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Abstract

The Petersen graph is a Moore graph that has node de-
gree 3, diameter 2, and optimal network size 10. In this pa-
per, we present a class of interconnection networks, called
cyclic Petersen networks (CPNs), which efficiently extend
the Petersen graph to obtain larger networks with small di-
ameter and node degree. We derive balanced routing al-
gorithms and efficient embeddings for CPNs. In particular,
we show that many normal mesh algorithms can be emu-
lated on CPNs with a slowdown factor of about 1.1. We also
show that complete CPNs can embed meshes, tori, meshes of
trees, and folded Petersen networks with dilation 3, hyper-
cubes and generalized hypercubes with dilation 4, and pyra-
mids with dilation 5.

1 Introduction

The Petersen graph is a Moore graph that has 10 nodes of
degree 3 and a diameter of 2, is symmetric, and is the most
efficient small network in terms of node degree, diameter,
and network size (see Fig. 1). Due to its unique and optimal
properties, several network topologies based on the Petersen
graph have been proposed and investigated in the literature
[3, 4, 5, 7, 8, 9, 10, 11, 16].

In this paper, we present a class of interconnection net-
works called cyclic Petersen networks (CPNs), which ef-
ficiently extend the Petersen graph to obtain larger net-
works with diameter and node degree smaller than those of a
similar-size hypercube. The diameters of a 1-level CPN, a 2-
level CPN, and l-level ring-CPNs, l � 3, are optimal within
factors of 1, 1.25, and 1.8, respectively, given their node de-
grees; the “degree � diameter” costs [1] of a 1-level CPN,
a 2-level CPN, and l-level CPNs, l � 3 are optimal within
factors of 1, 1.25, and 1.8, respectively, for networks of any
degree. We present efficient algorithms for balanced rout-
ing, efficient emulations, and constant-dilation embeddings
in CPNs. In particular, we show that many normal mesh al-

Figure 1. The Petersen graph.

gorithms can be emulated on CPNs with a slowdown factor
of about 1:1. Moreover, complete-CPNs can embed meshes,
tori, meshes of trees, and folded Petersen networks with di-
lation 3, hypercubes, and generalized hypercubes with dila-
tion 4, and pyramids with dilation 5. They can also emulate
an l-D mesh under the all-port communication model with a
factor of max(4; l+1) slowdown.

The remainder of this paper is organized as follows. In
Section 2, we present cyclic Petersen networks and derive
several basic properties and algorithms. In Section 3, we
present enhanced CPNs, and derive efficient embeddings
and emulation algorithms for them. In Section 4, we present
clustered CPNs, which have smaller step sizes. In Section 5,
we conclude the paper.

2 Basic Cyclic Petersen Networks

In this section, we define basic CPNs (also called ring-
CPNs), explore some of their topological properties, and in-
troduce the needed notation.

2.1 Definition of Basic CPNs

For convenience, for any j1 � j2, we let Zj1: j2 denote
Zj1 Zj1�1 � � �Zj2 , where Z can be any symbol, such as U;V
or X.

Definition 2.1 (Ring-CPN): Let P = (VP ;EP ) be the Pe-
tersen graph. An l-level ring-cyclic Petersen network is de-
fined as (V ;E), where V = fVl:1jVi 2 VP ; i = 1; :::; lg is
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Figure 2. The derivation of shift links (neighbors) of
a node X = X4:1 in a 4-level ring-CPN. Symbols Xi 2
[0;9], i = 1;2;3;4, are represented by 4-bit binary numbers
x4i�1:4(i�1).

the set of vertices, and E = f(Ul:1;Vl:1)j Ui;Vi 2 VP ; i =
1;2; :::; l; satisfying Ul:2 = Vl:2 and (U1;V1) 2 EP , or Ui =
V(i mod l)+1, or Vi = U(i mod l)+1, for 1 � i � lg is the set of
edges.

