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Abstract
Dart-throwing can generate ideal Poisson-disk distributions with excellent blue noise properties, but is very computationally
expensive if a maximal point set is desired. In this paper, we observe that the Poisson-disk sampling problem can be posed in
terms of importance sampling by representing the available space to be sampled as a probability density function (pdf). This
allows us to develop an efficient algorithm for the generation of maximal Poisson-disk distributions with quality similar to
naïve dart-throwing but without rejection of samples. In our algorithm, we first position samples in one dimension based on its
marginal cumulative distribution function (cdf). We then throw samples in the other dimension only in the regions which are
available for sampling. After each 2D sample is placed, we update the cdf and data structures to keep track of the available
regions. In addition to uniform sampling, our method is able to perform variable-density sampling with small modifications.
Finally, we also propose a new min-conflict metric for variable-density sampling which results in better adaptation of samples
to the underlying importance field.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation—
Antialiasing; Image Processing and Computer Vision [I.4.1]: Digitization and Image Capture—Sampling

1. Introduction
Among the different sampling patterns used in computer
graphics, Poisson-disk distributions are of interest because
they have excellent blue noise properties due to the low-
energy annulus around the DC spike in their frequency spec-
trum. In Poisson-disk sampling, samples are placed uni-
formly in space based on a minimum Euclidean distance cri-
teria between any two samples. This idea can be extended to
variable-density sampling, in which the minimum distance
is selected according to an underlying importance field.

The brute-force method to generate Poisson-disk samples
is dart-throwing [DW85, Coo86], where samples are thrown
with uniform probability and kept only if they have a dis-
tance larger than a predefined value from all samples already
placed. This algorithm becomes very expensive for maxi-
mal point sets, however, since the probability of hitting the
available region in the space becomes zero as the method ap-
proaches maximal point set. Maximal point sets are desirable
because we want to pack Poisson-disk samples as efficiently
as possible in the available space. By doing so, the samples
are spaced out as far as possible, resulting in better frequency
properties because of the larger low-energy annulus.

In this paper, we propose that Poisson-disk sampling can
be considered a form of importance sampling, where sam-
pling is based on a given probability density function (pdf).
Although earlier work (e.g., [GM09]) achieved Poisson-disk
distributions by sampling the domain with certain proba-
bility distributions using specialized data structures, by ex-

plicitly formulating the Poisson-sampling problem as a pdf
we can apply the rules of probability to decompose it into
simpler 1-dimensional pdf’s. This theoretical foundation al-
lows us to develop a novel method for generating maximal
Poisson-disk distributions which are similar to those pro-
duced by dart-throwing but without the rejection of sam-
ples. Furthermore, by posing it as an importance-sampling
problem, the extension to variable-density sampling is fairly
straightforward. Specifically, our work makes the follow-
ing contributions: (1) poses the problem of Poisson-disk
sampling within the context of importance sampling to
avoid rejection, (2) presents an algorithm that discretizes
the space for calculating the required cdf’s to approximate
dart-throwing, (3) extends the uniform sampling algorithm
to variable-density sampling, which is straightforward be-
cause of the use of importance sampling, and (4) introduces
a min-conflict metric which improves the quality of variable-
density sampling.

2. Previous Work
Poisson-disk sampling was introduced to computer graphics
by Dippé and Wold [DW85] and Cook [Coo86] through dart-
throwing methods, which are inefficient for maximal sets as
described earlier. Several algorithms have been proposed to
improve the speed of dart-throwing while maintaining the
quality of the produced samples. For example, Jones [Jon06]
uses Voronoi tessellation to guide new samples to the free
space. This method still rejects some samples, but less
than naïve dart-throwing. Dunbar and Humphreys [DH06]
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present a novel data structure called a scalloped sector which
guarantees insertion of the sample into an available region,
thereby avoiding rejection of samples. White et al. [WCE07]
and Gamito and Maddock [GM09] use a quadtree to keep
track of available regions. White’s method also uses a uni-
form grid to store information about neighboring samples,
but this consumes a significant amount of memory, mak-
ing the algorithm impractical for a large number of samples.
Gamito and Maddock use a subdivision refinement strategy
instead, which also allows them to sample in n-D space.
Although rejection is not completely avoided in either of
these methods, its probability is significantly reduced. How-
ever, none of these approaches have been demonstrated for
variable-density sampling.

