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COMBINATIONAL CIRCUITS

Combinational (combinatorial) circuits realize Boolean func-
tions and deal with digitized signals, usually denoted by 0s
and 1s. The behavior of a combinational circuit is memory-
less; that is, given a stimulus to the input of a combinational
circuit, a response appears at the output after some propaga-
tion delay, but the response is not stored or fed back. Simply
put, the output depends solely on its most recent input and is
independent of the circuit’s past history.

Design of a combinational circuit begins with a behavioral
specification and selection of the implementation technique.
These are then followed by simplification, hardware synthe-
sis, and verification.

Combinational circuits can be specified via Boolean logic
expressions, structural descriptions, or truth tables. Various
implementation techniques, using fixed and programmable
components, are outlined in the rest of this article. Combina-
tional circuits implemented with fixed logic tend to be more
expensive in terms of design effort and hardware cost, but
they are often both faster and denser and consume less
power. They are thus suitable for high-speed circuits and/or
high-volume production. Implementations that use memory
devices or programmable logic circuits, on the other hand, are
quite economical for low-volume production and rapid proto-
typing, but may not yield the best performance, density, or
power consumption.

Simplification is the process of choosing the least costly im-
plementation from among feasible and equivalent implemen-
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tations with the targeted technology. For small combinational implementation of combinational circuits using gate networks
and multiplexers. These are fixed (as opposed to programma-circuits, it might be feasible to do manual simplification based

on manipulating or rewriting logic expressions in one of sev- ble) logic devices in the sense that they are used by suitably
interconnecting their input/output terminals, with no modifi-eral equivalent forms. In most practical cases, however, auto-

matic hardware synthesis tools are employed that have cation to the internal structures of the building blocks.
simplification capabilities built in. Such programmed simpli-
fications are performed using a mix of algorithmic and heuris- Using Gate Networks
tic transformations. Verification refers to the process of ascer-

Let us begin with the Boolean function D defined as
taining, to the extent possible, that the implemented circuit
does in fact behave as originally envisaged or specified. D = AB + BC

A half adder is a simple example of a combinational circuit.
The addend, augend, carry, and sum are all single binary dig- where A, B, and C are input variables whose values can be
its or bits. If we denote the addend as A and the augend as either 0 or 1. Direct implementation based on the preceding
B, the Boolean function of carry-out Co and sum S can be writ- expression would require three chips: one that contains in-
ten as verters (such as 7404), one that contains two-input AND

gates (such as 7408), and one that contains two-input OR
gates (such as 7432). Rewriting the logic expression for D as

Co = AB

S = A ⊕ B = AB + AB
D = B(A + C )

The carry-out and sum functions can also be specified in the
reduces the number of gates from 4 to 3, but does not affectform of a truth table with eight rows (corresponding to the
the component or chip count discussed in the preceding.eight possible combinations of values for the three Boolean

By applying DeMorgan’s theorem, we can derive an equiv-inputs) and two columns in which the values of Co and S are
alent logic expression for our target Boolean function that canentered for each of the eight combinations.
be implemented using a single chip containing only NORThe process of designing combinational circuits involves
gates (such as 7402).certain levels of abstraction. For structured circuit implemen-

tation, the key is to find high-level building blocks that are
sufficiently general to be used for different designs. While it D = B + (A + C)
is easy to identify a handful of elements (such as AND, OR,
and NOT gates) from which all combinational circuits can be Similarly, DeMorgan’s theorem allows us to transform the
synthesized, the use of such simple building blocks reduces logic expression into one whose implementation requires only
the component count by only a modest amount. A more sig- NAND gates:
nificant reduction in component count may be obtained if each
building block is equivalent to tens or hundreds of gates.

D = (AB)(BC)A commonly used building-block approach is based on
array structures. Programmable logic devices (PLDs) are com-

Figure 1 shows the three gate network implementations of D
posed of primitive gates arranged into logic blocks whose con-

using NOT-AND-OR, NOR, and NAND gates, as discussed
nections can be customized for realizing specific functions.

in the preceding. The output D of such a combinational gate
Programmable elements are used to specify what each logic

network becomes available after a certain delay following the
block does and how they are combined to produce desired

application of its inputs. With gate-level components, the in-
functions. This fundamental idea is used in connection with

put-to-output delay, or the latency, of a combinational circuit
various architectures and fabrication technologies to imple-

depends on the number and types of gates located on the
ment a wide array of different PLDs.

slowest path from an input terminal to the output. The num-
ber of gate levels is a rough indicator of the circuit’s latency.