A 1-level CPN is the Petersen graph (see Fig. 1) and is
called a nucleus of a CPN. Two nodes U and V are con-
nected by an undirected link if and only if nodes U and V
are neighbors within the same nucleus P, or the address of
nodes U and V are cyclic shifts of the l-symbol addresses
of one another (see Fig. 2). The former link is called a nu-
cleus link and the latter is called a left- (right-) shift link.
CPNs form a subclass of cyclic-shift networks (also called
cyclic networks) [2, 17] that use the Petersen graph as the
nucleus graph; cyclic-shift networks, in turn, form a sub-
class of super-IP graphs that use cyclic-shift operators as the
super-generators [18, 20, 21].

Let X(i) be the address obtained from node X by per-
forming i right cyclic shifts. That is, X(0) = X and X(i) =
Xi:1Xl:i+1 for 1 � i < l, where X = Xl:1. Note that X(i) =
X(i mod l). The addresses of left- (right-) shift neighbors of
node X can be represented as X(�1) (or X(1), respectively).
Let X = Xl:1 be a node in a ring-CPN, where Xi 2 VP and
X 6= X(i) for i = 1;2; :::; l�1. It can be seen that by the def-
inition of ring-CPNs, nodes X;X(1);X(2); :::;X(l�1) form an
l-node ring, connected through shift links. In general, the
majority of rings formed by the shift links are of this type.
However, when l is not a prime number, there will also be
shorter rings with l f nodes, where l f divides l (see Fig. 3a).
Since the addresses of shift links (neighbors) are obtained by
performing cyclic shift on the address of a node, and these
derived neighbors form a ring, we call such networks “ring-
cyclic” Petersen networks. The rings with l nodes are called
the cyclic-shift (CS) graphs of the ring-CPN; the rings with

l f nodes are called the degenerate CS graphs of the ring-
CPN.

Note that a node with the same l symbols in its address
has no shift links (or, alternatively, has shift links connect-
ing to itself) and is called a leader. Leaders can be used
as I/O ports or be connected to other leaders via their un-
used ports to provide better fault tolerance or to improve
the performance and reduce the diameter of ring-CPNs with-
out increasing the node degree of the network. Varying the
connectivity between leaders results in other classes of ring-
CPNs.

2.2 Routing and Topological Properties

The number of nodes in a ring-CPN is increased by a fac-
tor of 10 when the level is increased by 1, and the nucleus
Petersen graph has 10 nodes. Thus, the number of nodes N
of an l-level ring-CPN is

N = 10l: (1)

From Eq. 1, the level of an N-node ring-CPN is

l = log10 N: (2)

The node degree of an l-level ring-CPN is

d =

8<
:

3 when l = 1;
4 when l = 2;
5 when l � 3:

(3)

Suppose that a routing algorithm for the nucleus P is
known. Let the addresses of nodes X andY within the l-level
ring-CPN be Xl:1 and Yl:1, respectively, where Xi;Yi 2 VG .
In what follows, we present a routing algorithm to route a
packet from node X to node Y in an l-level ring-CPN using
left- (right-) shift links and nucleus links.

Route(X;Y)

For i = l downto 1 (or i = 1 to l)
Route the packet to node Yi (or Y(i mod l)+1)

within the nucleus in which the packet currently resides.
If i 6= 1 (or i 6= l), send the packet

through the left-shift link (or right-shift link).

If the routing algorithm on the nucleus P requires at most
TR(P) time, the routing algorithm on an l-level ring-CPN re-
quires time at most

TR(l) = lTR(P)+ l�1:

Since the diameter of the Petersen graph is 2, an optimal
routing algorithm requires time at most TR(P) = 2, leading
to

TR(l) = 3l�1: (4)



This leads to the diameter of an l-level ring-CPN, which is

3l�1=
3

log2 10
log2 N�1� 0:9log2 N�1:

The expected traffic on the network links of a ring-CPN is
approximately balanced when the sources and destinations
of the packets are uniformly distributed over network nodes.
This can be intuitively justified by observing that the aver-
age time for an intra-nucleus routing phase is 1.5, the routing
algorithm uses roughly the same number of intra-nucleus
and shift routing phases, and each node has 1.5 times more
nucleus links than shift links (3 versus 2). When l = 2 and
the external arrival rate is λ, the average traffic on a network
link is 0:972λ, while the traffic on a shift link is λ and the
traffic on any nucleus link is smaller than λ. Therefore, the
expected traffic on any network link is no more than 2.9%
above the average traffic on all network links. For any l � 3
the expected traffic on a network link in an l-level ring-CPN
exceeds the average traffic on all network links by no more
than 6%.