Another approach for producing blue noise samples is
Lloyd’s method [Llo82, MF92]. Secord [Sec02] uses a
weighted Voronoi tessellation version of Lloyd’s method for
density adaption for non-photorealistic rendering applica-
tions. Balzer et al. [BSD09] improves on several shortcom-
ings of Lloyd’s method by utilizing the concept of capacity.
Although the quality of their results is good, the computa-
tional time and memory usage are very high which makes it
impractical for a large number of samples.

Finally, there are several methods for fast generation of
Poisson-disk samples. Most of them use special tiles to
fill the space [HDK01,CSHD03,LD05,KCODL06,ODJ04].
These methods have blue noise properties, but do not pro-
duce the same result as dart-throwing. Wei [Wei08] proposes
a parallel Poisson-disk sampling implementation which can
be run on a GPU. This method is very fast, but violates the
uniform sampling condition [GM09] and is not equivalent to
dart-throwing. Since these methods are all approximate and
do not mimic the dart-throwing process, we will not focus on
them in this paper. Note that although our method is techni-
cally also an approximate method due to our discretization
of the sampling space, it is equivalent to dart-throwing for a
reasonable grid resolution as shown in Section 5.

3. Background Theory
Our basic observation is that we can model the process of
dart-throwing as an importance sampling problem with a 2D
probability density function (pdf) fX ,Y (x,y). For example,
suppose we are sampling the 2D space D = [0,1]2. When the
space is empty we have a constant pdf equal to one for the
entire space: fX ,Y (x,y) = 1. This means that a sample can be
placed anywhere in the space with equal probability. After
inserting the first sample, a rejection disk with radius r (the
minimum distance between samples) centered on the sample
will have zero value in the pdf. The remaining space will
now have a pdf equal to 1/(1−πr2). For subsequent samples
the analysis is the same, except that some disks may overlap.
In that case, only the area of the disks which falls into the
available region affects the pdf. As the number of samples
increases, the available space shrinks, making it harder for
naïve dart-throwing to place a sample.

We propose a way to produce maximal point sets while
avoiding sample rejection by leveraging this pdf formula-
tion. We use the property of joint distributions to break down
the 2D pdf fX ,Y (x,y) into a 1D conditional pdf and a 1D pdf:
fX ,Y (x,y) = fY |X (y|x) fX (x), where fX (x) is the marginal
density function of x found by integrating fX ,Y (x,y) over y:

fX (x) =
∫ 1

0
fX ,Y (x,y)dy. (1)

We can then compute the coordinates (xi,yi) of a new
sample i in two steps: 1) random generation of xi based
on fX (x) and then 2) selecting yi randomly according to
fY |X (y|xi). The first part of the problem involves selecting
a sample from a probability density distribution that is typ-
ically not uniform, a problem encountered in importance
sampling. As in importance sampling, we first generate a
value c uniformly in the range [0,1] using a random number
generator and then compute xi by inverting the correspond-
ing cumulative distribution function (cdf) [Shi92]:

xi = F−1
X (c). (2)

Once xi has been selected, we need to select yi. Since
fY |X (y|xi) is zero in the unavailable regions and constant in
the available regions, we do not need to compute the condi-
tional cdf to generate yi. Rather, yi can be easily generated by
randomly sampling the parts where fY |X (y|xi) is non-zero.
Note that this formulation never rejects any samples. If a re-
gion in the x dimension is entirely filled up, the cdf for that
region will have a constant value so the inversion process of
Eq. 2 will not allow any samples to be placed in the unavail-
able region. In the case of y, sampling according to fY |X (y|x)
guarantees we do not sample the unavailable regions as well.
Effectively, one can think of our algorithm as mimicking the
rejection process of dart-throwing by setting the pdf to zero
in the unavailable regions. We continue to place samples un-
til the pdf becomes zero for the entire space. This way, we
achieve a maximal point set without rejection. This simple
formulation enables us to develop the novel algorithm de-
scribed in the next section.

