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AbstractÐChordal rings have been proposed in the past as networks that combine the simple routing framework of rings with the

lower diameter, wider bisection, and higher resilience of other architectures. Virtually all proposed chordal ring networks are node-

symmetric, i.e., all nodes have the same in/out degree and interconnection pattern. Unfortunately, such regular chordal rings are not

scalable. In this paper, periodically regular chordal (PRC) ring networks are proposed as a compromise for combining low node degree

with small diameter. By varying the PRC ring parameters, one can obtain architectures with significantly different characteristics (e.g.,

from linear to logarithmic diameter), while maintaining an elegant framework for computation and communication. In particular, a very

simple and efficient routing algorithm works for the entire spectrum of PRC rings thus obtained. This flexibility has important

implications for key system attributes such as architectural scalability, software portability, and fault tolerance. Our discussion is

centered on unidirectional PRC rings with in/out-degree of 2. We explore the basic structure, topological properties, optimization of

parameters, VLSI layout, and scalability of such networks, develop packet and wormhole routing algorithms for them, and briefly

compare them to competing fixed-degree architectures such as symmetric chordal rings, meshes, tori, and cube-connected cycles.

Index TermsÐChordal rings, fault tolerance, greedy routing, hierarchical parallel architectures, interconnection networks, routing

algorithms, skip links.
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1 INTRODUCTION

NUMEROUS interconnection networks have been used or
proposed for parallel computers and there are widely

varying views on the relative merits of different network
topologies [23], [25]. The ring interconnection scheme has
proven quite effective in certain distributed and small-scale
parallel systems [5] in view of its low node degree and
simple routing algorithm. However, the diameter of a
simple ring would be too large for effective utilization in a
massively parallel system. As a result, multilevel and
hybrid architectures utilizing ring connections at various
levels of a hierarchically structured network or as a basis for
synthesizing richer interconnection schemes have been
proposed [2], [3], [4], [5], [10], [12], [14], [18], [19], [28],
[29], [30], [34].

The multilevel ring structure of KSR1's interconnection
network [14] and the QuickRing network [28] are good
examples of the hierarchical approach. The chordal ring [2],
generalized chordal ring [3], [10], and distributed loop
network [5] architectures, in which each node is also
connected to one or more distant nodes through skip links
or chords, provide examples of the second approach. Such
skip links reduce the network diameter at the expense of
increased node degree and wiring complexity. Because the
basic ring structure is preserved, many nice features of a
simple ring, including ease of routing and deadlock
avoidance, carry over to these enhanced ring architectures.

Fig. 1 shows a simple unidirectional ring with eight
nodes and a node-symmetric chordal ring with the same
number of nodes in which chords, or forward skip links, of
length 3 have been added to each node. This chordal ring

network is node-symmetric because each node has the same
number of skip links (1) and the same set of skip distances
({3}). More generally, the degree of each node may be
greater than two and multiple chords or forward skip links
may originate from each node.

Low-diameter node-symmetric chordal rings require
high node degrees. If the node degree is fixed at k, then a
node-symmetric chordal ring is quite similar to a k-
dimensional mesh in terms of both diameter and bisection
width [24], [26], [33].

In this paper, we show that by relaxing the symmetry
requirement and opting instead for periodic regularity, low
node degree and small diameter can be achieved simulta-
neously. We analyze the resulting networks and show them
to possess advantages over meshes, tori, and cube-con-
nected cycles with regard to topological parameters and
ease of routing. Even though we derive our networks by
combining a ring structure with a mesh-like architecture,
the combining process bears no relation to those previously
examined [1].

The remainder of this paper is organized as follows. We
begin by reviewing node-symmetric chordal rings in
Section 2. Periodically regular chordal rings are introduced
and analyzed in Section 3, where a semigreedy routing
algorithm is also presented and shown to be quite efficient.
We discuss the problem of optimally selecting the PRC ring
network parameters in Section 4. Section 5 deals with VLSI
layout and scalability issues. Sections 6 and 7 discuss fault-
tolerant and wormhole routing algorithms, respectively.
Section 8 contains our conclusions.

2 NODE-SYMMETRIC CHORDAL RINGS

The discussion of node-symmetric chordal rings in this
section draws heavily from the notation and results of [12].

Definition 1. (chordal ring) Consider an N-node ring with
node labels 0; 1; . . . ; N ÿ 1, and ring connection going from
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each node v to node v� 1�mod N�. Let there also be

unidirectional skip links or chords from each node v to nodes

v� s1; v� s2; . . . ; v� skÿ1�mod N�, with

1 < s1 < s2 < . . . < skÿ1 < N:

Such an augmented ring is known as a degree-k (symmetric,

unidirectional) chordal ring with the skip set

{s1; s2; . . . ; skÿ1}. In the remainder of this paper, it will be

understood that all arithmetic in node-index expressions is

modulo N. For convenience, we define s0 � 1 and sk � N .

Hence, node v is connected to nodes v� sj for 0 � j � k,

where 1 � s0 < s1 < s2 < . . . < skÿ1 < sk � N . Fig. 2 shows

the neighbors of a given node v in the general case along with

an example for k � 3.

A shortest path leading from node u to node w consists of

a number of skips of each type. Because of node-symmetry,

the required skips of each type can be traversed in any

order, leading to many distinct paths. Let d(u, w) be the

distance from node u to node w along a shortest path and

nh�u;w�, 0 � h � kÿ 1, be the number of skip links of type

sh included in the shortest path. Then:

d�u;w� � n0�u;w� � n1�u;w� � . . .� nkÿ1�u;w�:
Given the set of skip distances {shj0 � h � kÿ 1}, the

problem of finding a shortest-path from node u to node w

requires the precomputation of a size-N table in each node

specifying the skip link to be taken for each possible

destination node or, equivalently, for each ring distance

from the current node.

Example 1. With k � 3 and skips s1 � 10 and s2 � 16,

shortest paths for wÿ u � 32; 33; or 34 start with s2,

whereas, for wÿ u � 24; 25; 30; or 31, s1 should be taken

first and, for wÿ u � 26; 27; 28; or 29, either s1 or s2 will

do as the first step.

In most practical cases, however, a greedy algorithm

(that selects the largest skip not overshooting the destina-

tion node) performs quite well and leads to near-optimal

and, under some conditions, to optimal paths. Examples

where simple greedy routing is optimal include the special

case where each skip distance sh�1 is a multiple of the next

lower skip distance sh, 0 � h � kÿ 1, which in turn covers

power-of-2 network size and skip distances that are most

likely to be used in practice.
The greedy routing algorithm can be easily described

from the viewpoint of an arbitrary intermediate node v,

initially the source u and eventually the destination w, and

executed in a distributed manner (see Algorithm 1 below).

