IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999 23

Data-Driven Control Scheme for Linear Arrays:
Application to a Stable Insertion Sorter

Behrooz Parhami, Fellow, IEEE, and Ding-Ming Kwai

Abstract—We present a strategy for designing stable insertion sorters based on linear arrays with data-driven control. The novelty
of our approach lies in each data item carrying a control tag to specify how it is to be operated upon by a receiving cell and in
performing two parallel comparisons within each cell. To assure first-in/first-out handling of equal key values, some data items must
be marked to reflect their past histories. Such marking is conveniently carried out by modifying the data item’s control tag. It is the
combination of the above features that allows us to derive the first single-cycle priority queue that operates in fully pipelined mode,
with no broadcasting of data values or control signals. By performing more than two parallel comparisons in each cell, the VLSI
implementation cost of our stable sorter can be reduced. We show that highly cost-effective designs can be obtained by selecting an

optimal cell size in terms of the number of comparators it contains.

Index Terms—Data-driven architectures, distributed control, FIFO, linear processor arrays, priority queue, stable sorting, tagged

insertion sorter, VLSI.

1 INTRODUCTION

ARDWARE sorting capability is required in many appli-
cations, including large data routing switches and
priority queues. A sorter deals with a data structure com-
posed of a list of n records, each of which has a key whose
value dictates its position in the eventual ordering.
The problem of sorting in nondecreasing order may be
stated as follows. Given a list of n records with key values
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, X, rearrange them into a new list with keys
< VYn

and, for each pair of consecutive outputs satisfying y; = y;.1,

Yo T Xy such that y; <y, < -

we have k; < k;;;. In other words, we impose the first-
in/first-out (FIFO) order on the set of records that have
equal key values. In the literature on sorting, such an algo-
rithm is referred to as a stable sorting algorithm.

Even though theoretical log-depth and somewhat more

practical Iogz-depth sorting networks are widely known
[13], most hardware implementations of sorting are based
on a linear array structure in view of its simplicity and
ease of VLSI realization [16]. Pipelined schemes, such as
rebound sorting [2], [4], [5], up/down sorting [8], enu-
meration sorting (via counting) [15], and balanced heap
sorting [9], have been proposed on linear arrays. To im-
plement a stable sorting algorithm, however, it is often
assumed that an entry number or input order index is in-
cluded with each record. This index expands the range of
key values by a factor of n, thus leading to added cell
complexity and poor scalability.
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The tagged up/down sorter [12] uses a single-bit tag to
mark a displaced record; when set, this tag bit indicates that
the record is to be returned to its proper FIFO order. How-
ever, because the up/down sorter performs sorting during
both insertion and extraction, it does not provide ready
access to the record with the largest key value in the list.
Thus, when used as a priority queue, the tagged up/down
sorter lacks the overwriting capability viz. the ability to
discard the lowest-priority event to make room for a
higher-priority one [14].

To allow overwriting, the sorter has to perform sorting
only during insertion. Moreover, if interleaving of insertion
and extraction is to be possible, input and output must be
through one end of the linear array, leading to bidirectional
data flow. To ensure an appropriate data flow commensu-
rate with insert and extract operations, each cell needs a
certain amount of control or decision-making capability.

Previous work has suggested that control signals and
data values can be broadcast to all cells, making the sorter
behave like a dynamically partitioned shift register [7]. The
simplicity of the control circuitry in such broadcast-based
designs is due to the use of buses which establish global
communications paths in the linear array.

To ensure regular control flow in a sorter, one might
pipeline the control signals along with the data values. In
the resulting data-driven control scheme, each inserted data
item carries a control tag indicating its state and how it is to
be operated upon by the receiving cell. This scheme yields a
simple and regular cell structure with only local communi-
cation [3], [11], thus limiting the global connections to clock
and power supply.

In this paper, we present such a data-driven control for the
stable insertion sorter that supports a very high clock rate
and unlimited scalability. By pipelining the control signals,
which take the form of tags attached to the data values, cell
operations can be orchestrated in a totally distributed manner.
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Fig. 1. Dependence graph for insertion sorting with two comparisons
per node. Also shown are the node’s three routing states based on the
outcomes of a< b and a < c comparisons b< c.

The control tags also provide a convenient mechanism for
carrying abbreviated record histories that enable efficient
implementation of stable sorting or FIFO order. It is a combi-
nation of the preceding features that allows us to obtain a
single-cycle priority queue that operates in fully pipelined
mode with neither data nor control broadcasting while also
providing the overwriting capability.

