
The Index-Permutation Graph Model for Hierarchical Interconnection Networks

Chi-Hsiang Yeh and Behrooz Parhami
Department of Electrical and Computer Engineering,

University of California,
Santa Barbara, CA 93106-9560, USA

Abstract

In this paper, we present the index-permutation (IP)
graph model, and apply it to the systematic development of
efficient hierarchical networks. We derive several classes
of interconnection networks based on IP graphs to achieve
desired properties; the results compare favorably with pop-
ular interconnection networks, as measured by topological
(e.g., node degree and diameter) and algorithmic proper-
ties, and are particularly efficient in view of their sparse
inter-module communication patterns. In particular, the di-
ameters of suitably-constructed super-IP graphs, a subclass
of IP graphs, are optimal within a factor of 1+o(1), given
their node degrees. The IP graph model can also be used as
a common platform that unifies the architectures and algo-
rithms for a vast variety of interconnection networks.

1 Introduction

In [4] Akers and Krishnamurthy presented a group-
theoretic model called the Cayley graph model for design-
ing, analyzing, and improving symmetric interconnection
networks. Many subclasses of Cayley graphs are strongly
hierarchical and have small diameters and node degrees.
In particular, k-ary n-cubes, cube-connected cycles (CCC)
[21, 22], and hypercubes are some well-known examples
of Cayley graphs [3, 4]. In [4], Akers and Krishnamurthy
showed that Cayley graphs are vertex-symmetric and that
most vertex-symmetric graphs can be represented as Cayley
graphs; it has also been shown that every vertex-symmetric
graph can be represented as a Cayley coset graph. Both the
Cayley graph model and the Cayley coset graph model have
been used to derive a wide variety of interesting networks
for parallel processing and have since received considerable
attention [4, 5, 9, 14, 17, 19, 20, 29, 30]. In particular, the
star graph [3] is a well-known Cayley graph that has a num-
ber of desirable properties, such as degree, diameter, and
average distance smaller than those of a similar-size hyper-
cube, symmetry, strong embedding capability, and fault tol-
erance properties.

In this paper, we present the index-permutation (IP)
graph model for the systematic development of
communication-efficient interconnection networks. In
contrast to Cayley coset graphs [4, 17], which can represent
any vertex-symmetric graph, we show that any graph has

an IP graph automorphism. We focus on a subclass of IP
graphs, called super-IP graphs, that use identical copies of a
small network as their basic modules. Based on the notion of
super-IP graphs, we present several efficient networks that
can have node degree and/or diameter smaller than those of
a similar-size star graph or hypercube and have strong em-
bedding capability. We use the notion of IP graphs to derive
symmetric and regular variants of super-IP graphs, called
symmetric super-IP graphs. Our designs, based on super-
IP graphs and symmetric super-IP graphs, compare favor-
ably with other popular parallel architectures, as measured
by topological (e.g., node degree and diameter) and algorith-
mic properties. In particular, the diameter of a suitably con-
structed (symmetric) super-IP graph can be optimal within
a factor of 1 + o(1) from a universal lower bound, given
its node degree. Moreover, the required data movements
when performing many important algorithms on (symmet-
ric) super-IP graphs are largely confined within basic mod-
ules, leading to small network delay when the delay asso-
ciated with transporting a message through an on-module
(e.g., on-chip or on-board) link is small. We define the inter-
cluster degree as the maximum of the average-per-node off-
module (or inter-cluster) links over all modules (or clusters),
and the inter-cluster diameter as the maximum number of
off-module (or inter-cluster) transmissions required for rout-
ing between two nodes. We compare the DD-cost (the prod-
uct of degree and diameter [7]), ID-cost (the product of inter-
cluster degree and diameter), and the II-cost (the product of
inter-cluster degree and inter-cluster diameter) for super-IP
graphs and several popular networks and show that super-IP
graphs outperform other networks significantly under these
figures of merit.

Due to the impact of inter-processor communication
mechanism on the scalability and performance of parallel
computers, numerous interconnection topologies have been
proposed and intensely studied, forming a “sea of inter-
connection networks.” Among them, certain classes of hi-
erarchical networks, including hierarchical cubic networks
(HCN) [15], hierarchical folded-hypercubenetworks (HFN)
[13], hierarchical hypercube networks (HHN) [34], recur-
sively connected complete (RCC) networks [16], and hier-
archical shuffle-exchange (HSE) networks [10], have been
shown to possess various appealing properties and are gain-
ing considerable attention. Although these networks were
proposed and studied independently and their structures
may not resemble each other at first glance, we show in
this paper and in [28, 33] that these networks and many