When the node degree k is large, the routing algorithm

would become more efficient if the variable h is made part

of the packet header and decremented by nodes each time

the index offset wÿ v is smaller than the skip sh.

Algorithm 1: Greedy packet routing on a
node-symmetric chordal ring.

Node v � ig� j�j < g�, upon producing or receiving
a packet destined for node w, does the following
if w � v
then remove the packet; stop
else

find the unique h such that sh � wÿ v < sh�1;
send the packet to node v� sh

endif

The inequality nh�u;w� � dsh�1=she ÿ 1 is clearly satis-

fied when routing is done by Algorithm 1. Hence, the

routing distance dAlg1�u;w� from node u to node w satisfies:

dAlg1�u;w� � s1=s0 ÿ 1� ds2=s1e ÿ 1� . . .� dsk=skÿ1e ÿ 1

<
Xkÿ1

h�0

sh�1=sh

 !
ÿ 1 � E:

To minimize the worst-case bound for dAlg1�u;w�, the

right-hand-side expression E must be minimized. Equating

@E=@sh � 1=shÿ1 ÿ sh�1=sh
2

with 0, we obtain the optimal skips

sh
opt � Nh=k

and the optimal worst-case routing distance or routing

diameter

DAlg1
opt � kN1=k;

which is basically that of a k-dimensional mesh with

unidirectional and wrap-around links. Such meshes are

sometimes referred to as Manhattan street networks [7],

[20]. This is not surprising in view of the fact that an sk-node
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Fig. 1. Two types of previously proposed ring networks: (a) Simple 8-
node unidirectional ring, and (b) example of 8-node chordal ring with
chords, or forward skip links, of length 3 (skip distance = 3).

Fig. 2. Defining and exemplifying node-symmetric chordal rings. (a)
Input/output connections of node v in a degree-k chordal ring, and (b) 8-
node degree-3 chordal ring with skip distances s1 � 2 and s2 � 4.



chordal ring with skips s1; s2; . . . ; skÿ1 can be redrawn to

resemble an s1 � �s2=s1� � . . .� �sk=skÿ1� mesh.

Example 2. A 64-node symmetric chordal ring with skip

distance s1 � 8, when laid out on an 8� 8 grid with

nodes appearing in row-major order, yields a torus-like

structure with column wrap-around links to the same

column and row wrap-around links to the next row (the

ILLIAC IV topology [25]).

Example 3. The 8-node symmetric chordal ring of Fig. 2b

has been redrawn in Fig. 3b to show its relationship with

the 2� 2� 2 mesh/torus of Fig. 3a. Note that all eight

links along one of the dimensions, plus four links in each

of the other two dimensions, are identical in Figs. 3a and

3b. The remaining links in Fig. 3b have been redirected.

The case where each sh � 1 is divisible by sh,

0 � h � kÿ 1, merits special attention. In this case, greedy

routing does in fact lead to a shortest path. From the bound

previously derived for dAlg1�u;w�, we see that in this special

case, the diameter of the chordal ring network is upper

bounded by
Pkÿ1

h�0 sh�1=sh ÿ k. Theorem 1 shows that this

bound is tight.

Theorem 1. The diameter D of an N-node symmetric chordal

ring network with skip distances s1; s2; . . . ; skÿ1, such that

sh�1 is divisible by sh, 0 � h � kÿ 1, is exactly equal to the

bound
Pkÿ1

h�0 sh�1=sh ÿ k.

Proof. The bound for dAlg1�u;w� shows that, when each sh�1

is divisible by sh, any node can be reached in at mostPkÿ1
h�0 sh�1=sh ÿ k steps using the greedy routing algo-

rithm. Hence, D �Pkÿ1
h�0 sh�1=sh ÿ k. The proof is com-

plete upon noting that the distance from node 0 to node

N ÿ 1 is exactly
Pkÿ1

h�0 sh�1=sh ÿ k. tu

When N1=k is an integer and sh, 1 � h � kÿ 1, is

optimally chosen (as discussed earlier) to be Nh=k, the exact

diameter of the node-symmetric chordal ring becomes:

D � k�N1=k ÿ 1�

Example 4. With N � 125 and k � 3, the optimal skip

distances are {5, 25} and the chordal ring diameter is

easily verified to be D � 3�1251=3 ÿ 1� � 12.

Example 5. With N � 1; 024 and k � 5, the set of skip
distances is optimally chosen to be {4, 16, 64, 256},

leading to the network diameter

D � 5�1; 0241=5 ÿ 1� � 15:

3 PERIODICALLY REGULAR SKIPS

Node-symmetric chordal ring networks seem wasteful in

that long-distance, medium-distance, and short-distance
links are provided for every node. In a manner similar to

deriving the cube-connected cycles (CCC) architecture [28]
from the hypercube, one can distribute the various skips

among a sequence of nodes, each having at most one skip
link. The N nodes are thus split into N/g groups of g

consecutive nodes, where g divides N.

Definition 2. (periodically regular chordal ring) In a PRC

ring, the N nodes are divided into N/g groups of g nodes each,

where the group length, or period, g divides N, and there are g

skip distances s1 < s2 < . . . < sg. For notational convenience,

we define s0 � 1 and sg�1 � N . Each node v is connected to

node v� 1 via the basic unidirectional ring connection. The

node v � ig� j �j < g�, or the jth node in the ith group, is

also connected via a skip link with skip distance sgÿj to node

v� sgÿj. In order to assure that node in-degree/out-degree is

uniformly equal to 2, we require that all skip distances sh,

1 � h � g, be multiples of g so that each node is guaranteed to

be the destination of one, and only one, skip link. The detailed

structure of the ith g-node group in the resulting PRC ring is

depicted in Fig. 4. Fig. 5 shows an 8-node PRC ring with

g � 2, s1 � 2, and s2 � 4.
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Fig. 3. (a) Three-dimensional 2� 2� 2 mesh/torus, and (b) the chordal
ring network of Fig. 2b redrawn to expose its mesh-like structure.

Fig. 4. Nodes within the i th g-node group in a PRC ring and their
associated input and output skip links.

Fig. 5. PRC ring with N = 8, group length g = 2, and skip distances s1 � 2
and s2 � 4.



