
Eurographics Symposium on Rendering 2012
Fredo Durand and Diego Gutierrez
(Guest Editors)

Volume 31 (2012), Number 4

Fast Generation of Approximate Blue Noise Point Sets

Nima Khademi Kalantari and Pradeep Sen

Advanced Graphics Lab, University of New Mexico

Abstract
Poisson-disk sampling is a popular sampling method because of its blue noise power spectrum, but generation of these samples
is computationally very expensive. In this paper, we propose an efficient method for fast generation of a large number of blue
noise samples using a small initial patch of Poisson-disk samples that can be generated with any existing approach. Our main
idea is to convolve this set of samples with another to generate our final set of samples. We use the convolution theorem from
signal processing to show that the spectrum of the resulting sample set preserves the blue noise properties. Since our method
is approximate, we have error with respect to the true Poisson-disk samples, but we show both mathematically and practically
that this error is only a function of the number of samples in the small initial patch and is therefore bounded. Our method is
parallelizable and we demonstrate an implementation of it on a GPU, running more than 10 times faster than any previous
method and generating more than 49 million 2D samples per second. We can also use the proposed approach to generate
multidimensional blue noise samples.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation—
Antialiasing; Image Processing and Computer Vision [I.4.1]: Digitization and Image Capture—Sampling

1. Introduction
Poisson-disk sampling is widely used in various applications
in computer graphics. It is particularly useful for antialiasing
because of its blue noise spectrum due to its low energy an-
nulus around the DC spike in the Fourier domain. The basic
goal of uniform Poisson-disk sampling is to uniformly cover
the space with samples, with the condition that two samples
cannot be closer than a specified minimum distance.

The brute-force method to generate Poisson-disk samples
is dart throwing [DW85, Coo86, MF92], where the sample
is thrown uniformly in the space and kept only if it is far-
ther than a minimum radius to samples already placed. Sev-
eral attempts have been made to accelerate the process of
dart throwing [Jon06,DH06,WCE07,GM09,KS11] by using
special data structures to keep track of the available regions.
More recently, Ebeida et al. [EDP∗11] proposed a method
for accelerating dart throwing which can be run on a GPU.
This is probably the fastest method for accurate Poisson-disk
sample generation known today, and they report it can gen-
erate up to 240K samples/second.

While all the above methods generate samples on the fly,
there are several other methods which use precomputed data
sets to generate Poisson-disk samples [HDK01, CSHD03,
ODJ04, LD05a, KCODL06, Ost07, LD05b]. In nearly all of
these methods, a set of sample tiles is carefully generated
with certain properties (e.g., samples at the boundary of one
tile respect the minimum distance criterion of samples at the
boundaries of other tiles). This optimization usually takes
a lot of time and is performed offline, and at run-time the
tiles are placed randomly to fill the space. These methods
are fast at placing tiles, but they do not have the desired

blue noise spectrum (see [LD08] for detailed comparison).
Among these, the method of Kopf et al. [KCODL06] is the
fastest and can generate more than 2 million samples/second.

Wei [Wei08] proposed a parallel implementation of dart
throwing for a GPU which, while not exactly accurate, pro-
duces results with similar quality to dart throwing. Unlike
the tiling methods, Wei’s technique generates samples on
the fly. To our knowledge, this is the fastest method for gen-
eration of Poisson-disk samples available today, generating
around 4 million samples/second as quoted in Wei’s paper.
For comparison, the GPU implementation of our method can
generate more than 49 million samples per second.

In this paper, we propose a fast way of generating blue
noise samples. The basic idea is to generate an initial set of
Poisson-disk samples using any conventional technique, and
then replicate this set at various locations in the final space
using a process similar to convolution. We use the convo-
lution theorem to show that the spectrum of the final sam-
ples has blue noise properties. This approach is paralleliz-
able, and we demonstrate an implementation of it running
on the GPU.

Although the method introduces errors at the boundaries
between replicated blocks, we characterize the error mathe-
matically and show that it is analytically bounded and verify
the accuracy of analysis by some practical examples. This
allows the user to generate fast Poisson-disk sets with spe-
cific quality. In the limit, if no error can be tolerated, our
algorithm does not provide any improvement over known
methods. The samples generated using our method are "blue
noise" samples since their spectrum approximates the blue

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

noise spectrum of Poisson-disk samples, although they do
not preserve the minimum distance criteria. Therefore, our
method is designed for applications such as Monte Carlo
integration, rather than random object placement since the
minimum distance criteria is not maintained.