other interconnection networks, including shuffle-exchange
networks [21], hierarchical swap networks (HSN) [24, 25,
26] cyclic-shift networks [27, 32], super-flip networks, and
CCC, belong to the class of super-IP graphs or symmetric
super-IP graphs and share many properties and algorithms
in common. Therefore, the IP graph model, a natural exten-
sion of the Cayley graph model [4], not only provide new
insight to the design of novel communication-efficient net-
works, but also serves as a framework that ties together a
vast variety of previously proposed interconnection topolo-
gies. Suitably constructed super-IP graphs can emulate a
corresponding higher-degree network, such as a hypercube,
with asymptotically optimal slowdown under various com-
munication models. A variety of important network topolo-
gies can also be embedded in super-IP graphs with constant
dilation. More details can be found in [28, 33].

The remainder of this paper is organized as follows.
In Section 2, we present the index-permutation (IP) graph
model. In Section 3, we discuss several efficient subclasses
of super-IP graphs and their symmetric variants. In Sec-
tion 4, we present routing algorithms for super-IP graphs
and derive diameters of (symmetric) super-IP graphs. In
Section 5, we consider implementation issues and compare
the hardware and communication efficiency of several net-
works. Section 6 concludes the paper.

2 The Index-Permutation Graph Model

In this section, we introduce a mathematical game called
the ball-arrangement game (BAG). We then relate the game
to the index-permutation graph model in an attempt to pro-
vide some intuition and to help in visualizing the model.

In the ball-arrangement game, we are given k balls, each
stamped with a number. Different balls may be assigned the
same or different numbers. The goal of the game is to re-
arrange the balls so that the numbers on the balls appear in
a desired order. At each step the player can take an arbi-
trary action from a set of d permissible moves, each being
a particular permutation of the balls. The set of permissible
moves remains the same throughout the game, independent
of the current configuration of the balls. There are N � k!
possible configurations of the balls (i.e., states) when play-
ing the game, where N depends on the set of permissible
moves and how balls are stamped with numbers initially. If
we view each of the states as a network node and a permis-
sible move leading from one state to another as a directed
link connecting the nodes corresponding to those two states,
then a network with N nodes results, where each node has d
outgoing links. In other words, the network can be obtained
by drawing the state transition graph for the corresponding
ball-arrangement game with specified movements. One can
then relate playing a ball-arrangement game to routing in the
correspondingnetwork, where the initial and final states cor-
respond to the source and destination nodes and the move-
ments performed to solve the game correspond to the links
along the routing path. Since the in-/out-degree of the de-
rived network is upper bounded by the number d of permis-
sible movements and the diameter is the maximum number
of steps required to solve the game, we generally prefer to
select a small number of permissible moves that allow us to
solve the game in a small (or optimal) number of steps for

any initial and final states.
Recall that a Cayley graph is defined by a set of gen-

erators for a finite group, where the vertices correspond to
the elements of the group and the edges correspond to the
action of the generators [4, 8]. In the model proposed in
[4], any element in the group is a permutation of a set of
distinct symbols and generators are also permutations. For
example, the label of a node in a 6-dimensional star graph
(i.e., an element in the finite group) can be represented as
X = x1x2x3x4x5x6 = 123654, and the generators of the 6-star
are

π1 = 213456= (1;2); π2 = 321456= (1;3);

π3 = (1;4); π4 = (1;5); and π5 = (1;6);

where a cycle representation (i; j) represents a permutation
that interchanges symbols at positions i and j [3, 4]. Then
the actions of generators lead to the following neighbors for
node X:

Xπ1 = π1(X)= π1(x1x2x3x4x5x6)= x2x1x3x4x5x6 = 213654;

Xπ2 = π2(X)= π2(x1x2x3x4x5x6)= x3x2x1x4x5x6 = 321654;

Xπ3 = 623154; Xπ4 = 523614; and Xπ5 = 423651:

Applying the same set of generators to these 5 neighbors
generates 20 new neighbors. If we continue this process at
least 7 times, we will obtain 720 distinct labels (including
node X), which form the set of vertices in a 6-star (that is, all
the elements in the corresponding finite group). We can see
that any given Cayley graph corresponds to a certain ball-
arrangement game, where each symbol corresponds to a ball
that has a distinct number and the set of generators corre-
spond to the set of permissible moves.

