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Abstract

The camera response function (CRF) that maps linear

irradiance to pixel intensities must be known for computa-

tional imaging applications that match features in images

with different exposures. This function is scene dependent

and is difficult to estimate in scenes with significant mo-

tion. In this paper, we present a novel algorithm for ra-

diometric calibration from multiple exposure images of a

dynamic scene. Our approach is based on two key ideas

from the literature: (1) intensity mapping functions which

map pixel values in one image to the other without the need

for pixel correspondences, and (2) a rank minimization al-

gorithm for radiometric calibration. Although each method

has its problems, we show how to combine them in a formu-

lation that leverages their benefits. Our algorithm recovers

the CRFs for dynamic scenes better than previous methods,

and we show how it can be applied to existing algorithms

such as those for high-dynamic range imaging to improve

their results.

1. Introduction

Many algorithms in computational photography and

computer vision need to combine information from several

images of the same scene (e.g., high-dynamic range (HDR)

imaging, panorama stitching, 3D structure-from-motion).

In some cases the images must be taken at different expo-

sures, so to match features across images these algorithms

often assume that pixel intensity values are linearly related

to scene radiance. However, this assumption is violated by

the non-linear camera response function (CRF) added by

camera manufacturers. This CRF is applied to sensor irra-

diance measurements to compress the dynamic range of the

sensor irradiance and make the final images more visually

pleasing.

If this non-linearity is not accounted for, errors could

occur when matching across images with different expo-

sures. However, the CRFs are generally unknown, consid-

ered trade secrets by camera manufacturers. Furthermore,

they can be scene dependent [2, 9, 13] making their esti-

mation more difficult. Hence radiometric calibration, the

process of inverting the CRF to bring values to the linear

irradiance domain, is a crucial first step for any algorithm

working with images at different exposures.

There have been many different radiometric calibration

approaches proposed for the past 20 years, starting with the

seminal works of Mann and Picard [19] and Debevec and

Malik [4]. However, most of these approaches assume static

scenes and tripod-mounted cameras, which is not the typ-

ical scenario for casual photographers. Some researchers

have proposed methods that attempt to recover the CRF for

dynamic scenes, but they fail in the presence of significant

scene motion, significant noise, motion blur, and different

defocus blur across images. Since highly dynamic scenes

are ubiquitous in our world, the problem of automatic ra-

diometric calibration is an open and important problem in

computational imaging.

In this paper, we present a new radiometric calibration

algorithm specifically designed to handle scenes with sig-

nificant motion. To do this, we build upon two key ideas

from the literature. First, is the concept of intensity mapping

functions (IMFs) proposed by Grossberg and Nayar [7],

which directly map pixel values in one exposure to another

by transforming their histograms. They observed that IMFs

can handle small motion because they do not require finding

correspondences between images, which can be brittle and

error-prone. However, their method for computing IMFs

could not handle large scene motions because the histogram

of the scene radiances changes. Therefore, we present a new

RANSAC-based algorithm for computing IMFs that is more

robust to large motions.

Furthermore, Grossberg and Nayar’s method used a

least-squares optimization which easily overfits to noisy

IMF estimates, resulting in incorrect CRFs. To address

this problem, we leverage a second key idea: the rank-

minimization algorithm for radiometric calibration of Lee

et al. [15]. This algorithm avoids overfitting and presents a

principled approach for radiometric calibration. However,

Lee et al. used pixel-wise correspondences in their opti-

mization which results in artifacts for scenes with signifi-

cant motion. We address this problem by reformulating the



rank minimization approach to handle IMFs.

By combining the two methods, our approach capitalizes

on their benefits. This results in a method that is very sta-

ble, avoids overfitting, and is also robust to inaccuracies in

IMF estimation. Furthermore, it allows the recovery of re-

sponse functions up to an exponential ambiguity even when

no information is available about the exposure values. We

demonstrate that our algorithm can estimate the CRFs from

a stack of images of a dynamic scene more accurately than

existing methods. Furthermore, we show how it can be used

in practice by using it to improve the quality of state-of-the-

art HDR reconstruction algorithms.

2. Previous Work

Radiometric calibration is usually performed using mul-

tiple aligned images of a static scene taken at known ex-

posures with a fixed camera. The early methods mostly dif-

fered in how they represented and solved for the CRF. Mann

and Picard [19], for example, used a gamma-correcting

function to represent the CRF, while Debevec and Malik [4]

used a nonparametric smooth mapping of image irradiance

to intensity. Mitsunaga and Nayar [21] solved for the CRF

using a high-order polynomial representation, while Gross-

berg and Nayar [8] leveraged a database of response func-

tions to represent the CRF. All of these approaches assume

that the scene is static and the camera is tripod-mounted.