4. Algorithm
4.1. Uniform Sampling
We now describe a uniform-sampling algorithm based on
the theoretical background presented in the last section. The
two key steps are the calculation of fX (x) and fY |X (y|x). We
might first consider computing fX (x) in continuous space.
However, since the rejection disks for different samples are
likely to overlap, computing fX (x) using Eq. 1 in analyti-
cal form is difficult. Also fY |X (y|xi) should be calculated for
each xi during runtime which is not efficient. Therefore, we
discretize the 2D pdf fX ,Y (x,y) in one dimension across x
axis (not the y) so that we can quickly compute the required
pdf’s for our algorithm.

To do this, we discretize fX ,Y (x,y) in the space D = [0,1]2
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data structure keeping the available regions

initial marginal cdf of x After adding the �rst point After adding the second point

Figure 1: Visualization of the sampling process. The first sample
is shown with a red dot with the rejection disk around it in light red.
The black lines inside the red disk represent regions where the pdf
has been zeroed out and are subtracted from the marginal cdf. The
red lines indicate available regions which are added to our avail-
ability data structure representing fY |X (y|x), shown at the bottom.
We have color coded the start and end points of each span to show
the entry in the data structure. For the next sample, shown with a
green dot, we update the cdf by using the black lines that are inside
the green circle but outside the red one. The available span data
structure now contains two spans in the middle positions. The cdf
plot has been exaggerated for illustration purposes so the effect of
subtracting the regions inside the circles can be seen.

with ⌈m/r⌉ discrete vertical lines along x (r < 1), where m
sets the number of lines in a rejection disk radius r (empir-
ically, we found a value of m = 30 to be sufficient, as dis-
cussed in Section 5.1). This means that our cdf is stored as a
1D array of size ⌈m/r⌉. After placing the first point, we take
a disk with radius r around it and rasterize the discrete lines
crossing the disk. We subtract the length of each line span
which falls inside the disk from our cdf FX (x) from that dis-
crete position onward, effectively zeroing out the pdf in this
region. For fY |X (y|x), we only need to know the available
regions for sampling, so we use a data structure to store the
start and end points of spans that indicate availability in the
continuous domain.

To place the next sample, we compute its x coordinate ac-
cording to Eq. 2 by picking a random number c from [0,1]
and inverting the cdf by scanning the cdf array until we find
the two values that straddle c. The exact value of xi is com-
puted by interpolating the two cdf values based on c. This
avoids complications in computing the inverse of the cdf to
select xi. The next step is to simply pick the yi value by look-
ing up the available regions at the position nearest to xi in the
data structure. After placing a new sample, we update FX (x)

and the data structure using the same process described for
the first sample except that we only subtract from the cdf the
length of the line in the disk that lies in the free space. This
avoids double-counting the reduction of the pdf when the
rejection disk of the new sample overlaps existing rejection
disks. Fig. 1 shows an example of this process.

This procedure can be continued up to Nmax times where
Nmax is the maximum number of circles with radius r/2
which can be packed inside the 2D space. The maximum
packing is obtained when the samples are placed on a hexag-
onal grid, so Nmax = 2/(

√
3r2). However, in practice the pro-

cess is not continued Nmax times but is terminated when there
is no remaining space to put samples. This condition can eas-
ily be checked by looking at our data structure, which shows
the available regions. When it is empty, we are finished sam-
pling and a maximal point set has been obtained. Note that
we use the term maximal to refer to the maximum packing
of samples based on the discretization of our space, so if
the resolution of discretization is low, the packing density is
smaller than we would theoretically obtain.