2.3 Emulation of Normal Mesh Algorithms

If a mesh algorithm executes t operations (or routing
steps) on the average along a dimension before executing an
operation along the next consecutive dimension (cyclicly),
we call it a normal mesh algorithm with (an average of) t
row operations. Note that a node can send data to both its
west and east neighbors along the same dimension at the
same time. Many mesh algorithms naturally fall into this
category. Many other algorithms can be easily transformed
to a normal mesh algorithm without affecting the leading
constant of the running time.

In what follows, we show that normal mesh algorithms
can be emulated on CPNs efficiently.

Theorem 2.1 A normal mesh algorithm for l-dimensional
10� 10��� �� 10 meshes with an average of t row opera-
tions can be emulated on an l-level ring-CPN with a slow-
down factor of 1+ 1

t .

Proof: The Petersen graph contains a 10-node linear array
so transmissions along dimension-1 mesh links can be per-
formed directly. To emulate operations along dimension a,
a node X in the guest mesh is mapped onto node X(a�1) of
the host CPN. Since operations are performed along con-
secutive dimensions when the dimension is changed, only
one transmission along cyclic-shift links is required for the
change of mapping. Note that we assume that the data held
by a node for future computation can be transmitted in one
unit of time, which is true for some algorithms such as sort-
ing. If the required transmission time is increased, the over-
head for emulation is simply increased accordingly. Since
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Figure 3. Various CS graphs and degenerate CS graphs
containing a node X within 8-level CPNs. (a) (degenerate)
CS graphs that are simple rings. (b) (degenerate) CS graphs
that are complete graphs. (c) (degenerate) CS graphs that
are chordal rings. (x.1) for node X with X 6= X(4). (x.2) for
node X = X8:1 with X8:5 = X4:1 and X 6= X(2). (x.3) for node
X with X8:7 = X6:5 = X4:3 = X2:1 and X 6= X(1). (x.4) for
node X with X = X(1) (i.e., Xi = Xj , i; j = 1;2; :::;8).

T
t �1 additional steps are required for routing along cyclic-
shift links on the average during T steps of the normal mesh
algorithm the slowdown factor is 1+ 1

t . 2

In many normal mesh algorithms of interest t is close to
9 so the slowdown factor is close to 1:1.

3 Enhanced Cyclic Petersen Networks

In this section we generalize the definition of basic CPNs
to enhanced CPNs. We derive a variety of efficient em-
beddings and emulation algorithms for them and propose a
scheme for routing in enhanced CPNs with balanced utiliza-
tion over network links.

3.1 Definition of Enhanced CPNs

An enhanced CPN is usually obtained by adding more
links to the original CS graphs (i.e., the l-node rings) of
a ring-CPN. More precisely, the original CS graph formed
by nodes X; X(1); X(2); :::; X(l�1) and their shift links



are replaced by another graph (or hypergraph), such as
a complete graph or a chordal ring, that connects nodes
X;X(1);X(2); :::;X(l�1); a degenerate CS graph is replaced
by the degenerate version of the new CS graph. The nucleus
links remain unchanged.

In what follows we formally define enhanced CPNs that
use complete graphs as the CS graphs.

Definition 3.1 (Complete-CPN): Let the nucleus graph be
a Petersen graph P = (VP ;EP ). An l-level complete-
cyclic Petersen network is defined as the graph complete-
CPN = (V ;E), where V = fVl:1jVi 2 VP ; i = 1; :::; l;g is
the set of vertices, and E = f(Ul:1;Vl:1)jUi;Vi 2 VP ; i =
1;2; :::; l; satisfying Ul:2 = Vl:2 and (U1;V1) 2 EP ; or V =
U(i); for some integer i;1 � i < lg is the set of edges.