There are a few prior approaches that allow some cam-

era movement or small scene motion. Mann and Mann [20]

proposed a method that allows camera rotations and simul-

taneously estimates the CRF and exposure ratios, but it does

not work for general motion. As described earlier, Gross-

berg and Nayar [7] proposed to estimate the CRF by solving

a least-squares optimization after recovering the intensity

mapping functions between image pairs using histogram

specification. Their IMFs allow for small scene motion, im-

age noise, and blur as long as the histogram of scene radi-

ance does not change much. We extend their approach by

proposing a new way to compute IMFs that is more robust

to large scene motions.

Kim and Pollefeys’s method [14] allows for free cam-

era movement and some scene motion by computing IMFs

using dynamic programming to find maximal values on the

joint histogram built from correspondences. However, this

approach cannot handle noisy observations that are com-

mon in real applications. Methods have also been proposed

that estimate the CRF from a single image [17, 18], but they

are usually not very robust because they rely strongly on

edge information, which can be noisy and is often affected

by post-processing in the imaging pipeline.

Finally, Lee et al. [15, 16] introduced a clever radiomet-

ric calibration approach that leverages the low-rank struc-

ture of sensor irradiances and uses rank minimization to re-

cover the response function. Their basic observation is that

the ideal inverse CRF would map the input images to the

image irradiance domain where the values between two im-

ages would differ by a single scale factor (the exposure ra-

tio). If these irradiance images are placed into the columns

of an observation matrix, this matrix would be rank-one

since every successive column is linearly dependent on the

first. By solving for the inverse CRF which minimizes the

rank of the observation matrix, they avoid the problems with

overfitting which affect least-square algorithms. Further-

more, in absence of exposure ratios, they can recover the

camera response function up to an exponential ambiguity,

which is useful in radiometric alignment applications.

However, Lee et al. use pixel-wise correspondences

to find matching intensity values in the different images,

which can be prone to error when the scene motion is large

or complex. To address this problem, we reformulate the

rank-minimization algorithm to leverage IMFs in the op-

timization directly, allowing it to handle highly dynamic

scenes. This results in an algorithm that is more robust to

scene motion, camera noise, and image blur than existing

methods.

3. Proposed Algorithm

We begin by giving an overview of radiometric calibra-

tion algorithms such as ours. Suppose we take two images

of a static scene with different exposures by setting the shut-

ter times to t1 and t2. Let z1 be the image intensity mea-

surement (pixel value) of a point with image irradiance1 e1
in the first image, while z2 and e2 are the corresponding val-

ues of the same pixel in the second image. Assume that all

intensity and irradiance values are normalized [0, 1]. The

exposure ratio between the two images can be expressed

as k2,1 = t1/t2 = e1/e2. If f is the camera response

function that maps linear irradiance to pixel values (e.g.,

f(e1) = z1 and f(e2) = z2), the goal of this work is to

find the inverse camera response function g = f−1, where

in this case g(z1) = e1 and g(z2) = e2. Using the fact that

e1 = k2,1 e2, we substitute in g to get:

g(z1) = k2,1 g(z2). (1)

Let τ1,2 be a function which relates the intensity values of

the first image to that of the second, such that z2 = τ1,2(z1).
In a general sense, this can be done in many ways such as

through pixel correspondences (e.g., optical flow), but in

this work we propose to use intensity mapping functions

1In our paper we call the RAW image value at the photo sensor as

the linear irradiance value. Technically, the RAW image value is linearly

proportional to the amount of light energy collected at the photo sensor.

If we assume the irradiance to be constant over the pixel footprint and

shutter integration time then the light energy is linearly proportional to the

irradiance at a pixel. Hence, the RAW image value is often simply called

as image irradiance value [7, 13, 16, 15]. Although this does not hold when

there is a motion blur we stick with this notation in our paper.



(IMFs). Assume for now that the IMF is provided to us,

although we show later in Sec. 3.2 how to estimate it from

the input images. Substituting this into Eq. 1 gives us:

g(z1) = k2,1 g(τ1,2(z1)). (2)

Let us create a vector B1 = [b1 b2 · · · bj · · · bK ]T that

contains the K unique intensity values in the first image

such that bj and τ1,2 (bj) follow the constraints 0 < bj < 1
and 0 < τ1,2 (bj) < 1. We could then find g by solving the

following least squares optimization, as done in previous

approaches [7]:

ĝ = argmin
g

K
∑

j=1

[g(bj)− k2,1 g(τ1,2(bj))]
2. (3)

The problem with this least squares optimization is that it

can overfit the data and can lead to bad estimates of g, as

we will see in Sec. 4. Therefore, we propose instead to use

the IMF in a new optimization framework based on the rank

minimization work of Lee et al. [15], presented next.