For our algorithm, we need a 1D array of length ⌈m/r⌉
for FX (x) and a 2D array for fY |X (y|x), with length ⌈m/r⌉
in x and variable length for the y dimension, with a theoret-
ical peak on the order of

√
N. However, we find in practice

that this length is typically smaller than
√

N due to the ran-
domness of the samples. Since

√
N ≈ 1/r, the cdf size is

on the order of m
√

N and cost of updating it for each sam-
ple is O(m

√
N). The complexity of updating the data struc-

ture is also O(m
√

N) since we update a data structure of size
O(

√
N) for 2m vertical lines. Since we repeat this process

for N samples, the complexity of our method is O(mN3/2).

At this point, we should mention that the proposed
uniform-sampling algorithm can be simplified if all that is
desired is a Poisson-disk distribution of the maximal set of
samples. Instead of picking the x coordinate of the samples
based on the cdf using Eq. 2 (which samples the space uni-
formly with every sample), we can simply pick the x coor-
dinate uniformly from the available spans. This means that
we are no longer uniformly sampling the space during the
sampling process, because we give spans with less available
space equal chance as those that have more. However, if we
let the algorithm run until the sample set is maximal, the
entire space would be filled up and the final sample distribu-
tion would have all the properties of Poisson-disk samples.
We discuss the results of this simplification in more detail in
Section 5.

4.2. Variable-density Sampling
Because our algorithm is based on importance sampling, the
extension to variable-density sampling is straightforward. In
this case, the radius at each position (x,y) should be selected
according to an importance field I(x,y). We calculate the ra-
dius map as proposed Wei [Wei08]: r(x,y) = gI(x,y)−1/l ,
where g is a global parameter that controls the magnitude of
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(a) Max-conflict (b) Mean-conflict (c) Min-conflict

Figure 2: Illustration of max, mean, and min-conflict metrics for
variable-density sampling. (a) Traditional max-conflict metric. The
circles indicate the rejection disks where other samples cannot be
placed. The red region is sparse but its samples block those in the
dense region shown in blue. (b) Traditional mean-conflict metric. In
this illustration, the circles are not rejection disks, but are rigid bod-
ies that cannot overlap. Because of the mean metric, the radius of
these circles is half of the original. The samples in the red region
block those in the blue region. (c) Our proposed min-conflict met-
ric. The sparse samples do not block samples in the dense region,
producing a better result.

the radii and l defines the contrast of the final sampled re-
sult. We would like the density of samples to match the im-
portance field, so if the importance field is 10 times larger in
one region than another, it should have 10 times more sam-
ples. Therefore we set l = 2, making the number of samples
proportional to 1/r2. Like the uniform sampling case where
we discretized the x coordinate with ⌈m/r⌉ values, in the
variable-density sampling algorithm we discretize fX ,Y (x,y)
along the x dimension with ⌈m/rmin⌉ values, where rmin is
the minimum value in the radius map, to have sufficient res-
olution for the smallest circles in the high density regions. To
calculate rmin, we use the maximum value in the importance
field imax: rmin = gi−1/2

max .

Unlike the uniform sampling case, however, we discretize
the space in both the x and y directions because of two
key differences in calculating availability between variable-
density and uniform sampling. First, for each new sample
the radius of its conflict disk must be set based on the value
in the radius map. Second, in order to block out the unavail-
able regions after placing a sample, we need to do “two-way”
conflict checking, which means that we must not only take
the radius of the new sample into account, but also the radii
at the points inside the conflict disk that might be blocked
out, since they might be of different size. Therefore, we can-
not have a continuous domain in the y direction, because
we would have to check an infinite number of points inside
the conflict disk to determine availability since the radius
map changes continuously. Because of this, we discretize
fX ,Y (x,y) along the y dimension as well, using the same res-
olution described above. The fact we have to perform a con-
flict check also raises the question as to what metric should
be used, and we describe ours in the next section.