Just as a ball-arrangement game with distinct ball num-
bers can be used to derive a corresponding Cayley graph,
an arbitrary ball-arrangement game can be used to derive
a corresponding network, called an index-permutation (IP)
graph, where each ball corresponds to a symbol and the set
of permissible movements correspond a set of generators.
In the definition of an index-permutation graph, there may
be several identical symbols in the label of a node. There-
fore, the index-permutation graph model can be viewed as
an extension of the Cayley graph model where the restric-
tion of “distinct” symbols for elements in the definition of a
Cayley graph has been relaxed. More precisely, an IP graph
is defined by a set of generators and a seed element, where
a generator is a permutation, the edges correspond to the
action of the generators, and the vertices correspond to the
elements obtained by applying generators on the seed ele-
ment or a generated element. For example, the label of the
seed node in a certain IP graph might be represented as Y =
y1y2y3y4y5y6 = 123321, and the generators of the IP graph
can be permutations

π1 = (1;2); π2 = (1;3); and π6 = 456123:

Then the actions of generators lead to the following 3 neigh-
bors for node Y :

Yπ1 = π1(Y)= π1(y1y2y3y4y5y6)= y2y1y3y4y5y6 = 213321;



Yπ2 = π2(Y)= π2(y1y2y3y4y5y6)= y3y2y1y4y5y6 = 321321;

Yπ6 =π6(Y)=π6(y1y2y3y4y5y6)= y4y5y6y1y2y3 = 321123:

Repeatedly applying the 3 generators to generated nodes
will result in 36 distinct nodes for this IP graph example. We
will show that this simple extension is quite powerful and
leads to novel and useful classes of parallel architectures.

In what follows we represent a few well-known net-
works using the IP graph model to make the idea clearer.
HCN(n;n) [15] without diameter links can be viewed as an
IP graph with the generator

T2;2n = (2n+1)(2n+2)(2n+3) � � �(4n)123 � � �(2n)

plus the n generators for an n-cube (that is, the generators
with cycle representations (1;2); (3;4); (5;6); :::; (2n�
3;2n�2); and (2n�1;2n)) applied on the seed element

12 34 56 � � � (2n�1)(2n) 12 34 56 � � � (2n�1)(2n):

Note that, in contrast to distinct symbols in Cayley graphs,
both halves of the seed element for the HCN use the same
sequence of symbols. Consider HCN(n;n) with n = 2. By
applying the three generators

T2;4 = 5678 1234; (1;2); and (3;4)

on the seed 12 34 12 34; we first obtain three generated
nodes 1234 1234; 21 341234; and 12 43 1234; respectively.
Note that, in this example, the first generated node is the
seed itself. Also note that the space between symbols is used
only to better visualize the action of a generator or the ap-
plied action on a label. If we continue applying the genera-
tors on the derived nodes for another 4 iterations, we will fi-
nally obtain all the 16 nodes in an HCN(2;2) (Fig. 1a). Note
that using the label of any of the 16 nodes as the initial seed
will eventually generate exactly the same graph. We can
also use other types of labels for the seed to obtain a graph
with exactly the same connectivity, even though the labels
of network nodes will be different. For example, if we use
12 12 12 12 as the seed, we obtain a graph with the same
connectivity (see Fig. 1a). For the original description of the
construction of HCNs, we refer the reader to [15].

As another example, an n-dimensional de Bruijn graph,
one of the densest known graphs, can be defined by genera-
tors

L1;2 = 34 56 78 � � �(2n�1)(2n) 12

L̄1;2 = 34 56 78 � � �(2n�1)(2n) 21
applied to the 2n-symbol seed 12 12 12 � � �12.

In [4], Akers and Krishnamurthy showed that Cay-
ley graphs are vertex-symmetric and that most vertex-
symmetric graphs can be represented as Cayley graphs; it
was also shown that every vertex-symmetric graph can be
represented as a Cayley coset graph. The analog of the pre-
ceding results for IP graph is given in the following theorem
[28, 33]:

Theorem 2.1 Any graph has an IP graph automorphism.

In what follows, we will focus on super-IP graphs, IP
graphs that use super-generators, which are a special class
of permutations that interchange two or several sequences of
symbols of equal-length. As an example, the generator T2;2n
for an HCN(n;n)without diameter links is a super-generator
that interchanges 2 sequences of 2n symbols.
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Figure 1. Structures of HSN(l;Q2), l = 2;3, represented
with radix-4 node labels. (a) Structure and ranking of an
HSN(2;Q2) = HCN(2;2) without diameter links. (b) an
HSN(3;Q2).

3 (Symmetric) Super-IP Graphs

In this section, we show how to derive communication-
efficient networks based on super-IP graphs.

3.1 Definition of Super-IP Graphs

In this subsection, we give the definitions of super-IP
graphs and introduce some related terminology.