3.1. Our Proposed Rank Minimization Framework

We begin by explaining the basic method of Lee et

al. [16, 15]. First, we define a two-column observation ma-

trix D1 ∈ RK×2 as

D1 = [B1 | τ1,2 ◦B1], (4)

where ◦ is an element wise operator. Note that in Lee et

al.’s work the function τ1,2 comes from pixel-wise corre-

spondences, while in ours it is the IMF. We then construct

matrix P = g ◦ D1 = [g ◦ B1 | g ◦ τ1,2 ◦ B1], which

if g is correct will be a rank-one matrix because by Eq. 2

the second column is a multiple k2,1 of the first. Using this

property, we can solve for the camera response function g
by minimizing the following energy function:

ĝ = argmin
g

[

rank (g ◦D1)+λ
∑

t

H

(

−
∂g(t)

∂B

)

]

, (5)

where H(·) is the Heaviside step function, i.e., H(x) =
1 when x ≥ 0 and H(x) = 0 when x < 0 and B is a vector

that contains all the valid intensity values. Here, the first

term minimizes the rank of P while the second term forces

the CRF to be monotonically increasing by penalizing solu-

tions with negative gradients.

Eq. 5 estimates the inverse camera response function us-

ing a single IMF between a pair of images in a rank mini-

mization framework, but in practice we usually have more

than two images with different exposures. Therefore, we

need to extend it to include all pairwise IMFs between the

adjacent images. This will improve our estimate in two crit-

ical ways. First, each IMF contains mapping information

of the intensity values found in only one pair of images,

which might not represent the entire range of possible pixel

values. By using all the IMFs together we can recover g
for a larger range of intensity values. Second, images with

different exposures usually have significant overlap in their

intensity values, so including them in the observation matrix

D1 improves the robustness of our estimate to noise.

To explain how we do this, we show the process of ex-

tending Eq. 5 using three images and generalize it to N im-

ages later. This extension can be simply done by including

the corresponding two IMFs between the adjacent images

in the observation matrix D1 as follows,

D1 = [B̃1 | τ1,2 ◦ B̃1 | τ2,3 ◦ τ1,2 ◦ B̃1],

where B̃1 is a vector containing a subset of values from vec-

tor B1, s.t., none of the values in D1 defined above are satu-

rated, since saturated values break our low-rank assumption

because they are no longer linearly related. For the case

with N images, we could generate an N -column matrix D1

where its j + 1th column is computed by applying τj,j+1 to

the jth column.

Using all pairwise intensity mapping functions for con-

structing observation matrix D1 could potentially improve

the robustness by utilizing the overlap between different im-

ages. However, the number of intensity values in vector

B̃1 that remain non-saturated after successive application of

pairwise IMFs will be greatly reduced and could negatively

affect the accuracy of the estimation. In the limit, if the

range of exposures in the images is great enough, no pixels

would exist that would be unsaturated through out the entire

range and so the size of B̃1 would be effectively zero.

To address this problem we make two key observations.

The first is that each specific image has considerable over-

lap with only a few adjacent images in the exposure stack.

Therefore, by using only these neighboring images in the

observation matrix we can robustly estimate the camera re-

sponse function g for the range of intensities covered by that

image. Therefore, we propose to divide all the images into

overlapping groups of size m (i.e., m − 1 pairwise IMFs)

and construct an observation matrix Di for each group. This

allows us to use all available IMFs to improve the robust-

ness of our estimation while avoiding the problem of sig-

nificant reduction of valid intensity values in B̃1. Formally,

we create a set of N−m+1 observation matrices as follows,

Di = [ d0 | d1 | · · · | dm−1 ],

d0 = B̃i dj = τi+j−1,i+j ◦ dj−1.

In our implementation, we select m to be as large as pos-

sible such that B̃i has at least 20 quantization levels, which

is usually around 3 images. Note that this is in contrast to

Lee et al.’s method [15], where only a single subset of all

the images is used to construct the observation matrix.