4.2.1. A New Min-Conflict metric
Certain conflict metrics can cause problems at the bound-
ary of regions with different densities. Wei [Wei08] and Li
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Figure 3: Accuracy of disk approximation. (a) Approximation of
disk discretized in x when the sample is on the grid. (b) Percentage
of absolute error between the exact and approximate circle areas
when the disks are only discretized in x (as in the uniform sampling
case) for different values of m, averaged over 10,000 samples. (c)
The same plot for variable-density sampling discretized in both x
and y directions. Both plots are similar, so the discretization in y
does not affect the accuracy much.

et al. [LWSF10] proposed the max-conflict metric for these
situations, where the maximum radius of the two positions
is used to perform the conflict check. This metric has prob-
lems as shown in Figs. 2 and 6, where points near the bound-
ary in the sparse region block samples near the boundary
in the dense region, resulting in undesirable “cut out” ar-
tifacts. These two papers also introduced a mean-conflict
metric in which the average of two points’ radii is used to
perform conflict check. Although this metric produces sam-
ples with slightly higher quality, it still has the same issue
as the max-conflict metric but with a higher computational
cost. To address these problems, we propose to use instead
the minimum radius between two samples for the conflict
check, which we call the min-conflict metric. With this sim-
ple change, we do not have visible artifacts at the density
boundaries since the samples in the sparse region do not
block the samples in the dense region.

To apply this metric, we must examine all of the discrete
positions within the conflict disk of a new sample to see if
they are still available. This is different than in the uniform
case, where we simply blocked out all the positions under
a new sample’s rejection disk. We can no longer do this for
variable-density sampling, since as shown in Fig. 2c there
may be valid sample positions within the dense region that
fall inside the conflict disk of one of the sparse samples. To
do these tests, we loop over all the discrete positions inside
the rejection disk and perform a two-way min-conflict check
between the radius of the new sample and the radius of the
position in question, removing the positions from the cdf that
fail this test.

Note that the size of the conflict disk is selected by the
importance field at the new sample position, which is possi-
ble because the minimum of the two radii is guaranteed to be
less than or equal to the radius of the new sample. Since we
remove unavailable positions after positioning a new sam-
ple, these are taken into account in our cdf for placing future
samples and so there is no rejection in our variable-density
sampling algorithm either. In this case, the cost of updating
data structure is now O(m2√N) because of the additional

c⃝ 2011 The Author(s)
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Figure 4: Quality of our Poisson-disk distribution. Here we show
how the periodogram, radial power, and radial anisotropy of the
Poisson-disk distribution are affected by m. For reference, the re-
sult of dart-throwing is shown at the top. The quality is reasonable
until m = 10, but degrades when m is too small. To do this experi-
ment, we set r = 0.01 and averaged over 10 runs. Note that a radial
anisotropy of -10dB indicates perfect radial symmetry [LD08].

discretization in the y direction, making the overall complex-
ity of variable-density algorithm O(m2N3/2).

5. Results
5.1. Uniform sampling
Our uniform sampling algorithm was implemented in C,
compiled with the gcc compiler, and run under the Ubuntu
Linux operating system. All timings are obtained on an Intel
Core i7 2.8GHz machine with 4GB of memory.

We begin by studying the effect of discretization on the
quality of the results. First, we examine the accuracy of the
approximation of the rejection disk area with different m val-
ues in Fig. 3. As expected, the error is reduced as the resolu-
tion m increases, but the rate of improvement also decreases
as m becomes large. To study the effect of m on the qual-
ity of the generated point set, we compare its periodogram
and mean radial power and radial anisotropy [Uli87] to that
of dart-throwing in Fig. 4. We find that these are similar to
dart-throwing for values of m as low as 10. However, since
our goal is to generate high-quality point sets, we use m= 30
for our experiments. For this m value, our method generates
6,900 samples which is denser than the 6,400 samples gen-
erated for dart-throwing because it is maximal point set.