A PRC ring can be viewed as a subgraph of a node-

symmetric chordal ring. For example, Fig. 5 depicts an 8-

node PRC ring that can be derived by pruning some of the

links in the symmetric chordal ring network of Fig. 2b.
As in Section 2, let nh�u;w�, 0 � h � g, be the number of

skip links of type sh included in a shortest path of length

d�u;w� from node u to node w. Whereas in the case of node-

symmetric chordal rings d�u;w� depends only on wÿ u,

here it truly depends on both u and w. In other words, the

relative positions of source and destination nodes in their

respective groups also affect the length of the shortest path

between them.

Example 6. In the PRC ring of Fig. 5, the shortest path from

node 0 to node 2 is of length 2 but node 1 is directly

connected to node 3. In both cases wÿ u � 2.

Before deriving the diameter of such networks, it is

helpful to discuss a semigreedy routing algorithm that

performs quite well in cases where nodes u and w are not

very close to each other. The routing algorithm is based on

taking the skip links in the order sg; sgÿ1; . . . ; s2; s1. This is

similar to dimension-order routing in certain other networks.

Since node u in general does not have the first (longest)

required skip link, the packet is first routed to a node that

does. This is the only deviation from the ªgreedyº strategy.

Algorithm 2: Semigreedy routing on a PRC ring,
with skips used in descending order.

Node v � ig� j�j < g�, upon producing or receiving
a packet that is headed for the destination node w,
does the following
if w � v
then remove the packet; stop
else

if sgÿj � wÿ v < gÿ 1� sgÿj�1

then send the packet to node v� sgÿj
else send the packet to node v� 1

endif
endif

Note that Algorithm 2 is not a pure greedy algorithm in

that it does not choose among the two locally available links

the one that would take the packet closer to the destination.

The sgÿj � wÿ v part of the condition for the second ªifº

statement is the greedy part which eventually prevails.

Initially, however, the wÿ v < gÿ 1� sgÿj�1 part may force

routing of the packet to node v� 1 even when node v� sgÿj
is closer to the destination. In effect, the algorithm compares

the current skip sgÿj against the next longer skip sgÿj�1,

which is gÿ 1 steps downstream, to determine which one

would take the packet closer to its destination.
It is easy to see that Algorithm 2 frequently routes

packets via nonoptimal paths.

Example 7. Consider a PRC ring with group size g � 2 and

skips s1 � 10 (for odd-numbered nodes) and s2 � 16 (for

even-numbered nodes). To route from node u � 2i to

node w � 2i� 21, Algorithm 2 uses the path

2i ÿ!
16

2i� 16 ÿ!
1

2i� 17 ÿ!
1

2i� 18 ÿ!
1

2i� 19 ÿ!
1

2i� 20 ÿ!
1

2i� 21;

whereas the optimal (shortest) path is:

2i ÿ!
1

2i� 1 ÿ!
10

2i� 11 ÿ!
10

2i� 21:

The routing path may be nonoptimal even if each skip
distance sh�1 is a multiple of the next shorter one sh.

The worst-case number of routing steps required by
Algorithm 2 is

DAlg1 � 2gÿ 1�
Xg
h�0

xh;

where xh is the number of times that an sh-type skip is taken
to route the packet to the destination node w from the node
gdu=ge; viz the closest node to the source node u that has the
longest, or type-sg, skip link. The added term 2gÿ 1 results
from the worst case where gÿ 1 steps are needed to route
from node u to node gdu=ge, plus g steps to move from one
skip distance to the next lower one; viz, sg to sgÿ1; . . . ; s2 to
s1, s1 to s0.

As in the analysis of Algorithm 1, the inequality

xh � dsh�1=she ÿ 1

holds for all h; actually, here we can prove the slightly
improved bound

xh � d�sh�1 ÿ 1�=she ÿ 1

in view of the extra s0 step taken between successive skips
of different lengths (e.g., if we could not take the skip
sh�1 � 25, we should not be able to take four skips of length
sh � 6 after we have stepped forward on an s0 link), but we
will use the first bound for simplicity. For x0, we can derive
a tighter bound. The preceding argument suggests that:

x0 � s1=s0 ÿ 1 � s1 ÿ 1:

We observe that x0 � s1 ÿ 2, since if x0 � s1 ÿ 1, the s0

steps and the transition step from s1 just before the s0 steps
could be combined into a single s1 step. That is, the
sequence of forwarding steps

s1 s1 . . . s1 s0 s0 s0 . . . s0

ÿÿÿÿÿÿ ÿÿÿÿÿÿÿ
x1 steps x0 � s1 ÿ 1 steps

can be replaced with x1 � 1 steps of s1. Using the tighter
bound for x0 given above, the worst case routing distance of
Algorithm 2 is upper-bounded by

DAlg2 �s1=s0 � ds2=s1e � . . .� dsg�1=sge � gÿ 3

< 2gÿ 3�
Xg
h�0

sh�1=sh;

where the inequality is obtained by observing that each of
the g terms dsh�1=she is strictly less than sh�1=sh � 1.

It is worth noting that the condition used in Algorithm 2
to decide between taking the skip or the local outgoing link
essentially involves comparing the destination node index
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w against the two constants v� sgÿj and v� gÿ 1� sgÿj�1

to see if it falls between them. Thus, Algorithm 2 belongs to

the class of interval routing algorithms [31]. In the

terminology of interval routing, and recalling the modulo-

N convention, the interval

�v� sgÿj; v� gÿ 1� sgÿj�1�
is associated with the skip link and

�v� gÿ 1� sgÿj�1; v� sgÿj�
with the local link. Algorithm 1 can also be viewed as

associating an interval with each outgoing link of a node-

symmetric chordal ring.
Interval routing actually allows us to associate multiple

intervals with each link. In our case, this would essentially

be akin to each node having knowledge of all skip

distances, rather than only its own and the next longer

one. Armed with this knowledge, the node v � ig� j �j <
g� can decide if its skip distance sgÿj will ever be used en

route from v to the destination node w. If so, then node v

forwards the packet to node v� sgÿj right away.
To avoid extensive computations in each node, the list L,

where Lk, 0 � k � gÿ 1, denotes the number of times a skip

of type sgÿk will be taken en route from u to w can be

computed by the source node u and attached as a header to

the packet. Then, Algorithm 3 shows the action of an

intermediate node v in routing the packet.

Algorithm 3: Semigreedy routing on a PRC ring,
with skips used in availability order.

Node v � ig� j�j < g�, upon producing or receiving
a packet with destination node w and header list L,
does the following
if w � v
then remove the packet; stop
else

if Lj > 0

then Lj :� Lj ÿ 1; send the packet to node v� sgÿj
else send the packet to node v� 1

endif
endif

Algorithm 3 allows us to reduce the routing path lengths

at the expense of some initial computation at the source

node and a modest storage overhead in the packet header.