The directed link connecting node U to node V =U(i�1)

is called link Ci, which corresponds to i right cyclic shifts.
Link C�i represent a shift link corresponding to i left cyclic
shifts and C =C1. The rule to construct an enhanced CPN
using other CS graphs is similar (see Fig. 3 for examples us-
ing loop-based topologies [13, 14]). Note that there may be
multiple links between two nodes in a degenerate CS graph.
For example, node V = 0101 in a 4-level complete-CPN is
connected to node U = 1010 with two links since V =U(1)

and V = U(3). Several examples illustrating multiple links
in degenerate CS graphs of 8-level CPNs are given in Fig.
3.

A complete-CPN has the strongest embedding and em-
ulation capacity among all CPNs and also the highest node
degree, which is equal to log10 N+ 2 � 0:3log2 N+ 2. But
the degree of a complete-CPN is still a small number (e.g.,
d � 7) for networks of practical size (e.g., N � 100K).

3.2 Embeddings and Algorithms Emulation

Embeddings and emulation between hypercubic net-
works and for new network topologies have been an impor-
tant and intensively studied research area [6, 12, 15]. In this
subsection, we present efficient emulation algorithms for
complete-CPNs under the all-port communication model.
We also derive constant dilation embeddings and packings
of trees, meshes, tori, hypercubes, meshes of trees, pyra-
mids, generalized hypercubes, folded Petersen networks, as
well as any product network in complete-CPNs.

Theorem 3.1 Any algorithm in a 10l1 � 10l2 � �� � � 10lm

mesh under the all-port communication model can be em-
ulated on an l-level complete-CPN with a slowdown factor
of at most max(4; l+1), where ∑m

i=1 li = l.

Proof: The emulation algorithm under the all-port commu-
nication model simply performs single-dimension emula-
tion for all dimensions at the same time with proper schedul-
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Figure 4. Schedules for emulating meshes on complete-
CPNs under the all-port communication model. Note that
a certain link appears at most once in a row, and each col-
umn for dimension j � 2 consists of links C j�1

;W;C1� j or
C j�1

;E;C1� j. (a) Emulating a 5-dimensional mesh on a 5-
level complete-CPN. (b) Emulating a 4-dimensional mesh
on a 4-level complete-CPN.

ing to avoid congestion. Let W (or E) represent the di-
rected nucleus link that is connected to a node’s west neigh-
bor (or east neighbor, respectively), in the emulated l-D
mesh. A packet for a dimension- j west (or east) neighbor,
2 � j � l, in the emulated mesh will be sent through links
Cj�1;W;C1� j (or Cj�1;E;C1� j , respectively). A possible
schedule for emulating an l-D 10� 10��� �� 10 mesh can
be obtained as follows.

We first consider the case when l is odd.
� At time 1, each node sends the packets

for its dimension-1 neighbors (in the emulated mesh)
through links W and E.

� At time 1, each node also sends the packets for its west
neighbors of even dimension and east neighbors of odd
dimension i, i = 2;3;4; : : : ; l, through links Ci�1.

� At time 2, each node sends the packets for its east
neighbors of even dimension and west neighbors of
odd dimension i, i = 2;3;4; : : : ; l, through links Ci�1.

� At even time t = 2;4; : : : ; l � 1, each node forwards
the packets for its west neighbors of even dimension
t through links W and then at the next time step, each
node forwards the packets through links C1�t .



� At even time t = 2;4; : : : ; l�1, each node also forwards
the packets for its east neighbors of odd dimension t+
1 through links E and then at the next time step, each
node forwards the packets through links C�t .

� At odd time t = 3;5; : : : ; l, each node forwards the
packets for its east neighbors of even dimension t � 1
through links E and then at the next time step, each
node forwards the packets through links C2�t

� At odd time t = 3;5; : : : ; l, each node forwards the
packets for its west neighbors of odd dimension t
through links W and then at the next time step, each
node forwards the packets through links C1�t .

Figure 4a shows such a schedule for emulating a 5-
dimensional mesh on a 5-level complete-CPN.