Our presentation is organized as follows. Section 2 in-
troduces a tagged insertion sorter with data-driven control
in which each cell performs two key comparisons in paral-
lel. Section 3 deals with the case when the tagged insertion
sorted is used as a priority queue and addresses issues of
FIFO ordering and exception handling. In Section 4, we
generalize our design by allowing each cell to do more than
two comparisons at the same time, discussing cost-
effectiveness and optimality issues. Section 5 contains our
conclusions.

2 TAGGED INSERTION SORTER

2.1 Deriving the Insertion Sorter
The Insertion sorting algorithm can be represented by the
dependence graph of Fig. 1, where each node represents the
operation of comparing the horizontally arriving datum a
with the vertically arriving data b and ¢ (« denotes the larg-
est possible key value). The dashed equi-temporal lines
denote a scheduling scheme in which time is partitioned
into discrete steps by a global clock. Such a synchronous
mode of operation with regular data flow is commonly
known as systolic computation [6].

A linear array and its corresponding cell structure can be
obtained by projecting the dependence graph of Fig. 1 in
the j direction. The resulting array, with input and output at
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Fig. 2. A three-cell insertion sorter and its cell structure.

its left end, is depicted in Fig. 2. The nodes located at the
same i coordinate are mapped to a single cell whose opera-
tions are regulated by a global clock according to the given
schedule. Each cell is connected to its left and right neigh-
boring cells, except that the rightmost cell has no right
neighbor (its right input is externally supplied) and the
leftmost cell serves as an input/output point for the entire
network.

Given a and b < c, the rearrangement of a, b, and ¢ in
nondecreasing order can be accomplished as follows. De-
pending on the outcomes of the two comparisons or tests
a < b and a < ¢, the rearrangement yields one of the follow-
ing three orders, as shown in Fig. 1:

a<bs<c Comparison outcomes: (yes, —)
b<a<c Comparison outcomes: (no, yes)
b<c<a Comparison outcomes: (—, no)

Note that the smallest value is min(a, b) and the largest
value is max(a, c). Clearly, the two comparisons needed to
distinguish which of the three cases above holds can be
performed in parallel. In Fig. 2, the multiplexer controlled
by the comparison outcome a < b is used to select the me-
dian value from max(a, b) and min(a, c). The right-to-left
data flow in the linear array is needed to permit data output
in sorting or extraction for priority queue operation. The
roles of the tag bits t, r, and q are explained in Section 2.2.

2.2 Data-Driven Control Scheme

We assume that the end of insertion is signified by pre-
senting a null record having the key value o to the linear
array. To each real or null record we attach a tag of 0 for
insertion and 1 for extraction. The tag moves along with
data and the receiving cell interprets it as an instruction. We
use the notation a' to denote a data item with key a and tag t.
An input a’ to a cell indicates that it is to be inserted and
instructs the receiving cell to compare a with its stored val-
ues b and c¢. The outcomes of the comparisonsa<banda<c
then direct the crossbar switches and multiplexers to order
a, b, and c, passing the largest to the right.

A null record o is input immediately after the insertion
of the last normal data record to begin the extraction phase.
According to the schedule in Fig. 1, the sorted data items



PARHAMI AND KWAI: DATA-DRIVEN CONTROL SCHEME FOR LINEAR ARRAYS: APPLICATION TO A STABLE INSERTION ORDER 25

a
x|
bc
ol |1
a
. of |o
J bc

Y1 Va V3 Vs Vs Vs

Fig. 3. Dependence graph for extraction from the tagged insertion
sorter. Also shown are the node’s two routing states based on the tag
values marked on the vertical edges.
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Fig. 4. An example of the insertion sorting algorithms on a three-cell
linear array. Control tags are shown as superscripts.

Voi— and y,; are stored in the cell P; at time stepn + i — 1,
where 1 < i < [h/20 When the null record o arrives at the
cell P; at time step n + i, the values y,— and y,; held there
are shifted to the left and the vacancy created by the re-
moval of y; is filled by oo".

At the next time step, Y, IS ready to be extracted; P;

fetches y,;.; in synchrony with the next cell P;,, shifting it
to the left. The sorted data items emerge from the left end
of the array in consecutive time steps. At the end of ex-
traction, all registers are restored to their initial states. Fig. 3
depicts the dependence graph for the extraction phase.
Note that the two routing states are conveniently specified
by a control tag r which instructs the multiplexer in Fig. 2

to select ¢ or d“,

As an example, Fig. 4 illustrates the behavior of the linear
array of Fig. 2 when sorting the sequence of numbers 5, 2, 4,
6, 3, 1. For n insert and extract operations, the control tags
attached to the inputs consist of n zeros followed by n ones.

3 PRIORITY QUEUE OPERATION

If the tagged insertion sorter is to be used as a priority
queue, the cell design must be modified to handle some
situations that would not arise for sorting, where all inputs
are presented before extraction takes place. Since sorting
can be viewed as a special case of priority queue operation,
the resulting design can be used for either purpose.