Practical combinational circuits may contain many moreIMPLEMENTATIONS WITH FIXED LOGIC
gates and levels than the simple examples shown in Fig. 1.
As combinational circuits are often placed between synchro-If the input-output behavior of the combinational circuit is

defined by means of a logic statement, then the statement can nously clocked storage elements, or latches, the circuit’s la-
tency dictates the clock rate and, thus, the overall systembe easily expressed in sum-of-products form using Boolean al-

gebra. Once in this form, its implementation is a relatively speed. One way to improve the computation rate, or
throughput, is to partition the gates into narrow slices, eachstraightforward task. In the following, we will consider the
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Figure 1. Realizing the Boolean function D � AB 	 BC by gate networks.
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Figure 2. Schematic of a pipelined combina-
tional circuit.
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consisting of only a few levels, and buffer the signals going output. A 2L-to-1 multiplexer can be used to implement any
from one slice to the next in latches. In this way, the clock desired L-variable Boolean function by simply connecting the
rate can be made faster and a new set of inputs processed in input variables to its select lines, logic 1 to the data lines
each clock cycle. Thus, the throughput improves while both corresponding to the minterms, and logic 0 to the remaining
latency and cost deteriorate due to the insertion of latches data lines. The select inputs s2, s1, and s0, when viewed as a
(see Fig. 2). 3-bit binary number, represent an index i in the 0 to 7 range.

Today, digital implementation technologies are quite so- The value on data line xi is then chosen as the output.
phisticated and neither cost nor latency can be easily pre- To implement a Boolean function with more variables than
dicted based on simple notions such as number of gates, gate can be accommodated by a single multiplexer, we can connect
inputs, or gate levels. Thus, the task of logic circuit imple- other multiplexers to the xi inputs to obtain a multilevel mul-
mentation is often relegated to automatic synthesis or CAD tiplexer realization. For example, to implement a 6-variable
tools. As an added benefit, such tools can take many other function, we can expand it in terms of three of the variables
factors, besides cost and latency, into account. Examples of to obtain an expression similar to the one shown on the out-
such factors include power consumption, avoidance of haz- put in Fig. 3, where the xi are residual functions in terms of
ards, and ease of testing (testability). the remaining variables.

Figure 4 shows how the function D can be implemented byUsing Multiplexers
an 8-to-1 multiplexer. We can view the single wire entering

The application of discrete logic circuits becomes impractical each AND gate as representing multiple inputs. In effect, we
as our Boolean expression grows in complexity. An alterna- have an 8-bit memory whose hardwired data are interrogated
tive solution might be the use of a multiplexer. To implement by the input variables; the latter information filters through
the Boolean function with a multiplexer, we first expand it the decoder, which finds the corresponding data line and se-
into unique minterms; each of which is a product term of all lects it as the output.
the variables in either true or complement form With a multiplexer that can supply both the output D and

its complement D, we can choose to tie the minterms to logicD = AB(C + C) + (A + A)BC = ABC + ABC + ABC
1 and the remaining data lines to logic 0, or vice versa. This,
again, is an application of DeMorgan’s theorem.With L input variables, there are 2L possible minterms, each

A 2L-to-1 multiplexer can be implemented as an L-levelcorresponding to one data line of a 2L-to-1 multiplexer. Figure
network of 2-to-1 multiplexers. This becomes clear by noting3 shows an 8-to-1 multiplexer and the logic expression for its
that a 2-to-1 multiplexer is characterized by the equation

Y = sx0 + sx1

and that the output logic expression for the 8-to-1 multiplexer
of Fig. 3, say, can be written as:

Y = s2(s1(s0x0 + s1x1)) + s1(s0x2 + s0x3))

+ s2(s1(s0x4 + s0x5)) + s1(s0x6 + s0x7))