In what follows we extend the previous schedule to the
case when l is even and l � 4. We initially start with
the schedule for an (l + 1)-level complete-CPN. Clearly,
the transmissions corresponding to the emulation of dimen-
sion l+ 1 in the initial schedule are not used by the l-level
complete-CPN. Therefore, we can now reschedule the link
E of dimension l (from time l) to time l�1. We then swap
the time for the rescheduled link E with that of a link E
of smaller dimension. Due to the previous modifications
for dimensions j, we also have to modify the schedule for
some linksC1� j and maybe linksCj�1. In particular, we will
move link C1� j to the step after the use of link E for the em-
ulation of dimension-l link E in the mesh. As a result, the
time required for emulation under the all-port communica-
tion model is equal to l+1 when l � 4, and is equal to 4 when
l = 2 or 3. Figure 4b shows such a schedule for emulating a
4-dimensional mesh on a 4-level complete-CPN.

Since an m-D 10l1 �10l2 ��� ��10lm mesh is a subgraph
of an l-D 10�10��� ��10 mesh, the results follow. 2

An l-level folded Petersen network [11], a re-
cently proposed competitor for the hypercube, is de-
fined as P�P��� �P| {z }

l

, which is the iterative Cartesian prod-

uct on the Petersen graph P. An l-level folded Petersen net-
work is symmetric and has node degree 3l � 0:9log2 N, di-
ameter 2l � 0:6log2 N, and average distance about 1:5l �
0:45log2 N, all of which are smaller than those of a similar-
size hypercube. Some efficient algorithms have been devel-
oped for folded Petersen networks [5, 10, 11].

Theorem 3.2 Any algorithm in an l-level folded Petersen
network under the all-port communication model can be em-
ulated on an l-level complete-CPN with a slowdown factor
of max(6; l+1).

Proof: The proof is similar to the proof of Theorem 3.1 and
the corresponding proofs in [19, 21]. 2

In what follows, we present constant dilation embeddings
and packings of a variety of popular topologies in complete-
CPNs.

Theorem 3.3 An l-level complete-CPN can embed a 10l1 �
10l2 ��� ��10lm mesh or an l-level folded Petersen network
with load 1, expansion 1, and dilation 3, where ∑m

i=1 li = l.

Proof: Any link of an l-level folded Petersen network can
be mapped to a cyclic shift link, a nucleus link, followed by
another cyclic shift link (similar to the emulation of Theo-
rem 3.2). Since an l-level folded Petersen network contains
a 10l1 �10l2 ��� ��10lm mesh the results follow. 2

Theorem 3.4 An l-level complete-CPN can pack

�
l
i

�
copies of an

m�m��� �m| {z }
i

�(10�m)� (10�m)��� �(10�m)| {z }
l�i

torus for each i= 0;1;2; : : : ; l with load 1, expansion 1, and
dilation 3, where m = 8 or 9. An l-level complete-CPN can
pack 2l copies of a 5-ary l-cube with load 1, expansion 1,
and dilation 3.

Proof: Since a Petersen graph can pack two 5-node rings,
or an 8-node and a 2-node ring, or a 9-node and a 1-node

ring as subgraphs,

�
l
i

�
copies of an

m�m��� �m| {z }
i

�(10�m)� (10�m)��� �(10�m)| {z }
l�i

torus,

i = 0;1;2; : : : ; l, form node and edge disjoint subgraphs of
an l-level folded Petersen network, where m = 5;8; or 9.
Therefore, the embedding results follow from Theorem 3.3
for embedding a folded Petersen network in a complete-
CPN. Since these tori collectively have 10l nodes, the ex-
pansion is equal to 1. 2

Theorem 3.5 An l-level complete-CPN can embed an l-
dimensional radix-10 generalized hypercube, or any l-
dimensional Cartesian product network with 10-node factor
graphs with load 1, expansion 1, and dilation at most equal
to 4.