To evaluate the performance of our algorithm, we tested
our method against those of Gamito and Maddock [GM09],
Dunbar and Humphreys [DH06] and Jones [Jon06] with

Methods Radius (r)
0.05 0.01 0.005 0.001

Ours Time 0.0056 0.0913 0.391 26.7
Samples 296.2 7,030.3 27,952 695,154

Uniform-x Time 0.0066 0.0880 0.337 21.8
Samples 298.6 7,058.3 28,019 695,599

Jones Time 0.0423 0.813 3.207 100.4
Samples 297.6 7,059.4 28,044 697,463

Gamito Time 0.0092 0.101 0.493 16.7
Samples 297.0 7,058.8 28,047 697,451

Table 1: Comparison of timing and number of samples for different
methods without the toroidal boundary condition. Results are aver-
aged over 100 runs and timings are in seconds. “Uniform-x” is the
method that uniformly samples in x instead of using the cdf.

their available implementation code. We generated Poisson-
disk samples both with and without the toroidal boundary
condition, which wraps the rejection disks for samples on the
edge of the space around to the opposite edge. We also gen-
erated Poisson-disk samples using the simpler method de-
scribed at the end of Section 4.1 which uniformly selects the
samples in the x dimension instead of using the cdf. First, we
consider the case without the toroidal boundary condition.
Here, we compare against all methods listed except Dun-
bar and Humphreys, which cannot generate samples without
this condition. The simulation was done for different radii
and the results shown in Table 1 are averaged over 100 runs.
We do not show the results of dart-throwing since it does not
guarantee termination for maximal point sets. For example,
it takes 23 seconds to generate 6,946 samples with r = 0.01,
but we are unable to tell whether the point set is maximal.

The results of the algorithms with the toroidal boundary
condition are shown in Table 2. Here the Jones method is ex-
cluded since it cannot generate samples with toroidal bound-
ary condition because its Voronoi decomposition cannot en-
force periodicity. For the Gamito method, we used the code
provided on their website which does not produce maximal
point sets for this case. Also, Dunbar and Humphreys pre-
sented three algorithms in their paper: one that exactly mim-
ics the dart-throwing process and two others that are approx-
imate. The results presented in Table 2 are obtained using
the accurate method to generate the samples and then we
maximize the point sets using their approximate method.

These results show that our method is better than previous
methods, except for Gamito’s when the number of samples
is large. However, none of these methods can do variable-
density sampling, an advantage of our technique. Also note
that the number of samples of our method is slightly less than
the other methods (less than 0.3%) due to the discretization.

We also compare our method with the simpler approach
which uniformly selects the x coordinate among the avail-
able vertical spans. As shown in Tables 1 and 2, this simpler
method tends to pack more samples because it biases them
toward spans that are more full. Therefore, if the algorithm
can be run up to maximal sampling, this simpler method
would produce reasonable results. However, in many appli-

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.
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Methods Radius (r)
0.05 0.01 0.005 0.001

Ours Time 0.0052 0.090 0.374 25.9
Samples 277.9 6,938.1 27,762 694,243

Uniform-x Time 0.0059 0.087 0.347 21.3
Samples 280.7 6,965.7 27,825 694,646

Dunbar Time 0.0952 1.747 6.726 162.6
Samples 278.7 6,973 27,889 696,507

Gamito Time 0.0066 0.120 0.502 16.2
Samples 231.2 6,694.7 27,316 693,760

Table 2: Comparison between different methods with the toroidal
boundary condition. Results are averaged over 100 runs and timings
are in seconds. “Uniform-x” is the method that uniformly samples
in x instead of using the cdf.
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Figure 5: Comparison of uniform sampling in the x dimension
with our algorithm. Results are obtained by setting the radius equal
to 0.01 and the desired number of samples to 6,000. Uniform sam-
pling in the x dimension produces a result with a biased spectrum.

cations (e.g., rendering) we cannot always utilize a maximal
set of samples. Because this approach does not uniformly
distribute the samples in the space during the sampling pro-
cess, we can see a bias in the distribution for sets that are not
maximal. To show this, Fig. 5 shows the frequency analy-
sis for a set of 6,000 samples with toroidal boundary con-
dition (where the maximal number of samples is approx-
imately 6,900). The proposed algorithm has a reasonable
periodogram, radial power, and radial anisotropy, while the
uniform-x algorithm shows a significant bias as can be seen
by the vertical line in the periodogram.