Our second key observation is that since the intensity

mapping functions are non-linear in nature, uniform quanti-

zation of one domain causes highly non-uniform sampling

in some parts of the function. To address this discretiza-

tion problem, we propose to construct an inverse observa-

tion matrix D′

i corresponding to each Di as follows,

D′

i = [ d′0 | d′1 | · · · | d′m−1 ],

d′m−1 = B̃i+m−1 d′j−1 = τ−1

i+j−1,i+j ◦ d
′

j ,

where τ−1

i,i+1
is the inverse intensity mapping function that

maps the intensity values in the i+ 1th image to the ith im-

age. We combine these two observations into a new energy

function which robustly estimates the inverse CRF:

ĝ = argmin
g

N−m+1
∑

i=1

(

rank (g ◦Di) + rank (g ◦D′

i)
)

+ λ
∑

t

H

(

−
∂g(t)

∂B

)

(6)

In summary, the optimization problem we proposed differs

from Lee et al.’s method [15] in two important ways:

• Instead of using pixel correspondences, we propose

the use of IMFs to construct the observation matrix

Di. Not only are IMFs more robust to motion than

pixel correspondences, but they are also a very com-

pact representation (Lee et al. need thousands of pixel

correspondences to construct their observation matrix,

whereas the intensity values in our matrices are often

less than 256). This makes our optimization step much

faster as well.

• Instead of selecting a single subset of images to con-

struct one observation matrix and solving for g to lin-

earize it, we propose to compute multiple Di and D′

i

observation matrices, and solve for g to linearize them

all together. As we shall see in Sec. 4, this makes our

estimation more robust and improves its performance

on average.

3.1.1 Solving the optimization problem

The objective function in Eq. 6 can be solved using standard

optimization techniques. We use the Levenberg-Marquardt

method in our experiments. While the intensity mapping

function estimated by our approach gives a reasonably good

approximation, to further improve the robustness and ac-

curacy of our approach we adopted the outliers rejection

method proposed by Lee et al. [15]. Please refer to our sup-

plementary material for further details.

Finally, instead of minimizing the rank of a matrix in our

optimization problem, we minimize the second condition

number of a matrix, as proposed by Lee et al. [15, 16]. We

use a parametric form for g given by nth degree polynomial

function as shown below.

g(b) = b+ b(b− 1)
n−2
∑

i=0

cib
i

The polynomial function defined this way has n− 1 de-

grees of freedom and follows the constraints g(0) = 0 and

g(1) = 1. Experimentally, we found n = 6 to be a good

choice as shown in Sec. 4.3.

3.1.2 Exponential ambiguity

The solution to Eq. 6 recovers the response function up to an

exponential ambiguity. This means that if ĝ is a solution to

Eq. 6 such that rank(ĝ ◦Di) = 1, then ĝγ is also a solution.

For example, if ĝ ◦ B1 = x and ĝ ◦ τ12 ◦ B1 = k2,1x,

then ĝγ ◦ B1 = xγ and ĝγ ◦ τ12 ◦ B1 = kγ2,1x
γ are still

linearly related, albeit with a different ratio. Therefore, the

observation matrix still has rank of one.

This corroborates the observation of Grossberg and Na-

yar [7], who found it was impossible to recover the ex-

posure ratio and inverse response simultaneously from the

IMF without making a prior assumption on either one first.

In our case, if the exposure ratios are unknown we cannot

use the inverse CRF to recover the actual radiance values,

but it is still very useful for radiometric alignment applica-

tions like high-dynamic range imaging where we can relax

the need to know exposure values (see Sec. 5). Furthermore,

if the exposure ratios are available we can resolve the expo-

nential ambiguity and recover the inverse CRF through the

following least squares problem:

γ̂ = argmin
γ

∑

i

∑

j

[ĝγ(bj)− ki+1,iĝ
γ(τi,i+1(bj))]

2 (7)

In our work, we used Levenberg-Marquardt method to solve

this optimization problem. Once we have estimated γ̂, the

inverse camera response function is given by ĝ(·)γ̂ .

3.2. Intensity Mapping Functions

We now return to the problem of computing the inten-

sity mapping functions between input images. To do this,

there are two general approaches. The first computes the

IMF using the joint histogram of two images. These meth-

ods first aggregate the intensity values of the correspond-

ing pixels in the two images into a joint image histogram.

Then, they estimate the intensity mapping function using

regression methods or some kind of fitting (e.g., dynamic

programming [14]) over the intensity pairs in the joint his-

togram. Although these approaches can sometimes handle

object motion using an appropriate outliers rejection tech-

nique, they are not robust and fail to estimate the inten-

sity mapping function in presence of highly dynamic scene,



noise, motion blur, and different defocus blur across im-

ages.