Another way to justify the preceding is to note that a 2-to-1
multiplexer can act as a NOT, AND, or OR gate:

NOT: x0 = 1, x1 = 0 yields Y = s
AND: x0 = 0 yields Y = sx1

OR: x1 = 1 yields Y = s + x0

We have just concluded our examination of a simple pro-
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grammable logic device. The basic elements include a means
to store data, a decoding function to retrieve data, and anFigure 3. A multiplexer or selector transfers one of its ‘‘data’’ inputs

to its output depending on the values applied to its ‘‘select’’ inputs. association of data with logic values. In the case of a multi-
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Figure 4. Realizing the Boolean function
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Decoder D � AB 	 BC by an 8-to-1 multiplexer.

plexer, the programmability is provided by manual wiring. is the well-known table-lookup method for implementing
Slightly more complicated schemes use fuse or antifuse ele- Boolean functions.
ments. A fuse is a low-resistance circuit element that can be Table lookup is attractive for function evaluation as it
opened permanently by a relatively high surging current, allows the replacement of irregular random logic structures
thus disconnecting its endpoints. An antifuse is the opposite with much denser memory arrays. The input variables consti-
of a fuse; it is an open circuit element that can be made per- tute an address that sensitizes a word select line and leads to
manently low resistance. Both fuse and antifuse offer one- the stored data in that particular word being gated out. As in
time programmability (OTP). Once programmed, they cannot the case of the multiplexer, the values to be stored are related
be modified. to the minterms of the Boolean function. Thus, the content of

each memory column in Fig. 5 is the truth table of the associ-
ated output function.IMPLEMENTATIONS WITH MEMORY DEVICES

Figure 6 shows the use of an 8 
 2 bit memory device to
implement a full adder. The full adder is a half adder aug-Multioutput Boolean functions can be implemented by several
mented with a single-bit carry-in Ci and is specified by themultiplexers connected in parallel. However, it seems waste-
Boolean functionsful to have multiple decoders, especially when the number of

variables is large. Removing all but one of the replicated de-
coders in the multiplexers and making the hardwiring
changeable lead to a memory structure, as shown in Fig. 5.

Co = AB + ACi + BCi

S = A ⊕ B ⊕ Ci = ABCi + ABCi + ABCi + ABCi
This approach of logic being embodied in the memory content

In general, memory cells can be classified in two major catego-
ries: read-only memory (ROM) (in some cases, read-mostly),
which is nonvolatile, and random-access memory (RAM)
(read-write memory is a better designation), which is volatile.
They are distinguished by: (1) the length of write/erase cycle
time compared with the read cycle time; and (2) whether the
data are retained after power-off. Programmability refers to
the ability to write either a logic 0 or 1 to each memory cell,
which in some cases must be preceded by a full or partial
erasure of the memory content (such as in EPROM and EE-
PROM). In this respect, PLDs are no different and actually
use some form of memory in their structures.

Strictly speaking, implementations of Boolean functions
based on such memory devices cannot be viewed as combina-
tional. Many PLDs are in fact sequential in nature. They be-
come combinational only because the clocked latches are by-
passed. However, the programming will never occur in

B C D1 D2A DN

. . .

. . .

. . .

operation and, in some cases, is limited to a certain maximum
number of times during the life of the device. Thus, betweenFigure 5. The read path of a memory device goes through the ad-
programming actions, even such latched or registered PLDsdress decoder and the memory array. Such a device can be viewed as

a multiplexer with multiple outputs. behave as truly combinational circuits.
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Figure 6. Using memory to realize a full
adder. The memory content on the right
is in one-to-one correspondence with the
truth table on the left.
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It is noteworthy that in Fig. 5, the programmable elements the decoder select more than one row simultaneously. Pro-
grammable logic devices are organized into an AND array(memory cells) along each column are wire-ORed together. In-

tuitively, the programmable elements can also be placed in and an OR array, with multiple inputs and multiple outputs.
The AND array maps the inputs into particular productthe decoder so they are wired-ANDed together along each col-

umn. These and other variations lead to different building terms; the OR array takes these product terms together to
produce the final expression. Figure 7 shows a block diagramblocks. Programmable logic array (PLA) and programmable

array logic (PAL) are two types of building blocks that are for the array component.
Figure 8 shows a commonly used scheme for representinguniversally used for implementing combinational circuits in