5.2. Variable-density Sampling
We begin by demonstrating the improvement of the pro-
posed min-conflict metric over the traditional max and
mean-conflict metrics. Fig. 6 shows a comparison of the
three approaches given a specific importance field. To evalu-
ate the performance of our variable-density algorithm, we
compare it against the methods of Balzer et al. [BSD09]
and Kopf et al. [KCODL06] for image stippling. We chose
Balzer’s method because of its high quality results, while
Kopf’s method was chosen because it is a fast method. The
results are shown in Fig. 7 with 20,000 dots for all images.

When comparing to Kopf’s method, we see that their
method is fast but the quality of the produced images is re-

(a) Original image (b) Max-conflict (c) Mean-conflict (d) Min-conflict

Figure 6: Results using the max, mean and min conflict metrics.
(a) Density function. (b,c) With the max or mean-conflict metrics,
samples in the sparse region block those in the dense region, pro-
ducing artifacts. (d) Stippling using the min-conflict metric.

137 seconds 21 milliseconds 24 seconds

111 seconds 19 milliseconds 25 seconds

(a) Balzer et al. (b) Kopf et al. (c) Ours
Figure 7: Comparison with the method of Balzer et al. and Kopf
et al. for generating stippled images. All stippled images use
20,000 dots of the same size. The grayscale images from Kopf et
al. [KCODL06] are used as the density function.

duced. The quality of our images is comparable to that of
Balzer’s method, but our algorithm is faster. In some parts
of the image, such as in the steps of the bottom image, our
method also performs better. The reason for this improve-
ment is that our method produces maximal point sets which
do not miss small details, while at the same time our pro-
posed min-conflict check does not let the samples in sparse
regions “cut out” the thin dense regions. Fig. 8 presents
the breakdown of the influence of maximality and the min-
conflict metric, and shows that most of the quality improve-
ment is due to use of the min-conflict metric.

In terms of memory consumption, Balzer’s method re-
quires more memory than our approach. For example, to
generate the bottom image of Fig. 7 the Balzer method needs
61MB of memory compared to 26MB for ours. The timing
and memory gets bigger for larger number of samples. For
example, if we generate the bottom image with 250,000 sam-
ples (instead of 20,000), the timings would be 311 mins for
Balzer’s method and 13 minutes for ours, while memory us-
age were 655MB for Balzer’s method and 107MB for ours.

6. Limitations and future work
The method presented in this paper is only one way to imple-
ment the core idea of using importance sampling to gener-
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(a) our method (b) max-conflict (c) not maximal
Figure 8: Breakdown of the influence of maximality and the min-
conflict metric. All stippled images use 20,000 dots of the same size.
(a) Our proposed approach. (b) Substituting the max-conflict metric
in our approach produces an image with some cut-outs, even though
it is maximal. (c) Image obtained by adjusting the radii so that the
maximal set has around 22,000 samples, while fixing the number of
samples to 20,000. This shows the effect of the min-conflict metric
when the set is not maximal.

ate Poisson-disk samples. Although it has reasonable speed
and memory requirements, the complexity of the proposed
method is O(mN3/2) and thus its speed is worse than Gamito
and Maddock [GM09] for a large number of samples, al-
though that algorithm is not adaptable to variable-density
sampling. The use of more complex data structures to im-
prove the computational complexity of the method should
be investigated in the future. Furthermore, there is the possi-
bility of updating the data structures in parallel using a GPU,
which would make the algorithm faster. Finally, our method
could be extended to anisotropic blue noise sampling by ex-
cluding rejection-ellipses instead of disks from our pdf’s.

7. Conclusion
We have presented a novel algorithm based on importance
sampling for generating Poisson-disk samples with similar
quality to dart-throwing, and which can generate maximal
point sets without rejecting samples. Our approach can not
only generate high-quality uniform point sets competitive
with all existing uniform algorithms, but unlike these we can
also generate high-quality variable-density point sets that are
comparable in quality to state-of-the-art methods such as Ba-
zler et al. [BSD09] in less time. Moreover, we proposed a
new min-conflict metric that produces better results along
density edges. We note that this is an initial effort to develop
an importance sampling algorithm for blue noise sampling.
In the future, more advanced data structures might speed up
the performance of the approach.
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