This overhead might be worthwhile since, in addition to the

message route becoming shorter, message traffic will be

distributed more evenly; e.g., nodes whose numbers are

0 mod g will not be forced to handle most message traffic

from the immediately preceding group.
Since Algorithm 3 does not need the worst-case gÿ 1

initial steps of Algorithm 2, we have:

DAlg3 �s1=s0 � ds2=s1e � . . .� dsg�1=sge ÿ 2

< gÿ 2�
Xg
h�0

sh�1=sh:

This allows us to determine the exact diameter for an

important subclass of PRC rings.

Theorem 2. The diameter D of an N-node PRC ring with group

size g � 2 and skip distances s1; s2; :::; sg, such that each sh�1

is divisible by sh, 1 � h � g, is exactly equal toPg
h�0 sh�1=sh ÿ 3.

Proof. The bound for DAlg3 given above clearly shows that,

when each sh�1 is divisible by sh, any node can be

reached in no more than
Pg

h�0 sh�1=sh ÿ 2 steps. Hence;

D �
Xg
h�0

sh�1=sh ÿ 2:

However, for g � 2, a special situation arises for skips
s1 and s0. Consider the final part of the route starting
with the transition from s2-type steps to s1-type steps:

s0 s1 s1 . . . s1 s0 s0 s0 . . . s0

ÿÿÿÿÿ ÿÿÿÿÿ
x1 steps x0 steps

:

If x1 � s2=s1 ÿ 1 and x0 � s1 ÿ 2, as discussed in our
earlier worst-case analysis, the steps shown above add
up to:

1� s1�s2=s1 ÿ 1� � 1� 1�s1 ÿ 2� � s2:

Thus, the worst-case values for x1 and x0 cannot occur
simultaneously and we can write:

D �
Xg
h�0

sh�1=sh ÿ 3:

The proof is complete upon noting that the distance
from node 0 to node N ÿ s1 � gÿ 2 is exactlyPg

h�0 sh�1=sh ÿ 3. tu

For g � 1 (i.e., in the case of degree-2 symmetric chordal

rings), the diameter is 1 more than the expression given in

Theorem 2 (i.e., D � N=s1 � s1 ÿ 2).

Example 8. Consider a 1,024-node PRC ring with group size

g � 4 and skip set {4, 16, 64, 256}. The diameter of this

network is D � 17. The shortest path from node 0 to

node 1,022 is of length 17 as shown below:

0 ÿ!
256

256 ÿ!
256

512 ÿ!
256

768 ÿ!
1

769 ÿ!
64

833 ÿ!
64

897 ÿ!
64

961 ÿ!
1

962 ÿ!
16

978 ÿ!
16

994 ÿ!
16

1010 ÿ!
1

1011 ÿ!
4

1015 ÿ!
4

1019 ÿ!
1

1020 ÿ!
1

1021 ÿ!
1

1022

Note that due to lack of node symmetry, not every
node in every PRC ring has a diametrically opposite
node.

We have not been able to find a closed-form expression

for the diameter of PRC rings in general. However, the

special case covered by Theorem 2 is not as limited as it

might appear. For example, it covers all practically

significant cases where the number of nodes and skip

distances are powers of 2. Whereas, from the point of view

of hardware realization and minimization of diameter,

skips such as 20 and 6 might be acceptable for a PRC ring,

662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999



ease of algorithm development will likely make it desirable

to ªroundº the preceding skips to, say, 16 and 4.
A corollary of Theorem 2 is that if the skip ratio sh�1=sh is

the same for 0 � h � g and there are a logarithmic number

of skips, i.e., g � O�log N�, then the PRC ring will have

logarithmic diameter. This is further clarified in the next

section.

4 OPTIMAL PERIOD AND SKIPS

The diameter D �Pg
h�0 sh�1=sh ÿ 3 of a PRC ring given by

Theorem 2 is minimized for

@D=@sh � 1=shÿ1 ÿ sh�1=sh
2 � 0:

This leads to the optimal skips

sh
opt�g� � Nh=�g�1�

for any given group size g. Since, in general, N1=�g�1� is not

an integer, the rest of this analysis is approximate and is

only meant to provide insight into how logarithmic

diameter can be attained. Substituting sh�1=sh � N1=�g�1�

into the expression for D leads us to:

Dopt�g� � �g� 1�N1=�g�1� ÿ 3:

We next equate

@Dopt�g�=@g � N1=�g�1��1ÿ �ln N�=�g� 1��
with 0 to find:

goptD � ln N ÿ 1:

Finally, substituting goptD in the expression for Dopt�g�, we
get:

Dopt � e ln N ÿ 3:

The preceding was an approximate analysis beginning
with the assumption that each skip distance sh�1 is divisible
by the next lower skip sh. Given the number N of nodes and
the group length g, the optimal skip distances sh

opt yielding
minimal diameter for the PRC ring do not in general satisfy
the preceding property. This is also true for node-sym-
metric chordal rings for which the determination of
minimal diameter, along with the corresponding skip
distances, remains an open problem [5].

The results of an exhaustive search through all possible
group sizes and skip distances (Table 1) indicate that both
the diameter and average distance can be minimized by
choosing a particular group length whose value depends on
N. Furthermore, we see from Table 1 that the diameter and
average distance do not change significantly when the
group length g is varied around the optimal value. Some of
the skip distances in Table 1 are quite counterintuitive and
show the limitations of the preceding approximate analysis.
For example, the optimal skip distances s1 � 252 and s2 �
458 with N � 1; 024 and g � 2 are nowhere close to
1; 0241=3 � 10 and 1; 0242=3 � 102.

Fig. 6 shows the effect of choosing various skip distances
s1 and s2 on the PRC ring diameter when N � 64 and g � 2.
Node-symmetric chordal rings are represented by the
horizontally placed diagonal (s1 � s2), while the left half
of the same diagonal �s1 � s2 < 0� represents the class of
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TABLE 1
Minimum Diameter Dopt and the Associated Average Internode Distance �optD for PRC Rings

with Different Power-of-2 Sizes N and Group Lengths g



forward-loop backward-hop networks [13], [29]. Our selec-
tion of skip distances satisfying s1 < s2, with both skips
nonzero, falls below the diagonal, where the diameter does
not vary significantly. Hence, other criteria, such as
weighted average internode distance for commonly used
communication patterns and effects of scaling to expand the
network size, may be more important in selecting the best
values for the group length and skip distances.