Super-IP graphs are derived from ball-
arrangement games with l (initially identical) boxes, each
having m balls in it. The permissible moves in the game can
be any permutation of the balls within the leftmost box or
any permutation of the boxes (without reordering the balls
within them). In other words, a super-IP graph is a special
class of IP graphs where the seed label consists of l identi-
cal groups (boxes) of m symbols (balls) and the generators of
the IP graph can either permute the m symbols (the m balls)
within the leftmost group (box) or permute the m-symbol
groups (m-ball boxes) without changing the order of sym-
bols (balls) within any of the groups (boxes). We call each of
the m-symbol groups in the label a super-symbol. The gen-
erators that permute the symbols within the leftmost super-
symbol are called nucleus generators and the generators that
permute super-symbols are called super-generators. For ex-
ample, with the seed label 123 123, the permutation 321 456,
which permutes 123 123 to become 321 123, defines a nu-
cleus generator, whereas the permutation 456 123, permut-
ing 321 123 to 123 321, corresponds to a super-generator.
For each of the super-symbols, there must exist a sequence
of super-generators that can bring it to the leftmost position.
The small IP graph whose seed label is a super-symbol of
the seed label of a super-IP graph and whose generator set
consists of all the nucleus generators of the super-IP graph is
called the nucleus graph of the super-IP graph. Since the nu-
cleus determines the nucleus generators and the seed of the
super-IP graph, a super-IP graph can be completely specified
by its super-generators and its nucleus.

If we place each of the nuclei of a super-IP graph



within the same module, then its inter-cluster degree, up-
per bounded by the number of off-module links per node in
the super-IP graph, is no larger than the number of its super-
generators, leading to the following theorem.

Theorem 3.1 The degree of an IP graph is no larger than
the number of its generators, and its inter-cluster degree is
no larger than the number of its super-generators.

In this paper, l always signifies the number of super-
symbols in the label of a node in a super-IP graph, m always
signifies the number of symbols in a super-symbol, and N
represents the number of nodes in a network. The size of
super-IP graphs is given in the following theorem [28, 33].

Theorem 3.2 The size of a super-IP graph is N = Ml
N,

where MN is the number of nodes in the nucleus graph.

3.2 Transposition Super-Generators

In this subsection we introduce several communication-
efficient networks based on a special class of generators
called transposition super-generators, each of which ex-
changes a pair of super symbols. The transposition super-
generator that swaps the first and the ith m-symbol groups
(super-symbols of length m) will be denoted by Ti;m.

An l-level hierarchical swap network (also called hierar-
chical swapped network) [24, 25, 26], HSN(l;G), is a super-
IP graph that has the seed S1S1 � � �S1

| {z }

l

, the generators for the

nucleus G, and the transposition super-generators T2;m =
(1;2)m, T3;m = (1;3)m, T4;m = (1;4)m,..., Tl;m = (1; l)m,
where S1 is the label of a (seed) node in the nucleus G and
(1; i)m represents the permutation that interchanges the first
super-symbol and the ith super-symbol. The subscript m in
(i; j)m denotes the fact that super-symbols of length m at po-
sitions i and j are interchanged. In other words,

T2;m(Y) = T2;m(Y1Y2Y3Y4Y5Y6 � � �Yl) = Y2Y1Y3Y4Y5Y6 � � �Yl;

T3;m(Y) = T3;m(Y1Y2Y3Y4Y5Y6 � � �Yl) = Y3Y2Y1Y4Y5Y6 � � �Yl;

T4;m(Y) = T4;m(Y1Y2Y3Y4Y5Y6 � � �Yl) = Y4Y2Y3Y1Y5Y6 � � �Yl;

where Yi is a super-symbol, i = 1;2;3; : : : ; l. An example of
HSN(3;Q2) is shown in Fig. 1b, where Q2 is a 2-cube. We
can see that an HCN(n;n) without diameter links is equiva-
lent to the special case HSN(2;Qn). As shown in [26, 33], an
HSN can embed corresponding homogeneous product net-
works such as hypercubes or k-ary n-cubes, with dilation 3.
Efficient VLSI layout for HSNs can be found is [31].

3.3 Cyclic-Shift Super-Generators

Cyclic-shift networks (CN) (also called cyclic networks)
[27, 28] form a special case of super-IP graphs that use
super-generators which can perform “cyclic shifts” over the
super-symbols. Some subclasses of cyclic-shift networks
have fixed node degree and small diameter.