On the other hand, Grossberg and Nayar [7] proposed

an alternative approach for estimating IMF using 1D his-

tograms of the two images without the need for pixel cor-

respondences. They showed that if the histograms of scene

radiance in two images are similar, the IMF can be com-

puted using the histogram specification between the two 1D

histograms. This approach can faithfully recover the IMF

in presence of small scene motions, image noise, and blur

since they do not change the histogram of scene radiances

significantly. However, in case of large motion, the his-

tograms of scene radiance change significantly and hence

this method fails to accurately estimate the IMF. Since this

approach only uses 1D image histograms detecting the large

motion using outliers rejection techniques is difficult.

In order to reliably estimate the IMF in all cases (includ-

ing large and small motion and in presence of significant

image blur and noise) we propose a novel hybrid approach

that utilizes these two methods to avoid their problems. In

our system, we first detect the large motions in a joint his-

togram generated from pixel correspondences between two

images. Once these pixels are identified, we exclude them

and accurately estimate the IMF using histogram specifica-

tion which is robust to remaining small motions, noise, and

blur.

Our proposed approach has the following three steps to

estimate an intensity mapping function, τi,j , between a pair

of images:

1) Remove camera motion: We perform the rough regis-

tration of the images using a global homography computed

with RANSAC [5] from sparse SURF keypoint matches [1].

2) Remove outliers due to large motions: First, we con-

struct a joint histogram Jij(bx, by) for the two globally

aligned images using the intensity pairs (Ii(p), Ij(p)). We

then find the maximum mode of data corresponding to each

bin bx in the joint histogram Jij(bx, by). This is done by

performing mean shift clustering [3] over the intensity val-

ues of all the pixels in image Ij that contribute to the bin

bx in the joint histogram and selecting the maximum mode.

We empirically found that using a fixed kernel bandwidth of

0.15 for mean shift clustering provides the best performance

and used it in all of our experiments.

Since large motions are infrequent, most of these modes

are expected to lie close to the ground truth IMF and only

a few corresponding to the large motions are outliers. In-

spired by Hu et al. [10], we detect the inlier modes by fit-

ting cubic Hermite splines in a RANSAC framework. In

each RANSAC iteration, we select the control points for the

Hermite splines and find the inlier percentage. We select

one to four control points depending on the range of bins

spanned by the valid mode points in the joint histogram. In

addition to this we select two control points at (0, 0) and

(1, 1). In each RANSAC iteration, we select control points

such that they are monotonic and well separated from each

other. If these conditions are satisfied we fit cubic Hermite

splines and calculate the inlier modes percentage. Once we

have fit a model using cubic Hermite splines, we find all the

pixel correspondences in image Ii and Ij whose intensity

pair (Ii(p), Ij(p)) lie inside a fixed threshold δ (0.05 in our

implementation) from the model. Please refer to [10] for

more details on this. The cubic Hermite splines fit is used

just to remove the pixel correspondences, whose intensity

pair could be large outliers to the ground truth IMF. We re-

move these outlier pixel correspondences from the images

and proceed to next step.

3) Compute the final IMF: The joint histogram computed

using these inlier pixel correspondences can still be very

noisy due image noise, blur, small mismatches, etc. Hence,

we use histogram specification, as proposed by Grossberg

and Nayar [7], to compute the final IMF.

We have tested the above approach to compute the IMF

on many image pairs and found it to be very robust even

in complex scenarios. We compute the intensity mapping

functions between adjacent image pairs and use them in our

optimization framework (Sec. 3.1) to recover the inverse

camera response function.

4. Experiments

We implemented our algorithm in MATLAB and show

the performance of our approach through extensive exper-

iments on both synthetic and real world images. We com-

pare against the radiometric calibration algorithms by Lee

et al. [15], Grossberg and Nayar [7], and Mitsunaga and

Nayar [21]. We use the Lee et al.’s [15] implementation

for both their method and Mitsunaga and Nayar’s approach,

and use our own implementation of the method of Gross-

berg and Nayar. Since Lee et al.’s and Mitsunaga and Na-

yar’s methods work with pixel correspondences, we com-

pute the inverse camera response function using 1,000 ran-

domly selected samples. We repeat this process five times

and use the median of the five computed CRFs in our com-

parisons.