Let us continue by selecting the network size and skip
distances to be powers of 2 and consider running
semigroup (also known as global reduction, fan-in, or tree)
computations on such PRC rings. A semigroup computa-
tion on N � 2n data items is defined as the application of an
associative binary operator

N
to all the data items; viz

computing the expression x0

N
x1

N
. . .
N
xNÿ1. In what

follows, we assume that the binary operator
N

is also
commutative, so the data items and intermediate results can
be paired or combined in any order. This will make our
algorithm more efficient (as explained later in Example 9)
and is not a significant restriction in practice. Addition, OR,

AND, maximum, minimum, and many other binary

operators of practical interest are in fact commutative.

Algorithm 4: Semigroup computation, for a commutative

operator, on a PRC ring with N � 2n nodes and power-of-2

group length and skip distances.
Conceptually, operations are performed in n iterations

or rounds where, at the start of iteration i; 0 � i � nÿ 1,
there are 2nÿi data items left to be combined. Thus, we
begin with 2n data items, distributed one per node, in
iteration 0 and terminate by combining 2 data items in
iteration nÿ 1.

To implement iterations 0 through log2 gÿ 1 that
reduce the number of data items by a factor of g, we let
each group shift gÿ 1 data items to the first node of the
next group which combines them with its own data into a
single value. At this point, we have 2n=g data items all of
which are stored at nodes having skip links of length sg.

The sg skip links are then used to send the data items
forward by successive distances 2nÿ1; 2nÿ2; . . . ; sg, where
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Fig. 6. Variations in the diameter of a 64-node PRC ring with group length g � 2 and various choices of skip distances s1 and s2. Negative, or
backward, skips are equivalent to forward skips with distances greater than N=2.



upon arrival at each destination, they are combined with
the existing values. These nÿ log2 sg iterations, which
successively compress the data into the last
1=2; 1=4; :::; 1=�2n=sg� of the ring, require

�2nÿ1 � 2nÿ2 � . . .� sg�=sg � 2n=sg ÿ 1

routing steps.
Finally, we need a scheme to combine the remaining

sg=g data items into a single value. Since skips of length
sg can no longer be used, we shift the remaining data
items forward by one node to allow the use of the next
shorter skip distance sgÿ1. The process continues until
the iteration variable i reaches nÿ log2 s1 � log2 g, at
which point the data items reside at the last nodes of s1=g
consecutive groups. The computation can then be
completed via s1 ÿ g routing steps using the skips s0 �
1 to shift all remaining values to the last of these s1=g
nodes.

Based on the analysis presented within Algorithm 4, the

total number of routing steps needed for performing the

semigroup computation is

Tsemigroup � gÿ 1� ��sg�1=sg ÿ 1� � 1� � . . .
� ��s3=s2 ÿ 1� � 1� � �s2=s1 ÿ 1� � s1 ÿ g

�
Xg
h�0

sh�1=sh ÿ 2;

which is one step more than the diameter of a PRC ring, as

given by Theorem 2.

Example 9. Fig. 7 shows the semigroup computation

performed according to the preceding algorithm on the

8-node PRC ring of Fig. 5. The algorithm executes in

three conceptual iterations or rounds, requiring 1, 1, and

2 routing steps, respectively. The interleaving of values

and branches of the reduction tree shown in Fig. 7 is the

reason why our semigroup computation algorithm needs

commutativity in addition to the standard associativity

requirement for the semigroup binary operator.

Theorem 3. The minimum diameter of a 2n-node PRC ring with

group length g and power-of-2 skip distances s1; s2; . . . ; sg, is

2n� gÿ 2 log2 gÿ 3, where g� log2 g � n � 2g� log2 g.

Proof. Given the group length g, there are nÿ log2 g

permissible powers of 2 from which the g skip

distances sh, 1 � h � g, can be selected. These are

2nÿ1; 2nÿ2; . . . ; 2log2g � g. Thus, we need to have:

nÿ log2 g � g:
It is then easy to see that the group length g satisfies:

g� log2 g � nÿ " where 0 � " � g:
Let 2mh � sh�1=sh, 0 � h � g, be the hth skip ratio.

Recall that sg�1 � 2n and s0 � 1. We then have:

m0 � log2 g�� where � � 0Xg
h�0

mh � n

D �
Xg
h�0

2mh ÿ 3 �by Theorem 2�:

Since m0 � nÿ g � log2 g� ", we have 0 � � � ".
Select the remaining mh values, 1 � h � g, such that
mh � 2 in "ÿ � cases and mh � 1 in the remaining gÿ
"� � cases. It is easily verified that:

n �
Xg
h�0

mh � g� log2 g� "

D �
Xg
h�0

2mh ÿ 3 � �2�gÿ 2�� � 2g� 2"ÿ 3:

The diameter is minimized for � � 0, leading to:

D � 3g� 2"ÿ 3 � 2n� gÿ 2log2 gÿ 3:

The proof is complete upon showing that reduction of
the group length to g/2 does not improve the diameter
relative to the above. As shown earlier, a 2nÿg=2ÿ1-node
PRC ring with group length g/2 has the minimized
diameter:

2�nÿ g=2ÿ 1� � g=2ÿ 2�log2 gÿ 1� ÿ 3:

The factor of 2g=2�1 increase in the number of nodes
leads to all g=2� 1 skip ratios 2mh being multiplied by 2
(the mh values being incremented by 1). The diameter
then becomes

D0 � 2�2�nÿ g=2ÿ 1� � g=2ÿ 2�log2 gÿ 1�� ÿ 3
� 4nÿ gÿ 4log2 gÿ 3 � D� 2";

which is no less than that obtained for group length g.tu

Table 2 illustrates the result of Theorem 3 by listing the

minimum diameters of 2n-node PRC rings, for n in the

range 3 � n � 14, together with the worst-case routing

distance of Algorithm 2. The set of skip distances thus

obtained is not unique, as elements of the skip-ratio power

set fmhj0 � h � gg, given in the rightmost column of

Table 2, can be permuted as long as m0 > log2g.
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Fig. 7. Semigroup computation performed on 8-node PRC ring with
group length g � 2 and skip distances s1 � 2, s2 � 4. Arrows are labeled
with skip distances.



Example 10. For n � 5 and g � 2, the skip sets {2, 8}, {4, 8},
and {4, 16}, corresponding to the skip-ratio power sets
{1, 2, 2}, {2, 1, 2}, and {2, 2, 1}, respectively, all lead to
the same diameter D � 7. We will exploit this flexibility
in choosing the optimal skip distances to obtain efficient
VLSI layouts for PRC rings.