A basic-CN(l;G) (also called ring-CN(l;G)) is
defined by nucleus G and super-generators L1;m =

(1  )m and R1;m = L�1;m = (1 !)m; where the super-
generator Li;m = (i  )m changes the node label X =
X1X2 � � �Xl into

Li;m(X) = Xi+1Xi+2 � � �Xl X1X2X3 � � �Xi

and the generator Ri;m = (i!)m changes X into

Ri;m(X) = Xl�i+1Xl�i+2 � � �XlX1X2X3 � � �Xl�i:

3.4 IP Graphs Based on Flip Super-Generators

Another example for the design of super-IP graphs is
to use flip super-generators Fi;m, where the super-generator
Fi;m flips the first i super-symbols, i = 2;3; :::; l for an IP
graph with l super-symbols in a node label. For example,

F2;m(X1X2X3X4)=X2X1X3X4; F3;m(X1X2X3X4)=X3X2X1X4:

A super-IP graph with l flip super-generators and nucleus G
is called a super-flip network based on G. Note that super-
flip networks can emulate cyclic-shift networks efficiently
since flip super-generators can emulate transposition and
cyclic-shift super-generators efficiently, while the latter can-
not emulate the former as efficiently. More details can be
found in [33].

3.5 Symmetric Super-IP Graph

A symmetric super-IP graph is a special type of IP
graph whose generator set consists of nucleus generators
and super-generators and whose seed label consists of dis-
tinct symbols. Since symmetric super-IP graphs form a sub-
class of Cayley graphs [4], they are vertex-symmetric and
regular. In this subsection, we develop a simple and system-
atic method, based on symmetric super-IP graphs, to obtain
symmetric and regular variants of IP graphs.

Recall that an HSN(l;G) can be defined by the trans-
position super-generators T2;m = (1;2)m, T3;m = (1;3)m,
T4;m = (1;4)m,..., Tl;m = (1; l)m, the generators for the nu-
cleus G, and the seed S1S1 � � �S1

| {z }

l

, where S1 = 123 � � �m for

some nuclei G. If we replace the original seed with a
new seed S1S2S3 � � �Sl , where Si = (i� 1)m+ 1;(i� 1)m+
2;(i�1)m+3; : : : ; im, the resultant graph, called a symmet-
ric HSN(l;G), becomes a symmetric super-IP graph which
is vertex-symmetric and regular. The seed labels of many
HSNs whose nuclei use other type of seed labels can also be
transformed into labels that have no repeated symbols, lead-
ing to corresponding symmetric HSNs. Since a symmetric
HSN(l;G) uses the same generator set and the same nucleus
graph as those of an HSN(l;G), we can expect that they
share some properties and algorithms. If we assign color i
to the super-symbol containing symbol im, then there are l!
possible orders of colors for the labels of nodes in a symmet-
ric HSN(l;G). As a result, a symmetric HSN(l;G) has l!Ml

N
nodes, l! times more than that of an HSN(l;G), where MN is
the number of nodes in the nucleus G.

A similar strategy can be applied to other super-IP
graphs. If we can replace the seed node of a CN(l;G) with



the seed S1S2S3 � � �Sl , the resultant graph becomes a sym-
metric super-IP graph, called a symmetric CN(l;G), which
is vertex-symmetric and regular. A symmetric CN(l;G) has
lMl

N nodes since there are l different orders for the colors
of super-symbols. Note that these properties are common
to all cyclic-shift networks, including ring-CNs, complete-
CNs [27, 28], and their intermediate variants.

Similarly, this strategy can be applied to virtually any IP
graph, such as an HCN, HFN, RCC, shuffle-exchange net-
work, de Bruijn graph, HSE, or super-flip network, to obtain
its symmetric and regular Cayley-graph counterpart. Note
that even though the derived Cayley graphs have size and
connectivity that are different from the original networks,
they still share some properties and algorithms in common
due to the similarity in their generator sets.

4 Routing and Network Diameter

Recall that the routing algorithms on Cayley graphs and,
in particular, star graphs, can be viewed as “sorting” the
symbols in the label associated with the source node until
that of the destination node is obtained. Routing within any
IP graph can also be performed in a similar manner.

Theorem 4.1 Let t be the minimum number of applications
of the super-generators of a super-IP graph in order for each
super-symbol to appear at the leftmost position at least once.
Then the diameter of the super-IP graph is lDG+ t, where l
is the number of super-symbols in a node label and DG is the
diameter of the nucleus of the super-IP graph.

