube for each i =
0,1,2,...,I withload 1, expansion 1, and dilation 4.



Proof: Since a 10-node complete graph contains a 3-
dimensional hypercube and a 1-dimensional hypercube as

subgraphs, ( : ) copiesof a (3| — 2i)-dimensional hyper-

cubefori =0,1,2,...,1, form node and edge digoint sub-
graphs of aradix-10 |-dimensional generalized hypercube.
Thepacking result followsfrom Theorem 3.5 for embedding
ageneralized hypercubein acomplete-CPN. Sincethese hy-
percubescollectively have 10' nodes, the expansionis equal
tol. a

Theorem 3.7 An |-level complete-CPN can pack a com-
plete binary tree of height 3| — 1 and two complete binary
trees of height 3| — 4 with load 1 and dilation 3.

Proof: It follows from Theorem 3.3 and the fact that these
three trees form node and edge digjoint subgraphs of an |-
level folded Petersen network [11]. m|

Theorem 3.8 Anl-level complete-CPN can packa 23™1 x
230-m~1 mesh of trees, two 23™ 1 x 23(-M~4 meches of
trees, two 23m4 x 230-m-1 meshes of trees, and four
23m-4 5 23(-mM~4 meches of trees with load 1 and dilation
3.

Proof: It follows from Theorem 3.3 and the fact that these
meshes of treesform node and edge disoint subgraphsof an
[-level folded Petersen network [11]. |

Lemma 3.9 Letty,t,,t3 betheload, expansion, anddilation
for embedding graph G in an |-level folded Petersen net-
work. Then an |-level complete-CPN can embed graph G
with load t;, expansiont,, and dilation 2t3 + 1.

Proof: From Theorem 3.3, we know that alink in afolded
Petersen network can be mapped to a shift link, a nucleus
link, and finally another shift link in acomplete-CPN. It can
be seen that two connected links can be mapped to a shift
link, a nucleus link, a shift link, a nucleus link, and finally
another shift link, since two shift links in a CS graph of a
complete-CPN (which is an |-node complete graph) can be
replaced by a shift link. By induction, a path consisting of t
links in a folded Petersen network can be mapped to a path
consisting of 2t3 + 1 linksin a complete-CPN. m|

Theorem 3.10 An |-level complete-CPN can pack ( : > .
2+ : -2'-1 copies of a 2 x 2' pyramid for all i =

0,1,2,...,1 with load 1, expansion smaller than 1.25, and
dilation 5.

Proof: It follows from Lemma 3.9 and the fact that these
pyramids can be packed in an |-level folded Petersen net-
work with load 1 and dilation 2 [11]. These pyramids have
210' + 221 nodes collectively so the expansion is smaller
than 1.25. |

The embeddings presented in this subsection can be eas-
ily extended to other classes of CPNs. For example, when
| = 2 or 3, ring-CPNs are the same as complete-CPNs, so
these embedding and emulation results can be directly ap-
plied to them. When| = 4 or 5, the dilations for embedding
and packing the previous networks (from Theorems 3.3 to
3.10) inring-CPNs are only increased by 2 (additively), ex-
cept for the embedding of pyramids, whose dilation is in-
creased by 3 (additively). Since networks of size smaller
than or equal to 100K seem to be sufficient for interconnec-
tion networksin the near future, the dilationsfor embedding
these popular topologiesin any type of CPNs are all small
numbersin practice. Since many efficient algorithms have
been designed for the guest graphs considered in this sub-
section [6, 12] and the proposed embeddings and emulation
algorithmsare quite efficient, we can obtain avast variety of
efficient algorithms for CPNs through embeddings and em-
ulation.

Although enhanced CPNs using complete graphs have
good performance for algorithm emulation, their node de-
greeswill vary with the number of levelsl. Therefore, it may
be desirable to use loop-based networks [14] or other small
networks as the CS graph (see Fig. 3bd) to obtain networks
whose cost and performancefall between those of ring-CPN
and complete-CPN.

3.3 Routing with Balanced Traffic

Therouting algorithm presented in Subsection 2.2 can be
applied to enhanced CPNs without modification as long as
the new (degenerate) CS graph contains a Hamiltonian cy-
cle. However, the traffic over network links is not balanced
sincetheadditional shift linksinthe CS graphsare underuti-
lized. In this subsection, we introduce a routing scheme for
enhanced cyclic Petersen networks that can uniformly uti-
lize network links.

Assume that a nucleus Petersen graph or several nucleus
Petersen graphs are placed within the same module (e.g.,
achip, board, or multi-chip module (MCM)), then nucleus
links become on-modulelinksand al or most shift links be-
come off-modulelinks. If we can balancethetraffic on shift
links, then we can always find an appropriate bandwidth for
on-module links so that no network link is congested. It
is reasonable to make on-module links faster than this re-
quired bandwidth to further improve the performance since
it is relatively cheaper to implement on-module links with
higher bandwidth and the number of transmissions over nu-
cleuslinksis larger than that over shift links.



Recadll that the routing algorithm Route(X,Y) given in
Subsection 2.2 is composed of repeated routing within anu-
cleus and transmission over a shift link C (or C~1) for | — 1
iterations, followed by routing within anucleus. This algo-
rithm works because the shift linksC or C~* bring each digit
of the address of the source node X to the rightmost posi-
tion exactly once. That is, shift linksCC- - - C bring the 2nd,

-1
3rd, ... , 1" digits to the rightmost position (in that order);
shift linksC™'C~*-..C~% bring the I™", ..., 3rd, 2nd, digits

-1
to the rightmost position. Similarly, we can find a routing
algorithm for the enhanced CPN if and only if we can find
a segquence of shift links that can bring each digit of the ad-
dress of the source node X to the rightmost position at least
once.