The proof of Theorem 3 implies that when n � g� log2 g,
the group lengths g and g/2 are equally good as they both
lead to the diameter

D � 3gÿ 3:

Since the diameter is the same in both cases, the smaller
group length g/2 should be selected in view of the fact that
it reduces the worst-case routing distance of Algorithm 2
which, as shown in Section 3, equals the diameter plus the
group length.

It is instructive to compare the diameter 3gÿ 3, derived
above, with the diameter 2:5gÿ 2 of a CCC network of the
same size [21]. The slightly larger diameter of the PRC ring
is due to the unidirectional links and lower node degree
(CCC has node in/out-degree of 3). The PRC ring diameter
can be reduced to 2g by using bidirectional ring connec-
tions, while still maintaining the unidirectional skip links
(node in/out-degree becomes 3).

5 VLSI LAYOUT AND SCALABILITY

In this section, we present a VLSI layout scheme for PRC
rings using the standard grid model in which nodes are
placed at grid points and are connected by links that are
routed through evenly spaced horizontal and vertical grid
lines on two separate wiring planes. The layout area is
obtained as the product of the numbers of horizontal and
vertical grid lines which contain a node or link segment of
the network.

The complexity of a realizable network is limited by its
wire density. The bisection width of a network, defined as
the minimum number of links that must be cut in order to
divide it into two equal halves, is a good predictor of wire
density.

Theorem 4. The bisection width B of a PRC ring with group
length g and skip distances s1; s2; . . . ; sg is at most
2� 2

Pg
h�1 sh=g.

Proof. Consider a cut as in the example depicted in Fig. 8
and focus on the top part of the PRC ring. There are at
most sh=g links of type sh from one side of the cut to the
other side. Summing the resulting terms, adding 1 for the
s0 link, and doubling to account for the opposite side of
the ring lead to the claimed upper bound for B. tu

Corollary. With group length g and power-of-2 skip distances
s1; s2; . . . ; sg, the bisection width B of the PRC ring cannot
exceed 4sg=g.

Proof. From sg � 2sgÿ1 � . . . � 2gÿ1s1, we conclude that
sh � sg=2gÿh. Substituting this upper bound for sh in the
upper bound for B given by Theorem 4, we get:

B � 2� 2�2ÿ 1=2gÿ1�sg=g:
The preceding inequality, combined with sg=g � 2gÿ1,
yields B � 4sg=g. tu

Example 11. Fig. 8 depicts a PRC ring with N � 2n � 16,
g � 2, and the skip set {2, 4}. By Theorem 4, the bisection
width of this network is no larger than 2� 2�2� 1� � 8
corresponding to the number of links cut by the double
dotted line. The corollary to Theorem 4 also yields the
same bound 4� 4=2 � 8.

To lay out a PRC ring, we arrange the nodes in a snake-
like fashion, with nodes in each group aligned vertically
and nodes in each subring connected by sh skip links
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TABLE 2
Minimum Diameter Dopt and Worst-Case Routing Distance DAlg2 for PRC Rings with Optimal Group Length g,

Along with the Skip-Ratio Power Set fmhj0 � h � gg to Achieve Dopt, Where sh�1=sh � 2mh



aligned in one row. Thus, the N nodes are placed in N=g

columns and 2
Pg

h�1 sh=g rows. The vertical grid lines are

assigned to the basic ring connections and the horizontal

grid lines are used for skip links. The long wrap-around

connections can be avoided, and the wires in each subring

balanced, by applying the standard technique of folding

[17], which is applicable in both the vertical and horizontal

directions. Fig. 9 shows the above procedure applied to the

layout of the 8-node PRC ring of Fig. 5.
Based on the preceding layout scheme, we show that the

required layout area can be made to be a linear function of

N and that the maximum wire length depends on the group

length g and the largest skip distance sg.

Theorem 5. An N-node PRC ring with group length g and skip

distances s1; s2; . . . ; sg can be laid out in O�Nsg=g2� area with

the longest wire being of length O�sg=g�.
Proof. The preceding layout scheme places the nodes in

N=g columns and 2
Pg

h�1 sh=g rows. The layout area for

the PRC ring is thus:

A � �N=g� 2��4� 2
Xg
h�1

sh=g�:

Using the result of the corollary to Theorem 4, we find:

A � �N=g� 2��4sg=g� 2� � O�Nsg=g2�:
The longest wire for our layout is in the smallest

subring, where N=sg nodes are connected by wires of
total length 2�N=g� 2�. The length of the longest wire is
thus O�sg=g�. tu

One can construct a large PRC ring by concatenating
smaller ones with the same group length and skips.

Example 12. The layout of the 16-node PRC ring of Fig. 8 is
depicted in Fig. 10, which consists of two copies of Fig. 9,
placed side by side and merged.

Note that the construction demonstrated in Example 12
(Fig. 10) can be repeated three, four, five, or more times,
each time increasing the layout area by the same amount. A
consequence of this observation is that PRC rings are
readily scalable, with the network size growing gradually
and capable of assuming values that are not powers of 2.
The price paid for this modularity and scalability properties
is that the network diameter will in general not be optimal
for its size.

Whereas an optimized network with small diameter and
large bisection width is desirable, its cost/performance ratio
suffers from dramatically increased area and wire length
[6], [32]. For optimal PRC rings, this leads to the layout area
O�N2=log2N� and the length of the longest wire O�N=logN�,
which are of the same orders of magnitude as the respective
requirements of CCC networks [28]. As we fix the period
and the skips, the diameter will grow, while the layout area
decreases and the longest wire length remains constant. The
exact result depends on how the parameters are selected to
strike a balance between cost and performance.

Example 13. Table 3 lists several parameters of 2n-node PRC
rings for 6 � n � 14 when the group length and skip set
are fixed at g � 4 and {4, 16, 64, 256}, respectively. The
actual diameter D and average internode distance � for
the resulting PRC rings are compared against the optimal
diameter Dopt and worst-case and average-case routing
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Fig. 8. PRC ring with N � 16, g � 2, s1 � 2, s2 � 4.



distances when routing is done by Algorithm 2 (DAlg2 and
�Alg2). The D and � parameters for 2D torus, 2D mesh,
and hypercube of the same sizes are also included for
comparison. The group length g � 4 and skip set {4, 16, 64,
256} have been chosen to allow expandability within a
limited range while keeping the diameter close to the
minimum possible. We note that with this strategy, both
the diameter and average internode distance seem to fall
between those of 2D torus networks and optimal PRC
rings. Table 3 also indicates that Algorithm 2 performs
quite well and is very close to optimal in terms of both the
worst-case and average routing distance.