Proof: In what follows we present a routing algorithm for
the super-IP graph by sorting the label of the source node to
the label of the destination node. Choose a particular t-step
rearrangement of the l super-symbols such that each super-
symbol is brought to the leftmost position at least once. Let
di be the final position of the super-symbol initially in po-
sition i. We first use the nucleus generators of the super-IP
graph to sort the leftmost super-symbol to that of the d1-th
super-symbol of the destination node address. We then use
the above t steps to bring each of the super-symbols of a
node label to the leftmost position at least once. When the
super-symbol initially in position i is brought to the leftmost
position for the first time, we use the nucleus generators of
the super-IP graph to sort the current leftmost super-symbol
to that of the di-th super-symbol of the destination node ad-
dress.

Since the diameter of the nucleus graph is DG, the time
required for the nucleus generators to sort a super-symbol is
no more than DG. Therefore, routing in the super-IP graph
can be performed in no more than lDG + t time.

Let A0 and B0 be the addresses of two nodes that have dis-
tance DG within the same nucleus G. Routing from node
A=A0A0

� � �A0

| {z }

l

to node B=B0B0
� � �B0

| {z }

l

requires at least lDG+

t steps since each of the l super-symbols with value A0 has
to be sorted to the state with value B0, and the super-symbols
have to be brought to the leftmost position so that they can
be sorted. This completes the proof. 2

It can be seen that the parameter t in Theorem 4.1 is at
least l�1 for any super-IP graph and is equal to l�1 for all

the super-IP graphs introduced in Section 3. This, combined
with Theorems 4.1 and 3.2, leads to the following corollary.

Corollary 4.2 The diameter of an N-node HSN, RHSN,
RCC, cyclic-shift network, directed cyclic-shift network, or
super-flip network is

(DG+1) logMN
N�1;

where MN is the number of nodes in the nucleus graph and
DG is the diameter of the nucleus graph.

The proofs and examples for the following theorems can
be found in [33].

Theorem 4.3 Let tS be the minimum number of applications
of the super-generators of a symmetric super-IP graph in or-
der for each super-symbol to appear at the leftmost position
at least once and for the super-symbols to be eventually ar-
ranged to any possible order. Then the diameter of the sym-
metric super-IP graph is lDG + tS, where l is the number of
super-symbols in a node label and DG is the diameter of the
nucleus of the super-IP graph.

Theorem 4.4 The diameter of an HSN, cyclic-shift net-
work, directed cyclic-shift network, super-flip network,
RCC, RHSN, or any of their symmetric super-IP graph vari-
ants is asymptotically optimal within a factor of 1+ o(1)
from its lower bound (given its node degree) if the diame-
ter of the nucleus graph is asymptotically optimal within a

factor of 1+ o(1) from its lower bound and dS = d1+o(1)
N ,

where dS is the number of super-generators, dN is the num-
ber of nucleus-generators, and DG and dN are not constant.
The diameter of any of these networks is asymptotically op-
timal within a constant from its lower bound if the diameter
of the nucleus graph is asymptotically optimal within a con-
stant from its lower bound and log2 dS = O(logdN).

To obtain (symmetric) super-IP graphs with optimal di-
ameters, we can use networks such as a generalized hyper-
cube [7] of proper size and dimension as the nucleus.

5 Comparison of Several Networks

In this section, we look into several implementation and
performance issues, including the assignment of processors
to chips (or modules), pin limitations, bandwidth of on-chip
and off-chip links, and the number of off-module transmis-
sions required for routing.

5.1 Comparison of DD-Cost

Although diameter and average distance may be less im-
portant for networks using wormhole routing under light
traffic, they are crucial for network performance under
heavy load. The maximum possible throughput of a net-
work is inversely proportional to these parameters for any
switching technique. Figure 2 shows a rough comparison of
some of the interconnection networks discussed so far and
certain other popular networks on the basis of the product
of node degree and network diameter (which is regarded as
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Figure 2. Comparison of DD-cost, the product of node
degree and network diameter, for several interconnection
networks, where P is the Petersen graph, and FQ4 is a 4-
dimensional folded hypercube.

a suitable composite figure of merit [7] and is called DD-
cost in this paper). When the sum of the capacities of all the
links of a node is fixed (i.e., unit node capacity) and packet-
switching is used (or wormhole/cut-through routing is used
but messages are very short), the latency of a network with
light traffic is approximately proportional to its DD-cost.
From Fig. 2, we can see that cyclic-shift networks have DD-
cost that is comparable to that of the star graph, and outper-
form other popular topologies significantly under this crite-
rion, especially when the network size is large. In [2, 11],
it has been shown that low-dimensional k-ary n-cubes per-
form better than high-dimensional ones under the constraint
of constant bisection bandwidth. In [1], Abraham and Pad-
manabhan examined network performance under pin-out
constraints and showed that higher-dimensional networks
performed better. Generally speaking, low-dimensional k-
ary n-cubes outperform super-IP graphs under the constant
bisection-bandwidth constraint; while super-IP graphs out-
perform k-ary n-cubes and hypercubes under constant pin-
out constraint. Detailed comparisons based on such consid-
erations are outside the scope of this paper.