Others have proposed related algorithms for generating
a large number of samples using a replicated patch (or
patches) of Poisson-disk samples, such as the work of Dippé
and Wold [DW85] and Lagae and Dutré [LD05b]. However,
as shown in Fig. 1 these simple methods have artifacts in
their spectrum that do not make them suitable for practi-
cal use. To demonstrate this, we show a comparison of our
method against [LD05b] in Section 3.

While our method is conceptually similar to tile-based
methods, our goal is completely different. Tile-based meth-
ods generate large sets of Poisson-disk samples by precom-
puting a specific set of tiles. This tile set is very important
for these approaches, and they cannot use an arbitrary tile
set. The goal of our method, on the other hand, is to acceler-
ate any existing approach for generating Poisson-disk sam-
ples. Unlike tile-based methods, we do not need to compute
a special set of tiles and can use any method to generate our
initial patch. In fact, our goal is to produce a large point set
that has a quality similar to those produced by the input al-
gorithm. We show we can do this to within an error that is
based on the number of samples in the initial patch.

To be effective, our algorithm should have three qualities:
1) the error between our generated point set and that which
would have been produced by the input algorithm should be
bounded and not dependent on the final number of samples,
2) our method should be faster than the fastest known ap-
proach, and 3) our method should work with a variety of
input algorithms and produce plausible results. We show our
method meets these three criteria in the results section.

2. Our Proposed Algorithm
We begin by observing that the process of tiling a patch
over a space is similar to convolution. For example, if we
simply replicate the patch on a uniform grid, we are effec-
tively convolving the original samples with the samples on
the grid, as shown in the first row of Fig. 2. To understand
why this would not work for Poisson-disk sampling, we
use the convolution theorem from signal processing, which
states that the Fourier transform of the convolution of two
signals is the multiplication of their Fourier transforms, i.e.,
F(f ∗g) = F(f) ·F(g). In this case, one signal is the patch
of samples and the other is the locations of these patches
in the final space. The Fourier transform of the small patch
will have the desired blue noise properties, but the spectrum
of the uniform grid will be a set of uniform spikes. This
means that the resulting spectrum will be a set of uniform
spikes with variable magnitudes. Some previous tiling meth-
ods (e.g., [LD05a]) placed the tiles on a regular grid in this
fashion, which is why they required several tiles matched
with each other at the boundaries to avoid problems.

0 50 100 150 200 250

Frequency

0

2

4

6

8

10

12

14

16

18

20

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

D
ip

pe
 a

nd
 W

ol
d

Te
m

pl
at

e
Po

is
so

n
di

sk
 ti

le
s

Figure 1: (top row) The periodogram, radial power,
and anisotropy of the method suggested by Dippé and
Wold [DW85]. Here we rotate, replicate, and crop a small
patch of samples on a uniform grid. (bottom row) the method
proposed in [LD05b]. We generated a tile set containing
1024 tiles each with 80 samples and the final set of sam-
ples was obtained by randomly placing these tiles next to
each other. For both methods, the spectrum results are ob-
tained by averaging the results over 10 sets of 6,400 samples.
There are severe artifacts in the spectrum results of both ap-
proaches and therefore these methods are not suitable to be
used in practice.

Therefore, the point sets we generate with our approach
should satisfy three conditions: 1) the samples should be
uniformly spread, 2) the samples should have a blue noise
spectrum, and 3) their spectrum should match that of a set of
Poisson-disk samples with a comparable number of samples.
Formally, we call our initial small set of Poisson-disk sam-
ples X= {x1,x2, · · · ,xNx}, which can be generated with any
previous method. We denote the set of locations to replicate
this patch as Y = {y1,y2, · · · ,yNy}, and the resulting set of
samples as Z = {z1,z2, · · · ,zNz}.

A possible choice for Y is to randomly place its samples
(the positions for replicating X) with uniform distribution.
This would have a constant spectrum, which would allow
our resulting samples to satisfy our second condition since
it would be the multiplication of a constant spectrum with a
blue noise spectrum. Unfortunately, this approach does not
satisfy the first condition since the random samples may be
clumped together in some parts. The second row of Fig. 2
shows the spectrum results of this sampling pattern.