Although the focus of our approach is handling large mo-

tions, we first evaluate our performance in handling image

noise on the synthetic dataset by Lee et al. [16]. We demon-

strate similar performance in comparison with the state-of-

the-art approach by Lee et al. [15]. We then show that our

method produces significantly better results than the other

approaches on real world images with large motions. Fi-

nally, we evaluate the importance of different components

in our method through extensive analysis.
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Figure 1. Cumulative histogram of number of successful cases

w.r.t. RMSE for the entire synthetic dataset. Larger values shows

better performance. Our method has similar performance to the

Lee et al.’s method [15] in handling image noise, despite the fact

that the focus of the paper is handling large motions.

4.1. Simulations on synthetic dataset

We synthetically generated scene radiances in the range

of [0, 1] with four different distributions (see supplemen-

tary material), as proposed by Lee et al. [16]. For each

distribution, we produced five one dimensional irradiance

images of size 100, 000 with exposure times of step 0.5

(0.0625, 0.125, 0.25, 0.5, 1). We then added Gaussian noise

with five different standard deviations (0, 0.0025, 0.0050,

0.0075, 0.0100) to each images resulting in 4×5 = 20 irra-

diance image stacks. Finally, we applied 201 camera curves

from the DoRF database [8] and quantized the images to

256 levels to produce 20 × 201 = 4020 synthetically gen-

erated multiple exposure image stacks.

We demonstrate the overall performance of our approach

in comparison against other methods in Fig. 1. We calcu-

late the root mean squared error (RMSE) between the esti-

mated and ground-truth CRFs and for each method we plot

the number of image stacks with RMSE less than a spe-

cific value. Although the main advantage of our approach is

in handling highly dynamic scenes, we demonstrate similar

performance in comparison to the state-of-the-art algorithm

of Lee et al. [15] on this synthetic dataset with only image

noise. Next, we show the performance of our approach on

casually captured images of real world scenes.

4.2. Simulations on real dataset

We use 20 RAW multiple exposure image sets from Sen

et al. [23]. These images, shown in the supplementary ma-

terial, cover a variety of different cases (indoor, outdoor, dy-

namic, and static) and have been taken by hand-held cam-

eras. Moreover, in most cases both the aperture size and

the exposure time are varied resulting in having different
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Figure 2. Cumulative histogram of number of successful cases

w.r.t. RMSE for the entire real dataset. Our method shows sig-

nificant improvement over the previous approaches.

defocus blur in the images of an stack. We demosaic the

RAW images and apply 201 CRFs from the DoRF database

to generate a set of 20× 201 = 4020 multiple exposure im-

age stacks. Note that the radiometric calibration needs to be

performed separately for each color channel. To show our

results we arbitrarily chose to perform the radiometric cal-

ibration for green channel only. To have a fair comparison,

we remove the global camera motion in each image stack

by homography and use the aligned images as input to all

the other approaches.

Fig. 2 shows that our method has superior performance

in comparison with the other radiometric calibration ap-

proaches. To evaluate the effect of scene properties on

the performances, we show comparison on four individual

image stacks in Fig. 3. Mitsunaga and Nayar’s approach

is designed to work on static images, and thus, performs

poorly in all the cases. Note that although the image stack

in Fig. 3 (a) is almost static, their method performs poorly

because of the images having different defocus blur. Lee

et al. use pixel correspondences, and thus, fail to robustly

estimate the CRF for the image stack shown in Fig. 3(b)

with drastic change in defocus blur. However, since the his-

togram of scene radiance in different images is fairly simi-

lar, the Grossberg and Nayar’s approach performs well. On

the other hand, the image stack in Fig. 3 (c) contains large

motion and their method fails to robustly estimate the CRF

because of the violation of the histogram similarity assump-

tion. Nevertheless, Lee et al.’s approach is able to handle

large motion through outliers rejection and performs well

in this case. Finally, all the other methods perform poorly

in Fig. 3 (d) because of drastic change in defocus blur and

large motion. Our approach consistently produces better re-

sults in all the cases.
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Figure 3. Cumulative histogram of the number of successful cases w.r.t. RMSE for four real exposure stacks from [23]. Only two images

for each set are shown for compactness (see supplemental for full sets), and a gamma curve is applied to them for display. Our method

performed consistently well in all cases we tested, often much better than existing approaches. Note that scene (a) is almost entirely static

so several methods perform well.
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Figure 4. Effect of polynomial order on optimization method. (a)

Using our IMFs in least squares framework. (b) Proposed method.

Please see the text for description.

4.3. Analysis

Effect of polynomial degree: As explained in Sec. 3.1,

we use an nth degree polynomial function to model the CRF.