PLDs. the topologies of PLAs. The input variables x1, x2, . . ., xL and
their complements x1, x2, . . ., xL constitute the columns of the
AND array. The rows correspond to the product terms z1, z2,IMPLEMENTATIONS WITH PROGRAMMABLE LOGIC
. . ., zM in both the AND and OR arrays. The columns of the
OR array represent the Boolean functions y1, y2, . . ., yN inThe memory-based implementation of Fig. 5 has the essential
sum-of-products form. The complexity of PLA is determinedfeature of array logic, that is, a regular array that is program-
by the number L of inputs, the number M of product terms,mable. Array logic operates by presenting an address in the
and the number N of outputs. An L-input, M-product-term, N-data path to the memorylike structure. Decoding of this ad-
output PLA is sometimes referred to as an L 
 M 
 N device.dress starts the process whereby a predetermined result is

The number of product terms is often selected to be muchextracted from the array. Because the result generated by
smaller than 2L (for example, M � 4L). There is a penalty forsuch an array depends on the content of the array, the Bool-
this tremendous compression. Whereas a memory device withean function can, in principle, be changed in the same way as
its full decoder can generate any function of the input vari-writing into a memory.
ables, the partial decoder of the PLA device generates a very

Using Programmable Logic Arrays limited number of product terms.
Because of the severe limitation on the number of availableInstead of expanding the product terms into minterms ex-

product terms, an aggressive two-level logic minimizationhaustively, we take advantage of ‘‘don’t care’’ conditions to let

. .
 .

. . .

Product terms
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Figure 7. The basic logic array component consists of an AND array
Figure 8. A commonly used scheme for representing the topology of

and an OR array.
array logic explicitly shows its columns and rows. The cross-points
mark the locations of programmable elements whose states may be
changed through programming.
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Figure 9. A personality matrix defines
the inputs, product terms, and outputs of
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method is critical for effective utilization of PLAs. A conve- connected to a tri-state inverter right after the OR gate, as
depicted in Fig. 10. The device shown in Fig. 10 actually hasnient way to describe a function for PLA realization is

through a personality matrix, which is a minor reformulation 10 inputs, 2 outputs, and 6 bidirectional pins that can be used
as either inputs or outputs.of the truth table. Figure 9 shows an example for a full adder

and the corresponding PLA realization. There exists a fundamental trade-off between speed and
capacity in PLDs. It is fair to say that for devices with compa-For the realization of Boolean functions PLAs are widely

used within integrated circuit designs. A distinct advantage rable internal resources, a PLA should be able to implement
more complex functions than a PAL. The reason is that theis that their regular structures simplify the automatic genera-

tion of physical layouts. However, only a few devices are PLA allows more product terms per output as well as product-
term sharing; that is, outputs of the AND array can be sharedavailable as stand-alone parts for combinational circuit de-

sign. Currently available configurations include 16 
 48 
 8, among a number of different OR gates. On the other hand,
the PLA will be slower because of the inherent resistance and18 
 42 
 10, and 22 
 42 
 10 (by Philips Semiconductors).

Multilevel logic structures can be realized with PLAs ei- capacitance of extra programmable elements on the signal
paths.ther by interconnecting several PLAs or by connecting certain

of the outputs to the inputs in a single PLA. As an example, In reality, NOR-NOR arrays may be used, instead of AND-
OR arrays, to achieve higher speed and density. (Transistorsan 18 
 42 
 10 PLA can implement the parity or XOR func-

tion in two-level AND-OR form for no more than six inputs. are complementary, but the N-type is more robust than the
P-type and is often the preferred choice.) Consider the fullThe reason is that the seven-input XOR function has 64 min-

terms which is beyond the capacity of the preceding PLA. adder example. We can rewrite the Boolean functions as fol-
lows:Consider the problem of implementing the nine-input XOR

function. One way is to divide the inputs into three groups of
three and separately realize 3 three-input parity functions us-
ing 9 of the inputs, 12 of the product terms, and 3 of the