We note that when an insertion occurs after an extrac-
tion, at most one normal data item is stored in the cell.
Thus, we let the cell fetch the normal data item from the
next cell (which pushes it out at the same time) for com-
parison with the incoming data. To handle the situation
when neither insertion nor extraction is to be performed,
we expand the tag to two bits, assigning 00 for insertion, 10
for no operation, and 11 for extraction. Insertion of '’ thus
will leave the contents of the priority queue unchanged.
Fig. 5 provides an example of interleaved insertions and
extractions in a priority queue.

3.1 Ensuring FIFO Order

The control scheme discussed so far does not guarantee
FIFO ordering. This can be shown through an example.
Suppose that the data items 1, 3;, 3,, 2 are inserted into the
array, where the subscripts of equal values indicate their
input order. During insertion, 1 and 3; will be stored in the
first cell P, until the smaller input 2 arrives and pushes 3; to
the right. The data item 3; then lags one step behind 3,
which has been stored in the second cell P,. Because a cell
always passes on any data item that is greater than or equal
to its stored data item, 3, will continue to occupy the posi-
tion where 3; should stay.

Note that forcing a swap in the case of equal values (i.e.,
changing the swapping condition from < to <) does not
solve the problem, since it erroneously causes 3, to displace
3,, initially stored in P, pushing the earlier item to the
right. One way around this problem is to associate an entry
order index with each data item. However, this approach in
effect expands the range of key values by a factor equal to
the sorter size n. This is undesirable since it increases the
cell complexity and limits the size of the array which is oth-
erwise readily expandable to arbitrarily large sizes.

A more efficient solution is to utilize the unassigned tag
value 01 to designate a displaced item for enforcing the
FIFO order; when an input value equal to a stored value
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Fig. 5. An example of priority queue operation. Control tags are shown
as superscripts.

enters a cell, the stored value is kept and the new one is
forwarded to the right because of its later arrival time, but
for a displaced value that was originally stored to the left of
the cell, the opposite must occur. Fig. 6 shows an example
for the priority queue operation using this modified scheme
for the control tags.

Each inserted data item initially carries a 00 tag. When
the item is stored in a cell, its tag changes to 01. This change
needs no extra hardware; the tags sent from the crossbar
switches to the b° and c¢' registers are simply tied to 01.
When a data item tagged with 01 comes in, the cell is forced
to swap and send its current data item to the right. Note
that in this case the comparisons are redundant as the in-
coming value is always compared to a larger value or to an
equal value with a later arrival time. Fig. 7 shows the
structure of the modified cell that enforces the FIFO order.

3.2 Overflow and Underflow Detection

When more than n data items are inserted into the sorter,
some items will be pushed out from the right end of the
array. Such a discarded data item is relevant only if it car-
ries a tag of 00 or 01. Thus, a data item tagged with 0x (i.e.,
with the first tag bit equal to 0) emerging from the right end
of the array indicates an overflow. If the first tag bit of the
emerging data item is 1, the data item is a null input, and
the sorter capacity has not been exceeded.

Equally simple is underflow detection by examining the
tags of extracted data items. Underflow occurs when more
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Fig. 6. Example showing the use of the tag value 01 to ensure FIFO
ordering. Control tags are shown as superscripts and arrival order of
equal values as subscripts.
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Fig. 7. The modified cell structure with data records carrying two-bit
control tags to allow the incorporation of idle cycles and FIFO order.

data items are extracted from the array than previously in-
serted into it. We note that a normal output must carry a tag of
01, implying that the data item has been placed in sorted order.
Thus, for an extracted data item, a control tag Ox indicates
normal output and 1x indicates an underflow condition.

Fig. 8 shows the complete interpretation of the two-bit tags
and their corresponding cell actions for ease of reference.

4 DESIGN TRADE-OFFS AND OPTIMALITY

The preceding design can be generalized to allow more
than two parallel comparisons in each cell. In the general-
ized version, each of the [h/kUcells contains k comparators
and crossbars, k + 1 registers, and 2k multiplexers. Fig. 9
shows an example with k = 3 comparisons per cell.

Thus, the total component count is reduced as we in-
crease k, leading to more compact designs. On the other
hand, segmenting the design into a smaller number of more
complex cells leads to longer wires and propagation delays.
In the extreme case of k = n, all n comparisons are per-
formed in parallel; inputs are broadcast to n comparators
and crossbars and the control signals to 2n multiplexers,
leading to a shift-register-like design [7]. An inserted data
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Fig. 9. The structure of a cell that performs three comparisons in parallel.

item is simultaneously compared to all the stored values,
shifting all larger data items to the right. Extraction simply
shifts all the data items to the left.