Increasing the polynomial degree n would increase the flex-

ibility of the method to model more complicated CRFs, but

increases the chance of overfitting to noise. We evaluate the

effect of polynomial degree in our rank minimization frame-

work and compare it to the least squares framework, as pro-

posed by Grossberg and Nayar [7], in Fig. 4. As can be

seen, there is a significant drop in performance of the least

squares framework from 7 to 8 which shows this approach

is prone to overfitting. On the other hand, our rank mini-

mization framework consistently produces better results as

the polynomial degree increases.

Effect of using forward and inverse IMFs: As ex-

plained in Eq. 6, we handle the discretization problem using

two observation matrices Di and D′

i computed from for-

ward and inverse intensity mapping functions. We evaluate

the effect of each term by comparing the result of our ap-

proach using forward, inverse, and both of them. As can be

seen in Fig. 5 (a), using both forward and inverse intensity

mapping function improves the RMSE performance on an

average for the synthetic dataset.

Effect of combining observation matrices: As ex-

plained in Sec. 3.1, we divide the N images into overlap-

ping groups of m images. We then compute an observation

matrix, Di, for each group and use all of them in a sin-

gle energy function. We now compare this approach with

an approach where we use just one observation matrix Di

and the corresponding inverse observation matrix D′

i. We

perform this analysis on real image dataset. We came up

with several strategies to select one observation matrix out

of all the valid ones. The RMSE performance of each of

this strategy is compared with our approach and is shown

in Fig. 5. The different strategies which we used involved:

1) always using the first observation matrix, i.e., using im-

ages with lower exposure values, 2) always using last ob-

servation matrix, i.e., using images with higher exposure

values, 3) always using center observation matrix. On an



RMSE
0 0.006 0.012 0.018 0.024 0.03 0.036 0.042 0.048 0.054 0.06

N
u

m
b

e
r 

o
f 

st
a

ck
s 

<
 R

M
S

E

0

280

560

840

1120

1400

1680

1960

2240

2520

2800
All Real Datasets

Al l

First

Last

Ce nter

(a)
RMSE

0 0.006 0.012 0.018 0.024 0.03 0.036 0.042 0.048 0.054 0.06

N
u

m
b

e
r 

o
f 

st
a

ck
s 

<
 R

M
S

E

0

360

720

1080

1440

1800

2160

2520

2880

3240

3600
All Synthetic Datasets

Forward and Inverse IMF

Forward IMF only

Inverse IMF only

(b)

Figure 5. We analyze the effect of different components of our op-

timization problem on the overall RMSE performance. (a) Effect

of using forward and inverse IMFs. (b) Effect of combining ob-

servation matrices. Please see the text for description.

average, our approach gave the best RMSE performance as

compared to any of the above discussed strategies. Our ap-

proach tries to utilize all the available N images in the mul-

tiple exposure image stack by estimating g which linearizes

each of the valid observation matrices and hence is more

robust as compared to selecting an observation matrix con-

structed using pairwise IMFs computed on a subset of N
images.

5. Application in HDR imaging

We demonstrate the application of our method in high-

dynamic range (HDR) imaging by using it as a prepro-

cessing step for HDR reconstruction algorithms of Sen et

al. [23] and Oh et al. [22]. These approaches take multiple

low-dynamic range (LDR) images at different exposures as

input and generate an HDR image, but assume the LDR im-

ages are linearized. Therefore, if the input LDR images are

in jpeg or other non-linear formats, the CRF need to be es-

timated by a radiometric calibration approach and be used

to linearize the images. Using our method for radiometric

calibration enables such HDR reconstruction methods to be

applied to any non-linear image set. Working directly with

such images eliminates the need for RAW images which

usually take a lot of memory (around 100MB for the im-

age stack) and may not be available for all the commercial

cameras. This is even more necessary for HDR video al-

gorithms like Kalantari et al. [12] which need RAW video

frames, requiring extremely huge memory even for a short

video. However, using our method as a preprocessing step,

such HDR image and video reconstruction methods can be

more generally applied in practice.