The performance of a parallel architecture depends not
only on the internal network structure but also on its input/
output bandwidth. Referring to Fig. 10, we note that I/O
ports can be conveniently inserted on the ring, at the
boundaries between adjacent groups, through the provision
of two-way multiplexers at the upper and lower parts of the

diagram. The resulting O�N=g� external bandwidth is
adequate to make the I/O time comparable to, or lower
than, the running time of any algorithm. A similar scheme
has been suggested for the CCC network [28].

6 FAULT-TOLERANT ROUTING

Like symmetric chordal rings which can be viewed as fault-
tolerant loops, PRC rings can tolerate certain node and link
failures without jeopardizing the connectivity of the
remaining fault-free nodes. Link failures are tolerable due
to the existence of multiple paths from a source to a
destination. Node failures are tolerable due to the bypassing
capability resulting from the presence of skip links; albeit,
some healthy nodes may have to be bypassed along with
the faulty ones, thus reducing the size of the surviving ring.
We say that a set of node and link faults is tolerable if a
working ring, that is not too small, can be salvaged from the
faulty PRC ring. In this section, we present some results that
bear on the extent of fault tolerance offered by PRC rings.

Consider an interval �v� 1; v� f � of faulty or otherwise
unusable nodes, preceded and followed by the healthy
nodes v and v� f � 1. To maintain the ring connectivity by
bypassing these f nodes, there must exist a skip link from
node u to node w such that u � v and w � v� f � 1. Since
the longest skip distance is sg, the number of tolerable
consecutive node faults is sg ÿ g in the worst case (if the first
fault is in node v � ig, then gÿ 1 healthy nodes preceding it
must also be bypassed if an sg skip is to be used). Hence,
sg ÿ g is an upper bound on the number of faults that can be
tolerated.

Example 14. The PRC ring of Fig. 8 can tolerate up to two
consecutive node failures, since sg ÿ g � 4ÿ 2 � 2. Such
faulty pairs reduce the ring size by sg ÿ 1 � 4ÿ 1 � 3
nodes. Any sequence of three faulty nodes that begins at
an even-numbered node is intolerable.

Random patterns of faults will in general require
multiple intervals of nodes to be bypassed in order to
establish the ring connectivity.
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Fig. 9. VLSI layouts for 8-node PRC ring with g � 2, s1 � 2, and s2 � 4. Link directions are not shown.

Fig. 10. VLSI layout of a folded 16-node PRC ring with g � 2, s1 � 2, and
s2 � 4.



Theorem 6. A PRC ring with group length g and skip distances
s1; s2; . . . ; sg is guaranteed to maintain the ring connectivity
for a (possibly small) subset of its nodes under f random faults
only if the number of faults is strictly less than

Pg
h�1 sh=g.

Proof. Since sg � N=2, a surviving ring must contain nodes
at both sides of any bisection and should thus have two
links crossing any bisection, one in each direction. From
the proof of Theorem 4, we know that there exist
bisections that cut 1�Pg

h�1 sh=g links in each direc-
tion. Thus, given that two of these links emanate from
the same node, in the worst case, we cannot lose more
than

Pg
h�1 sh=gÿ 1 nodes and still maintain the ring

connectivity. Note that a skip link can become unusable
by the failure of its source or destination node. tu

Example 15. The 8-node PRC ring of Fig. 5 can recover from
any 4=2� 2=2ÿ 1 � 2 node failures. With three node
failures, however, the existence of an embedded ring,
even a very small one, cannot be guaranteed. If, for
instance, nodes 0, 1, and 2 fail, the ring connectivity is
lost.

Careful examination of Example 15 reveals that node 3
cannot receive, and node 7 cannot send, a message without
using nodes 0-2. These nodes will thus become dangling
once nodes 0-2 are removed. Removal of these unusable
nodes [35] creates other unusable nodes, until all healthy
nodes for this example become unusable. Since every usable
node has at least one forward and one backward neighbor,
an embedded ring can be constructed beginning with any
usable node u. In each step, the ring is extended by using
the ring link if possible and the skip link if not. This strategy
ensures that we obtain the largest possible embedded ring.
The size of such a surviving ring can be determined by
placing an upper bound on the number of nodes that may
become unusable in the worst case.

Theorem 7. An N-node PRC ring with group length g and
power-of-2 skip distances s1; s2; . . . ; sg can maintain the ring
connectivity for at least Ng=�2sg ÿ 2g� nodes in the presence
of any tolerable fault pattern.

Proof. Using a skip link to connect a node v to its successor
in the embedded ring implies that v has no usable ring

neighbor. For each such skip link used, at mostPg
h�1 sh=gÿ 2 nodes can be removed. Denoting the

number of nodes in the embedded ring by l, and the

number of sh-type links included in it by xh, we have:

l �
Xg
h�0

xh � N ÿ
Xg
h�1

sh=gÿ 2

 !Xg
h�0

xh:

The above leads to

l � N=
Xg
h�1

sh=gÿ 1

 !
� Ng=�2sg ÿ 2g�;

where, in the last step of the derivation, we have

made use of the corollary to Theorem 4; viz,

2� 2
Pg

h�1 sh=g � 4sg=g. tu
The bound given by Theorem 7 is quite pessimistic and

in most cases we can embed larger rings into a faulty PRC

ring. However, this is the best result we have been able to

derive for arbitrary worst-case fault patterns.

Example 16. The 8-node PRC ring of Fig. 5 can embed a ring

with at least Ng=�2sg ÿ 2g� � 8� 2=�8ÿ 4� � 4 nodes in

the presence of two faulty nodes. One can easily verify

that when nodes 0 and 3 are faulty, making nodes 4 and

5 unusable, the remaining nodes 1, 2, 6, and 7 can form a

4-node ring.

Algorithm 2 can be used for routing on faulty PRC rings

after a slight modification. Suppose each node has a status

bit for the availability of its outgoing skip link. Then, the

availability of sgÿj is added to the condition for sending the

packet to node v� sgÿj. This automatically forces the packet

to move forward to the next node that has an sgÿj skip or to

use a number of sgÿjÿ1 hops instead. The simplicity of fault-

tolerant routing by a modified version of Algorithm 2 is a

direct result of its distributed decision-making structure.