Co = AB + ACi + BCi

S = A ⊕ B ⊕ Ci = ABCi + ABCi + ABCi + ABCioutputs. The preceding three outputs can then be fed back to
three of the unused inputs and their XOR formed on one of

The inverted inputs and outputs preserve the original AND-the available outputs by utilizing four more product terms.
OR structure so the realization is equivalent, as shown in
Fig. 11.Using Programmable Array Logic

As in the case of PLAs, we can use several PALs to imple-
A more common programmable solution is to use PALs. There ment logic functions that are too complex for the capabilities
is a key difference between PLAs and PALs: PLAs have the of a single device. Feeding back the outputs into the array in
generality that both the AND and OR arrays can be pro- order to realize multilevel circuits is facilitated by the built-
grammed; PALs maintain the programmable AND array, but in feedback paths (see Fig. 10). As an example, to implement
simplify the OR array by hardwiring a fixed number of prod- the 9-input XOR function using the PAL device 16L8 shown
uct terms to each OR gate. in Fig. 10, we can divide the inputs into three groups of 3

For example, the commercial PAL device 16L8 (which and proceed as we did for the PLA implementation. The only
means that the device has 16 inputs and 8 outputs, and it is difference is that the feedback paths are internal and no ex-
active low combinational) arranges the AND array in 32 col- ternal wiring is needed.
umns and 64 rows. Each AND gate has programmable con-
nections to 32 inputs to accommodate the 16 variables and

Other PLD Variants
their complements. The 64 AND gates are evenly divided into
8 groups, each group associated with an OR gate. However, Generic array logic (GAL) is a slight enhancement of PAL

that includes an XOR gate after each OR gate. The XOR gatethere are only 7 AND gates connected to each OR gate and,
thus, each Boolean function is allowed to have at most 7 prod- can be viewed as a controlled inverter that changes the out-

put polarity if desired. Given that y � 0 � y and y � 1 � y,uct terms. The remaining one AND gate from each group is
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Figure 10. Schematic diagram of the PAL device 16L8 known as its programming map. Loca-
tions to be programmed are specified by their numbers (11-bit integers in the range 0 to 2047,
composed of a 6-bit row number and a 5-bit column number).



COMBINATIONAL CIRCUITS 569

In order to cover most designs, PLDs are organized to bal-
ance speed and capacity within the constraints of fabrication
technologies. Because the assemblages of logic blocks are po-
sitioned where they are anticipated to be useful to each other,
such an approach is necessarily wasteful. There were once
expectations that PLDs could replace discrete components.
While this has not yet materialized, PLDs do indeed offer a
compact means of implementing Boolean functions that is
particularly attractive for rapid prototyping to evaluate possi-
ble improvements or to verify new ideas.
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The ultimate in flexibility is provided by field-programma- University of California
ble gate arrays (FPGAs) which consist of a regular array of
logic blocks with programmable functionalities and intercon-
nections. Figure 12 shows part of a generic FPGA component.

COMBINATORIAL DESIGN THEORY. See THEORY OFEach block can implement one or more simple logic functions,
say of four or five logic variables. The inputs to the block can DIFFERENCE SETS.
be taken from its adjacent horizontal or vertical signal tracks COMBINATORIAL OPTIMIZATION PROBLEMS.
(channels) and its output(s) can be routed to other blocks via See GRAPH THEORY.
the same channels. The logic blocks of an FPGA store their COMBINERS AND DIVIDERS, POWER. See POWER
outputs in storage elements, thus making the result a sequen-

COMBINERS AND DIVIDERS.
tial circuit. Combinational circuits can be implemented by COMMERCE, ELECTRONIC. See ELECTRONIC DATA IN-programmed bypassing of the storage elements.
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Figure 12. Part of an FPGA, consisting of four rows and two columns COMMUNICATIONS. See SPEECH, HEARING AND VISION.
of logic blocks and their associated programmable interconnections COMMUNICATIONS, COMPUTER. See COMPUTER
(channels). The upper left logic block has been configured to receive

NETWORKS.three inputs from its upper and lower horizontal channels and to send
COMMUNICATIONS, METEOR BURST. See METEORits output to the logic block at the lower right via a vertical and a

horizontal channel segment. BURST COMMUNICATION.
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