5.2 I-Diameter and Average I-Distance

In present computing environments, processors are ex-
pensive and memory is relatively cheap. Therefore, an op-
timization question is: “how large should the memory be to
utilize the processor(s) efficiently?” The utilization of pro-
cessors in parallel computers is not as efficient as that in a
single-processor computer for general-purposeapplications,
so that the latter achieves better performance per dollar. In
future computing environments, however, the roles might
be reversed, so that memory is expensive and processors
are relatively cheap. Therefore, the question might become:
“how many processors are appropriate to utilize the memory
efficiently?” As pointed out by Dally [12] and researchers
working on processor in memory (PIM) or computing in
RAM [18, 23], multiple processors per chip, integrated with
memory banks, can increase memory-processor bandwidth
considerably and improve the utilization of memory signif-
icantly. Moreover, with the rapid advances in VLSI tech-
nologies, the number of transistors and the number of pro-
cessors that can be put onto a chip are expected to continue
their exponential growths. Therefore, single-chip multipro-
cessors are expected to achieve better performance per dol-
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Figure 3. Comparison of the (a) average inter-cluster
distance and (b) inter-cluster diameter for several net-
works, assuming that at most 24 processors are available
per cluster (module). Quotient-CN(l;Q7=Q3), abbreviated
QCN(l;Q7=Q3) here, is obtained by merging each 3-cube
in CN(l;Q7) into a node. HCN(n;n) in the above figures are
HSN(2;Qn) = HCN(n;n) without diameter links.

lar even for general-purpose applications and may become a
mainstream in the future computing market. Another trend
in the synthesis of multicomputers is to use off-the-shelf PC
or workstation boards (or processor chips) as building mod-
ules.

In either case, a parallel computer is built from several
chips on a board and multiple such boards in a card-cage.
Modules at each level of the packaging hierarchy have their
respective characteristics in terms of the number of pins,
maximum capacity, bisection bandwidth, maximum wire
length, and channel bandwidth [6]. In what follows, we con-
sider the case where several nodes (processors, routers, and
associated memory banks) of a network are implemented
on a single chip, or more generally, a single module (e.g.,
chip, board, wafer, or multi-chip module (MCM)). Since
transmissions over off-chip (or off-module) links are more
expensive than transmissions over on-chip (or on-module)
links, it is generally preferred to reduce the number of off-
chip (or off-module) transmissions for a routing task. Fig-
ure 3a compares the average inter-cluster distance (aver-
age I-distance) (also called average inter-module distance),
the average number of inter-cluster or off-module (e.g., off-
chip or off-board) transmissions required for routing be-
tween two nodes, in several interconnection networks, as-
suming that at most 24 nodes can be placed within a module,
if the parallel system is to execute a random routing prob-
lem with uniformly distributed sources and destinations.
Figure 3b compares the inter-cluster diameter (I-diameter)
(also called inter-module diameter), the maximum number
of inter-cluster (off-module) transmissions for routing be-
tween two nodes, in several interconnection networks. It
can be shown that the maximum throughput of a network
is inversely proportional to its average inter-cluster distance
when the off-module links are uniformly utilized and the off-
module bandwidth is the communication bottleneck.

5.3 Comparison of Inter-cluster Degree

We define the inter-cluster degree (I-degree) (or inter-
module degree) as the maximum of the average-per-node
inter-cluster (off-module) links over all clusters (modules).
Since the number of available off-module pins per node is
one of the major constraints limiting the performance and
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Figure 4. Comparison of ID-cost, the product of inter-
cluster degree and diameter, for several interconnection net-
works, assuming that no more than 10 nodes can be placed
in a cluster (module).

the number of processors that can be put on the module, it
is desirable to minimize the inter-cluster degree when as-
signing network nodes to basic building modules. Also, to
eliminate the “number of parts” problem, it is preferred that
the building chips be identical or of only a few types. To
satisfy the above criteria, we can place each of the nuclei
of a super-IP graph within the same module when partition-
ing the network. Then the maximum number of off-module
links per node in an l-level ring-cyclic network is equal to 1
when l = 2 and 2 when l� 3; the corresponding numbers for
an l-level HSN, complete-CN [27, 28], or super-flip network
are 1,2,3,4, respectively, when l = 2;3;4;5. As a compar-
ison, the maximum numbers of off-module links per node
in an n-dimensional hypercube and star graph are n� 3 (or
n� 4) and n� 2 (or n� 3), when a 3(or 4)-cube or a 3(or
4)-star is placed within the same module, where n = log2 N
for an N-node hypercube and n=O(logN= loglogN) for an
N-node star graph. For example, a node in a 17-cube has 14
(or 13) off-module links and a node in a 8-star has 6 (or 5)
off-module links.