Algorithm 3 does not have a correspondingly simple and

efficient fault-tolerant version.
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7 WORMHOLE ROUTING

With wormhole routing, the message routing path is
established by advancing the head of a packet, sending
the rest of the packet in a pipelined fashion, and releasing
the links after the tail of the packet has passed through [22].
A packet is decomposed into flow control digits, or flits,
that are spread out over contiguous links on the routing
path and prevent other packets from using those links.
When the header flit is blocked, all of the flits of the packet
stop advancing. In such a case, the packets involved must
wait for the required links to be released and deadlock may
occur.

The blockages are due to the fact that the routing paths of
multiple packets may overlap. One way to deal with this
problem is to share the physical links through multiplexing
at different time slots to separate the routing paths
temporally; this leads to the use of multiple logical links
(virtual channels), each with its own flit buffer, for each
physical link. Such a scheme is viable provided that the
bandwidth of a physical link can support the average data
rate needed by these logical links. For efficient utilization,
the number of logical links sharing the same physical link
should be minimized.

Consider wormhole routing on a simple ring. Ring
networks are prone to deadlocks in view of possible circular
waiting among links. The dependency graph of a simple
ring, i.e., a graph whose nodes represent the edges (v; v� 1)
of the original ring and whose edges go from node (v; v� 1)
to node (v� 1; v� 2) to indicate that the latter edge can be
used after the former one by the routing algorithm, is also a
ring. Since lack of a cycle in the dependency graph is
sufficient for deadlock-free routing [9], [11], using two

logical channels per link can solve the deadlock problem. A
packet is routed on the ªlowº logical channels until it needs
to go from a node v to a node with a smaller number, at
which time it switches to the ªhighº logical channels and
stays there until it gets to the destination. Since the
transition from a node v to a node with a smaller number
can occur at most once, no circular waiting is possible.

Deadlock-free wormhole routing on PRC rings essen-
tially follows the same strategy, using two logical channels
per links. This low complexity is one of the main
advantages of PRC rings relative to competing networks
and is due to the underlying ring structure. Each link
C�u; v�, from node u to node v, in the PRC ring is split into a
low logical link C0�u; v� and a high logical link C1�u; v�. By
following the strategy outlined above for simple rings, i.e.,
by starting with the low logical channels and moving to the
high channels upon transition to a successor node with a
smaller number than the previous node, the dependency
graph is transformed into a cycle-free graph that guarantees
deadlock freedom.

Example 17. The dependency graph for the PRC ring of
Fig. 5, when route selection is done according to
Algorithm 2, is shown at the top of Fig. 11. Note that
even though it is possible to use the link C(2, 3) after
C(1, 2), Algorithm 2 never uses this combination; thus,
there is no arrow from node (1, 2) to node (2, 3) in the
dependency graph. Use of low and high logical
channels, as outlined above, transforms the dependency
graph into a cycle-free version also depicted in Fig. 11.

Algorithm 5 is the deadlock-free wormhole routing
counterpart to Algorithm 2. A header flit received over
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Fig. 11. Dependency graph for an 8-node PRC ring with g � 2, s1 � 2, and s2 � 4 (top) along with its cycle-free version with two logical channels
(bottom).



the logical channel p (p � 0 for low, p � 1 for high), is sent
out over the logical channel p if the next node (v� sgÿj or
v� 1, depending on the destination) has a larger number
and over the logical channel 1 otherwise. Thus, the output
logical channel is determined by ORing p with the result of
comparing v with v� sgÿj or v� 1.

Algorithm 5: Deadlock-free wormhole routing on a
PRC ring, with skips used in descending order.

Node v � ig� j�j < g�, upon producing or receiving
a header flit from the logical link Cp�u; v� for a packet that is
headed for the destination node w, does the following
if w � v
then remove the header and successive flits; stop
else

if sgÿj � wÿ v < gÿ 1� sgÿj�1

then q :� p _ �v > v� sgÿj�; route along Cq�v; v� sgÿj�
else q :� p _ �v > v� 1�; route along Cq�v; v� 1�
endif

endif

We have limited our discussion of packet and wormhole
routing on PRC rings to point-to-point or unicast commu-
nication. Multicasting, including its special case of broad-
casting, is easily handled with packet switching. Wormhole-
routed multicasting algorithms for PRC rings can also be
developed with moderate effort using a variety of schemes
for representing the destination node set and for perform-
ing the message distribution (tree-based or path-based
algorithms). Details are omitted here for brevity [27].

8 CONCLUSION

We have introduced periodically regular chordal (PRC)
rings as an attractive alternative for realizing scalable
parallel architectures. These networks combine the benefits
of low node degree, small diameter, and a very simple
routing framework. Our discussion centered on basic
network structure, topological properties, routing algo-
rithms, optimization of parameters, and comparison to
meshes, tori, and cube-connected cycles.

We showed that PRC rings have regular and modular
VLSI layouts. They also provide smaller diameter and
average distance than similar-sized 2D meshes, 2D tori, and
CCC networks, support simpler routing algorithms, and are
more easily adapted to fault tolerance in routing and
parallel computations. The latter property is due to the fact
that the basic greedy routing algorithm continues to work
as long as link and node faults are detectable, whereas there
is no correspondingly simple fault-tolerant routing scheme
for the other networks listed above.

In our discussions thus far, we have assumed that each
node has exactly one skip link. This assumption can be
relaxed, leading to both richer and sparser interconnections
without unduly complicating the routing algorithm. For
example in Figs. 9 and 10, removing the skip links correspond-
ing to s2 � 4 will cause significant vertical compression of the
layout, leading to lower cost and correspondingly larger
diameter and lower performance. This flexibility offers a
mechanism for cost/performance trade-offs [24] similar to
what can be accomplished for CCC networks [28].

The preceding, and other extensions to the basic archi-

tecture, form fruitful areas for further research. Work is also

required on the development of parallel algorithms. With

suitable parametrization, a single algorithm can run on a

large class of PRC rings, spanning a wide range in terms of

cost and performance. This software portability among

systems of varying capabilities is of utmost importance.
For ease of reference, we conclude by listing key open

problems, some of which were alluded to earlier in the

paper:

. Evaluating the performance of PRC rings in realistic
application contexts; in particular, quantifying the
difference between Algorithms 2 and 3.

. Deriving general closed-form expressions for the
diameter and average inter-node distance of node-
symmetric chordal rings and PRC rings.

. Determining the implications of changing the con-
straints s1 < s2 < . . . < sg on the skip set to
s1 � s2 � . . . � sg, possibly also mixing real and null
skips.

. Studying PRC rings with bidirectional links and/or
multiple skips per node.

. Obtaining tighter bounds for the capacity of PRC
rings to tolerate faults and looking at the related
issues of fault detection and diagnosis.

We are currently studying these problems and will

report some results in the near future.
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