When | is a prime number, | — 1 shift links C' for any
i=1,2,...,| —1canbeusedforrouting. For example, when
| =5, four shift links C? bring the 3th, 5th, 2nd, and finally
the 4th digits to the rightmost position; four shift links C3
bring the 4th, 2nd, 5th, and finally the 3rd digitsto the right-
most position. Therefore, aslong aswe use shift linksC' for
routing with probability 27, the traffic among &l the shift
links of the |-level complete-CPN is exactly balanced, as-
suming uniformly distributed destinations. Notethat thelast
digit brought to the rightmost position should be “ correct-
ed” to be equal to the 1<t digit of the destination nodeY (by
routing within the nucleus to which the destination node Y
belongs). If it isinitially the it" digit of the source node X,
then the jt" digit of the source node X should be“ corrected”
to be equal to the (j —i + 1)!" digit of the destination node
Y.

When | isnot a prime number, routing with balanced uti-
lizations is somewhat more complicated. We can see that
when | = 4, applying shift links C? alone cannot bring the
2nd or the 4th digits to the rightmost position, so we need
a different routing algorithm. Fortunately, we can always
find a combination of different classes of shift linksthat ac-
complishthejob. For example, when| = 4, we can use shift
links C2C1C? or C?C3C? for routing. We can also use| — 1
shift linksC (or C~1 = C3). If we assign probability 1/4 to
each of the above sequences for routing, it can be seen that
the utilizations for these three shift links are the same; more
precisely, the average number of shift links C' that will be
used for routing a packet is dightly smaller than 1 for each
i =1,2,3. When| = 6, we can, again, use| — 1 shift links
C! (or C™1 = C®) for routing. We can also use one of the
following 4 sequences

c?c?clc?e?, cicicdcict, cicledctied, or c3ccciecc?

for routing. If we assign probability &,-,%,3,2, 2 for

the above sequences to be used, the utilizations for these
five shift links will be the same; more precisdly, the aver-

age number of shift links C' that will be used for a rout-
ing task isequal to 1 for eachi = 1,2,...,5. Routing in
complete-CPNsof higher level can bedoneisasimilar man-
ner. In fact, we may omit the first j iterationsin agorithm
Route(X,Y) when the least significant digits of the source
XjXj_1--- X1 happen to be the same as the most significant
digits of the destination Y{Yj_1---Yi_j ;1. If we take advan-
tage of this property, the expected traffic on the cyclic-shift
links becomes dightly different. However, a set of proba-
bilitiesthat are dightly different from the previous ones can
alwaysbefoundto exactly balancethe expected traffic, lead-
ing to the following theorem.

Theorem 3.11 There exist a set of sequences of shift links
and a corresponding set of probabilities for routing in a
complete-CPN such that the traffic among all shift links of
the complete-CPN is exactly balanced.

When the destinations are not uniformly distributed over
all network nodes, we may need to adjust the probabilities
for the sequences to be used. For example, when atask in
the enhanced CPN is emulating a norma mesh algorithm,
the task will generate a considerable amount of traffic over
shift linksC and C~1. Therefore, we have to use sequences
that involvefewer or no shift links C or C~1 morefrequently
when performing other routing tasks, in order to balancethe
utilizations of shift links. This can be done in enhanced
CPNs since only a subset of shift-link classes are required
when routing a packet and we have several choices for the
combination of shift linksto be used.

The routing strategies proposed in this subsection can be
easily generalized to other classes of enhanced CPNs. For
example, consider | = 6 with the CS graph of the CPN be-
ing a degree-3 chordal ring; that is, it has three shift links
C1,C8, and C°. We can use one of thefollowing 4 sequences
cictclcict, c5edebesed, c3ctescics, or c3cbciece®
for routing. If we assign probability 1/4 for each of the
above sequences, it can be seen that the utilizationsfor these
three shift links are approximately the same. These tech-
nigques can aso be applied to general cyclic-shift networks
[17, 18].

4 Clustered CPNs— A Scalable Variant

Although CPNs have good performance and embedding
capabilities, their size increases by afactor of 10 with each
added level, making it difficult to closely match the network
sizeto the need for computational power. In thissubsection,
we present a method for obtaining variants of CPNs with
smaller step size.

A 2-level CPN isbuilt from 10 nuclei, each of whichisa
Petersen graph. To obtain asmaller network, we can simply
remove some of its nuclei; the resultant network is called a
2-level clustered CPN.



Theorem 4.1 Thediameter of a 2-level clustered CPNis at
most 5.

Proof: Let X = XoX; and Y = Y,Y; be the addresses of
the source and destination nodes. The routing algorithm
Route(X,Y) for a 2-level CPN will send the packet out of
nucleus X, to nucleus Y,. Since nucleus Y, cannot be one
of theremoved nuclel, the algorithm Route(X,Y) isdirectly
applicable to a clustered CPN. Therefore, the diameter of a
2-level CPN is upper bounded by 5. m|

Note that the removed links of the network nodes can be
reconnected to further reduce the average distance and/or
diameter and to improve the fault tolerance properties. To
obtain higher level CPNs with small step size, we refer the
reader to[17, 18] for severa possible strategies. Other vari-
ants of CPNs can be found in [16].

5 Conclusion

Inthis paper, we have presented cyclic Petersen networks
as efficient extension of the Petersen graph for small- to
large-scaleparallel processing. We derived efficient embed-
dings and packings of meshes, tori, meshes of trees, folded
Petersen networks, hypercubes, generalized hypercubesand
pyramidsfor CPNs. We also developed algorithms for bal-
anced routing and efficient emulations in them.
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