Proof: Since the diameter of the Petersen graph is equal to
2, any link of the above graphs can be mapped to a cyclic
shift link, two links of a nucleus Petersen graph, followed
by another cyclic shift link. 2

Theorem 3.6 An l-level complete-CPN can pack

�
l
i

�
copies of a (3l � 2i)-dimensional hypercube for each i =
0;1;2; : : : ; l with load 1, expansion 1, and dilation 4.



Proof: Since a 10-node complete graph contains a 3-
dimensional hypercube and a 1-dimensional hypercube as

subgraphs,

�
l
i

�
copies of a (3l�2i)-dimensional hyper-

cube for i = 0;1;2; : : : ; l, form node and edge disjoint sub-
graphs of a radix-10 l-dimensional generalized hypercube.
The packing result follows from Theorem 3.5 for embedding
a generalized hypercube in a complete-CPN. Since these hy-
percubes collectively have 10l nodes, the expansion is equal
to 1. 2

Theorem 3.7 An l-level complete-CPN can pack a com-
plete binary tree of height 3l � 1 and two complete binary
trees of height 3l�4 with load 1 and dilation 3.

Proof: It follows from Theorem 3.3 and the fact that these
three trees form node and edge disjoint subgraphs of an l-
level folded Petersen network [11]. 2

Theorem 3.8 An l-level complete-CPN can pack a 23m�1�
23(l�m)�1 mesh of trees, two 23m�1 � 23(l�m)�4 meshes of
trees, two 23m�4 � 23(l�m)�1 meshes of trees, and four
23m�4� 23(l�m)�4 meshes of trees with load 1 and dilation
3.

Proof: It follows from Theorem 3.3 and the fact that these
meshes of trees form node and edge disjoint subgraphs of an
l-level folded Petersen network [11]. 2

Lemma 3.9 Let t1; t2; t3 be the load, expansion, and dilation
for embedding graph G in an l-level folded Petersen net-
work. Then an l-level complete-CPN can embed graph G
with load t1, expansion t2, and dilation 2t3+1.

Proof: From Theorem 3.3, we know that a link in a folded
Petersen network can be mapped to a shift link, a nucleus
link, and finally another shift link in a complete-CPN. It can
be seen that two connected links can be mapped to a shift
link, a nucleus link, a shift link, a nucleus link, and finally
another shift link, since two shift links in a CS graph of a
complete-CPN (which is an l-node complete graph) can be
replaced by a shift link. By induction, a path consisting of t
links in a folded Petersen network can be mapped to a path
consisting of 2t3+1 links in a complete-CPN. 2

Theorem 3.10 An l-level complete-CPN can pack

�
l
i

�
�

2l +

�
l
i

�
� 2l�1 copies of a 2i � 2i pyramid for all i =

0;1;2; : : : ; l with load 1, expansion smaller than 1.25, and
dilation 5.

Proof: It follows from Lemma 3.9 and the fact that these
pyramids can be packed in an l-level folded Petersen net-
work with load 1 and dilation 2 [11]. These pyramids have
4
5 10l +22l�1 nodes collectively so the expansion is smaller
than 1:25. 2

The embeddings presented in this subsection can be eas-
ily extended to other classes of CPNs. For example, when
l = 2 or 3, ring-CPNs are the same as complete-CPNs, so
these embedding and emulation results can be directly ap-
plied to them. When l = 4 or 5, the dilations for embedding
and packing the previous networks (from Theorems 3.3 to
3.10) in ring-CPNs are only increased by 2 (additively), ex-
cept for the embedding of pyramids, whose dilation is in-
creased by 3 (additively). Since networks of size smaller
than or equal to 100K seem to be sufficient for interconnec-
tion networks in the near future, the dilations for embedding
these popular topologies in any type of CPNs are all small
numbers in practice. Since many efficient algorithms have
been designed for the guest graphs considered in this sub-
section [6, 12] and the proposed embeddings and emulation
algorithms are quite efficient, we can obtain a vast variety of
efficient algorithms for CPNs through embeddings and em-
ulation.