If we assume unit node off-module capacity, where the
average off-module bandwidth per node (i.e., the sum of the
bandwidth of all off-module links per node) is the same for
parallel architectures based on different networks, then an
off-module link of a super-IP graph has bandwidth consider-
ably larger than that of a hypercube or star graph. The max-
imum number of off-module links per node in a de Bruijn
graph is equal to 4 when assigning nodes with the same most
significant bits into the same module, so the bandwidth of an
off-module link of a ring-cyclic network or an HSN(l;Q4)
(or complete-CN(l;Q4)) of practical size is also better than
that of a de Bruijn graph using such a partitioning. Note that
when wormhole or cut-through routing is used and messages
are long, the delay of a network with light traffic is approx-
imately proportional to its inter-cluster degree.

5.4 Comparison of ID-Cost and II-Cost

We define the ID-cost of a network as the product of its
inter-cluster degree and its diameter. The inter-cluster de-
gree is usually (approximately) equal to the number of off-
module links per node, which is the case for the networks
considered in Figs. 2,3, and 4, except for 2-D tori. When
the sum of the capacities of all the off-module links of an
M-node module is cM, where c is a constant (i.e., the sum of
the capacities of all the off-module links of a node is fixed for
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Figure 5. Comparison of II-cost, the product of inter-
cluster degree and inter-cluster diameter, for several inter-
connection networks, assuming that no more than 10 nodes
can be placed in a cluster (module).

networks considered in Fig. 4, except for 2-D tori), the de-
lay of a packet-switched network with light traffic is propor-
tional to its ID-cost. The delay of a network using wormhole
or cut-through routing is also approximately proportional to
its ID-cost when the traffic is light and the messages are
short. From Fig. 4, it can be seen that cyclic-shift networks
have ID-cost that is considerably smaller than those of other
popular topologies, for small- to large-scale networks.

In the preceding arguments, we have assumed that the
speeds of all links, including on-module and off-module
links, are the same and the traffic is approximately balanced
over all network links. However, on-chip links are signifi-
cantly shorter than off-chip links and do not need extra delay
to drive off-chip pins, they can be driven at a considerably
higher clock rate. Moreover, since the cost for an on-chip
connection is much smaller than that of an off-chip connec-
tion, the channel width of an on-chip link can be increased,
if required, without significantly increasing the hardware
cost. When transmissions over on-module links are con-
siderably faster than over off-module links, the delay of a
packet-switched network with light traffic is approximately
proportional to its II-cost, defined as the product of its inter-
cluster degree and inter-cluster diameter. Moreover, when
the traffic is heavy and the utilization of off-module links is
higher than that of on-module links, the delay of a packet-
switched network is also approximately proportional to its
II-cost even when all links in the network have the same
speed, since the average waiting time required for a packet
to be transmitted over an off-module link is considerably
larger than that required for an on-module link. From Fig.
5, we can see that cyclic-shift networks have II-cost that is
considerably smaller than those of other popular topologies,
for small- to large-scale networks, even when module size
is limited to 8 or 10 nodes. When the module size is larger
than 10 nodes, the superiority of super-IP graphs over other
network topologies is even more pronounced.

6 Conclusion

In this paper, we have presented an extension of Cay-
ley graphs, called the IP graph model, for the develop-
ment of communication-efficient interconnection networks.
We presented several interconnection networks based on
super-IP and symmetric super-IP graphs that have certain
desirable properties. The diameters and inter-cluster diame-
ters of suitably constructed (symmetric) super-IP graphs are



asymptotically optimal within a small constant factor from
their respective lower bounds. IP graphs provide flexibility
in the design of parallel architectures in view of the possibil-
ity of selecting several parameters, nuclei, super-generators,
seed labels, and/or the nodes to be merged, an appropriate
combination of which can mitigate performance bottlenecks
and balance system resources. In particular, a dense nucleus
graph reduces the diameter and average distance, a strong
set of super-generators enhances the embedding capability,
a seed label consisting of distinct symbols generates a sym-
metric and regular network, a quotient variant [28, 33] min-
imizes the required off-module data transmissions, and their
combined effect determines the algorithmic properties of the
resulting network.
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