As described in Eq. 7, to resolve the exponential ambi-

guity, exposure ratios should be known. However, in some

cases this information is not available and it is important

to estimate the exposure ratios directly from the input LDR

images. This can be done by modifying Eq. 7 to have a con-

straint on the inverse CRF for each color channel as follows:

φ̂ = argmin
φ

∑

i

∑

j

∑

l

[ĝγl

l (bj)−ki+1,iĝ
γl

l (τli,i+1(bj))]
2

s.t ĝγ1

1 (α) = β, ĝγ2

2 (α) = β, ĝγ3

3 (α) = β

(8)

where φ = [k2,1 k3,2 · · · kN,N−1 γ1 γ2 γ3] is an unknown

vector and index l represents different color channels. The

estimated inverse camera response function for each color

channel, ĝl
γl(·), satisfies the above constraint and differs

from the true inverse camera response function by the expo-

nential ambiguity. [k̂2,1 k̂3,2 · · · k̂N,N−1] are the estimated

pseudo exposure ratios. The constraints shown in Eq. 8 are

arbitrary and can be set according to the application. In our

experiments we set α = 0.5 and β = 0.2. Given non-linear

input LDR images, we apply the inverse camera response

functions solved using Eq. 6 and 8 to recover linear LDR

images and pseudo exposure ratios. We can then use the

linearized LDR images and pseudo exposure ratios in an

existing HDR reconstruction algorithm.

We show the result of HDR reconstruction methods of

Sen et al. [23] and Oh et al. [22] using different radiometric

calibration methods as a preprocessing step in Fig. 6 and 7,

respectively. Since the HDR reconstruction method of Hu

et al. [11] does not require radiometric calibration, we also

show their results. Note that since Lee et al. and our ap-

proaches are based on rank minimization, we use the above

method to estimate the pseudo exposures, but provide the

ground-truth exposures for Grossberg and Nayar [7]. As

seen, using our method to perform radiometric calibration

in the preprocessing step results in artifact-free HDR im-

ages in all cases.

We have tested the above approach for many non-linear

LDR image sets and were able to achieve a good estimation

of inverse camera response function and the pseudo expo-

sure ratios, and therefore, achieve artifact-free reconstruc-

tion of HDR images. Hence, using our method to estimate

the inverse camera response function, the HDR reconstruc-

tion methods, that assume the input LDR images to be linear

in nature, can in general be applied to any non-linear input

LDR image set, thus improving their applicability.

6. Conclusion

We have presented a new radiometric calibration ap-

proach that could robustly recover inverse camera response

function from multiple exposure images of a dynamic

scene. Our proposed intensity mapping function estima-

tion method is robust to large scene motions and other

noisy observations. We have proposed a new optimiza-

tion method, that uses intensity mapping functions in a rank

minimization framework and solves for the inverse camera

response function. We showed the superior performance of
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Figure 6. We used different radiometric calibration methods to linearize the jpeg LDR images, shown on left. We then use the linearized

images as input to the HDR reconstruction method of Sen et al. [23] to produce the final HDR images. We also include the result of Hu

et al.’s HDR reconstruction method [11] which does not require radiometric calibration. Note that all the results are tone mapped with the

same setting. “Linear” implies that a linear inverse camera curve was assumed for radiometric calibration, i.e., using the jpeg LDR images

directly in Sen et al.’s approach. Since the CRFs are non-linear in both examples, assuming linear CRF introduces artifacts in the results.

Grossberg and Nayar’s method can handle small scene motion and performs well on the top example, however, it fails on bottom example

due to large motions which cause significant change in the scene across multiple exposure images. On the other hand, Lee et al.’s algorithm

is able to reject the outliers due to large motions and successfully handles the bottom example, but fails to provide a good calibration in the

top example due to drastic different defocus blur and scene motion. Hu et al.’s HDR reconstruction method introduces artifacts in both the

examples (See absence of wrinkles on clothes in the first example and color artifacts in the second example). Our method can handle noisy

observations as well as large motions, and thus, using our radiometric calibration method as a preprocessing step results in artifact-free

HDR images. The LDR images are obtained from [23] (top) and [6] (bottom).
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Figure 7. We used different radiometric calibration methods to linearize the jpeg LDR images and then use the linearized images as input to

the HDR reconstruction method of Oh et al. [22]. The LDR image stack is obtained from [23]. All the competing radiometric calibration

approaches perform poorly on this challenging scene resulting in poor HDR reconstruction results by the method of Oh et al. Moreover,

the HDR reconstruction method of Hu et al. cannot handle the scene because of large motions. Note that we were not able to produce HDR

result using LDR images linearized by Grossberg and Nayar’s approach since their estimated CRF is not monotonically increasing. Our

method is robust to large scene motions and when used as a preprocessing step results in artifact-free HDR image by method of Oh et al.



our method as compared to other radiometric calibration ap-

proaches by conducting extensive experiments on synthetic

as well as real datasets. Finally, we showed that how using

our approach as a preprocessing step improved the quality

of some of the state of art algorithms for high dynamic range

imaging.
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