Although enhanced CPNs using complete graphs have
good performance for algorithm emulation, their node de-
grees will vary with the number of levels l. Therefore, it may
be desirable to use loop-based networks [14] or other small
networks as the CS graph (see Fig. 3bd) to obtain networks
whose cost and performance fall between those of ring-CPN
and complete-CPN.

3.3 Routing with Balanced Traffic

The routing algorithm presented in Subsection 2.2 can be
applied to enhanced CPNs without modification as long as
the new (degenerate) CS graph contains a Hamiltonian cy-
cle. However, the traffic over network links is not balanced
since the additional shift links in the CS graphs are underuti-
lized. In this subsection, we introduce a routing scheme for
enhanced cyclic Petersen networks that can uniformly uti-
lize network links.

Assume that a nucleus Petersen graph or several nucleus
Petersen graphs are placed within the same module (e.g.,
a chip, board, or multi-chip module (MCM)), then nucleus
links become on-module links and all or most shift links be-
come off-module links. If we can balance the traffic on shift
links, then we can always find an appropriate bandwidth for
on-module links so that no network link is congested. It
is reasonable to make on-module links faster than this re-
quired bandwidth to further improve the performance since
it is relatively cheaper to implement on-module links with
higher bandwidth and the number of transmissions over nu-
cleus links is larger than that over shift links.



Recall that the routing algorithm Route(X;Y) given in
Subsection 2.2 is composed of repeated routing within a nu-
cleus and transmission over a shift link C (or C�1) for l�1
iterations, followed by routing within a nucleus. This algo-
rithm works because the shift links C or C�1 bring each digit
of the address of the source node X to the rightmost posi-
tion exactly once. That is, shift links CC � � �C| {z }

l�1

bring the 2nd,

3rd, ... , lth digits to the rightmost position (in that order);
shift links C�1C�1 � � �C�1| {z }

l�1

bring the lth, ... , 3rd, 2nd, digits

to the rightmost position. Similarly, we can find a routing
algorithm for the enhanced CPN if and only if we can find
a sequence of shift links that can bring each digit of the ad-
dress of the source node X to the rightmost position at least
once.

When l is a prime number, l � 1 shift links Ci for any
i= 1;2; : : : ; l�1 can be used for routing. For example, when
l = 5, four shift links C2 bring the 3th, 5th, 2nd, and finally
the 4th digits to the rightmost position; four shift links C3

bring the 4th, 2nd, 5th, and finally the 3rd digits to the right-
most position. Therefore, as long as we use shift links Ci for
routing with probability 1

l�1 , the traffic among all the shift
links of the l-level complete-CPN is exactly balanced, as-
suming uniformly distributed destinations. Note that the last
digit brought to the rightmost position should be “correct-
ed” to be equal to the 1st digit of the destination node Y (by
routing within the nucleus to which the destination node Y
belongs). If it is initially the ith digit of the source node X,
then the jth digit of the source node X should be “corrected”
to be equal to the ( j� i+ 1)th digit of the destination node
Y .

When l is not a prime number, routing with balanced uti-
lizations is somewhat more complicated. We can see that
when l = 4, applying shift links C2 alone cannot bring the
2nd or the 4th digits to the rightmost position, so we need
a different routing algorithm. Fortunately, we can always
find a combination of different classes of shift links that ac-
complish the job. For example, when l = 4, we can use shift
links C2C1C2 or C2C3C2 for routing. We can also use l� 1
shift links C (or C�1 =C3). If we assign probability 1=4 to
each of the above sequences for routing, it can be seen that
the utilizations for these three shift links are the same; more
precisely, the average number of shift links Ci that will be
used for routing a packet is slightly smaller than 1 for each
i = 1;2;3. When l = 6, we can, again, use l � 1 shift links
C1 (or C�1 = C5) for routing. We can also use one of the
following 4 sequences

C2C2C1C2C2;C4C4C5C4C4;C3C1C3C1C3; or C3C5C3C5C3

for routing. If we assign probability 1
12 ;

1
12 ;

1
4 ;

1
4 ;

1
6 ;