To estimate the propagation delay for the various de-
signs, we adopt a simple and well-known model [10]. We
assume the use of square areas for the layout of cells and
the entire array, making the longest wire length propor-
tional to +/k . The propagation delay A through a VLSI metal
wire [3] is given by the equation

A=c;+cyInk+c3k

with ¢, ¢, and c; being technology-dependent constants
[10]. We have derived these constants for the following
analysis using a 0.8 um CMOS double-metal technology
with the second layer of metal for interconnections.

Fig. 10 shows the decrease in layout area and increase in
clock period of the broadcast design with k = n compared to
the fully pipelined design with k = 2. The clock paths are
assumed to be evenly distributed on the chip; thus, the ef-
fect of clock skew is not accounted for in deriving the cost
and delay estimates.

With smaller cells, the wires running across cells become
shorter and the linear array can operate at a higher clock
frequency. The fully pipelined design uses [h/200- 1 more
registers than the broadcast design. These registers act as
repeaters, limiting the propagation delay of data and con-
trol signals and allowing a higher operating frequency. The
area overhead due to the replication of registers is further
discussed below.

Fig. 10 indicates that as the sorter size n increases, the
cost reduction allowed by the broadcast design approaches
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3
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Fig. 10. The percent increase in clock period and percent decrease in
area of the broadcast design (k = n) with respect to the fully pipelined
design (k= 2).
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Fig. 11. The cost-effectiveness of designs with different cell sizes rela-
tive to the fully pipelined design (k = 2).

a constant factor. This result can be justified by an ap-
proximate analysis of VLSI layout area. for (2w + 2)-bit
inputs (w bits for key, w bits for data, and 2 bits for tag), a
comparator/crossbar switch is about four times as large,
and a register is about three times as large as a multiplexer.
The ratio of the layout areas between the two designs, when
the sorter size n is large, becomes:

4n+3(n+1)+2n

= 85.7%.
4n +3(3n/2) +2n

The cost ratio depicted in Fig. 10 is slightly smaller than this
value because the tag decoding logic also has to be repli-
cated in each cell.

Segmenting the design into larger cells can be seen as
trading off speed for more compact VLSI layout. Since all
the designs achieve the total latency of 2n clock cycles for
sorting n records, performance is determined solely by the
operating frequency. We can use the area-time product to
measure the cost-effectiveness of designs as we vary the
segmentation parameter k.

We want to know the value of k that leads to the most
cost-effective design. Fig. 11 shows that the design with eight
comparators per cell yields the lowest area-time product. We



28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

note that the optimum also depends on several other fac-
tors, including clock skew, and device characteristics [1],
which are not considered in this paper. For example, re-
peating the analysis for 0.5 um, CMOS shows that the opti-
mum moves to a smaller cell size.

5 CONCLUSION

We have proposed a data-driven control scheme to solve the
control flow problems in a stable insertion sorter. In our sort-
ers, the control signals are pipelined together with the data
signals in the form of tags attached to the data values. Our
designs use only local intercell communications, thus limit-
ing the global connections to clock and power supply. Such
fully pipelined designs support higher operating speeds, are
truly scalable, and lead to cost-effective VLSI implementa-
tions. Similar pipelined data-driven designs can be applied
to a wide array of other computational problems.

Given that no data value or control information is broad-
cast to the cells, it is possible to convert our designs to ones
with asynchronous control, thus eliminating the need for
clock distribution. This would ease the area overhead of
clock distribution and the speed penalty imposed by clock
skew. As feature size in VLSI circuits continues to shrink,
asynchronous designs will become more attractive not just
from the standpoint of speed, but also with regard to power
consumption.

We showed that two tag bits are sufficient for correct op-
eration (including FIFO ordering and overflow/underflow
detection), while providing high operating speed and un-
limited scalability via the elimination of broadcasting and
long wires. FIFO ordering is ensured by proper manipula-
tion of control tags. Exception handling is accomplished by
examining tags, rather than by the more complex process of
counting the number of data items inserted into, or ex-
tracted from, the sorter.

Each cell in the sorter thus obtained compares its input
with two stored data items and operates in a single cycle for
insert or extract operation. As far as we know, our design is
the first single-cycle priority queue that operates in fully
pipelined mode with no broadcasting. Our design was
shown to be generalizable to the case where more than two
comparisons are performed in each cell. Increasing the de-
gree of parallelism (reducing the pipeline depth) leads to
more compact designs at the expense of longer propagation
delays. Our study of cost/performance trade-offs has re-
vealed the existence of an optimal cell size that leads to the
most cost-effective design.
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