1
6 for

the above sequences to be used, the utilizations for these
five shift links will be the same; more precisely, the aver-

age number of shift links Ci that will be used for a rout-
ing task is equal to 1 for each i = 1;2; : : : ;5. Routing in
complete-CPNs of higher level can be done is a similar man-
ner. In fact, we may omit the first j iterations in algorithm
Route(X;Y) when the least significant digits of the source
XjXj�1 � � �X1 happen to be the same as the most significant
digits of the destination YlYl�1 � � �Yl� j+1. If we take advan-
tage of this property, the expected traffic on the cyclic-shift
links becomes slightly different. However, a set of proba-
bilities that are slightly different from the previous ones can
always be found to exactly balance the expected traffic, lead-
ing to the following theorem.

Theorem 3.11 There exist a set of sequences of shift links
and a corresponding set of probabilities for routing in a
complete-CPN such that the traffic among all shift links of
the complete-CPN is exactly balanced.

When the destinations are not uniformly distributed over
all network nodes, we may need to adjust the probabilities
for the sequences to be used. For example, when a task in
the enhanced CPN is emulating a normal mesh algorithm,
the task will generate a considerable amount of traffic over
shift links C and C�1. Therefore, we have to use sequences
that involve fewer or no shift links C or C�1 more frequently
when performing other routing tasks, in order to balance the
utilizations of shift links. This can be done in enhanced
CPNs since only a subset of shift-link classes are required
when routing a packet and we have several choices for the
combination of shift links to be used.

The routing strategies proposed in this subsection can be
easily generalized to other classes of enhanced CPNs. For
example, consider l = 6 with the CS graph of the CPN be-
ing a degree-3 chordal ring; that is, it has three shift links
C1;C3; and C5. We can use one of the following 4 sequences
C1C1C1C1C1, C5C5C5C5C5, C3C1C3C1C3, or C3C5C3C5C3

for routing. If we assign probability 1=4 for each of the
above sequences, it can be seen that the utilizations for these
three shift links are approximately the same. These tech-
niques can also be applied to general cyclic-shift networks
[17, 18].

4 Clustered CPNs – A Scalable Variant

Although CPNs have good performance and embedding
capabilities, their size increases by a factor of 10 with each
added level, making it difficult to closely match the network
size to the need for computational power. In this subsection,
we present a method for obtaining variants of CPNs with
smaller step size.

A 2-level CPN is built from 10 nuclei, each of which is a
Petersen graph. To obtain a smaller network, we can simply
remove some of its nuclei; the resultant network is called a
2-level clustered CPN.



Theorem 4.1 The diameter of a 2-level clustered CPN is at
most 5.

Proof: Let X = X2X1 and Y = Y2Y1 be the addresses of
the source and destination nodes. The routing algorithm
Route(X;Y) for a 2-level CPN will send the packet out of
nucleus X2 to nucleus Y2. Since nucleus Y2 cannot be one
of the removed nuclei, the algorithm Route(X;Y) is directly
applicable to a clustered CPN. Therefore, the diameter of a
2-level CPN is upper bounded by 5. 2

Note that the removed links of the network nodes can be
reconnected to further reduce the average distance and/or
diameter and to improve the fault tolerance properties. To
obtain higher level CPNs with small step size, we refer the
reader to [17, 18] for several possible strategies. Other vari-
ants of CPNs can be found in [16].

5 Conclusion

In this paper, we have presented cyclic Petersen networks
as efficient extension of the Petersen graph for small- to
large-scale parallel processing. We derived efficient embed-
dings and packings of meshes, tori, meshes of trees, folded
Petersen networks, hypercubes, generalized hypercubes and
pyramids for CPNs. We also developed algorithms for bal-
anced routing and efficient emulations in them.
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cient communication in folded Petersen networks,” Int’l J.
Foundations of Computer Science, vol. 8, no. 2, Jun. 1997,
pp. 163-185.

[6] Leighton, F.T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.
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[8] Öhring, S., S.K. Das and D.H. Hohndel, “Scalable intercon-
nection networks based on the Petersen graph,” Proc. Int’l
Conf. Parallel and Distributed Computing Systems 1994, pp.
581-586.
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