Based on this observation, a good choice for Y should be
to randomly perturb a set of uniform grid samples, as in a jit-
tered grid. These samples have a spectrum similar to random
samples (constant almost everywhere), except that it has a
low energy annulus at the center which makes it suitable for
our application. In order to use the jittered grid, our patch
size should be twice as large as the block size in each di-
mension to fill the whole space. As seen in the third row of
Fig. 2, the jittered grid approach satisfies the first and sec-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

Frequency

P
o

w
e

r

2
4
6
8

10
12
14
16
18
20
22

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

U
ni

fo
rm

 g
ri

d

0

10

20

30

40

50

60

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

Ra
nd

om

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

5

10

15

20

25

30

P
o

w
e

r

0 50 100 150 200 250
Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

Ji
tt

er
ed

 g
ri

d
w

/o
 c

ro
p

Ji
tt

er
ed

 g
ri

d
w

it
h

cr
op

Fi
na

l p
ro

po
se

d
m

et
ho

d

* =

* =

* =

* =

* =

Radial power Anisotropy Periodogram

X

Y

X

Y

X

Y

X

Y

X
Y

Z

Z

Z

Z

Z

Figure 2: In all cases Ny = 25 and around 1,600 samples are
generated except for the third row which has around 6,400
samples. All the spectrum results are obtained by averaging
over 10 sets of samples.

Initial sample patch Patch locations

1) Generate initial samples 2) Copy the rotated sample
 patch to each location

3) Crop the samples by
 the block boundaries

Figure 3: Overview of the proposed method.

ond conditions to some extent. However, the third condition
is not satisfied since there are many samples close together
because of the overlap between patches. Although the re-
sulting spectrum has blue noise properties, it is possible to
generate a similar spectrum more efficiently with less sam-
ples. For example, the jittered approach has a total number
of samples Nz = 6,400 but a similar spectra can be obtained
with 1,600 samples as seen in the fifth row.

To avoid conflicts in the overlapping regions, we should
crop the samples outside each block after placing the patch.
Unfortunately, the cropping process breaks our convolution
analogy and introduces some artifacts in the result, which
look like low-frequency noise in the periodogram in the
fourth row of Fig. 2. To remove these artifacts, we propose to
rotate the sample patch with a random angle for each block
before placing it at each patch location and cropping it by the
boundaries of the block. This gives us the improved spec-
trum shown in the fifth row of Fig. 2. Because of this ro-
tation, the patch size should be 2

√
2 times bigger in each

dimension than the block size for a 2D set of samples. If we

1/3

rmin
1/3

rmin

rmin

1/4

1/4

rmin

Figure 4: On the left we have 9 blocks with size 1/3× 1/3
and on the right there are 16 blocks with size 1/4× 1/4. In
both cases Nx is the same since we are using the same patch
to tile the space. The ratio of the area of the conflict region
(shown in gray) to the area of the whole space (our error
metric) is constant for both cases, because the minimum ra-
dius (rmin) has changed between the two.

extend this to n-dimensions, this value is 2
√

n where
√

n is
the length of the diagonal of a hypercube with side length
equal to 1. In summary the proposed method has the three
following main steps, also shown in Fig. 3:

Step 1 – Generate initial samples: We generate a patch
with Nx Poisson-disk samples using any existing approach,
as well as a jittered samples as the final patch locations.

Step 2 – Copy the rotated sample patch to each loca-
tion: For each block, we rotate the sample patch by a random
angle and put it at the jittered location in the block.

Step 3 – Crop the samples by the block boundaries:
We remove the extra samples outside the block.

Steps 2 and 3 continue until all the blocks are filled with
samples.

We now discuss the different parameters in our algorithm
in the general n-dimensional case. The user will want to
specify Nz, the total number of samples in the final set. If
we are given a patch with Nx samples, we need to know how
many blocks in Y will produce this result. If the space is tiled
with m blocks in every dimension, then Ny = mn. Given Nx

and Nz it is easy to show that m should be calculated as such:

m = �(2√n) n
√

Nz/Nx�, (1)

We must also choose a value for Nx. Our algorithm has er-
ror with respect to the true Poisson-disk samples because we
do not test for conflicts along the block boundaries (which
is what makes our algorithm so fast). It turns out that this
error is only dependent on Nx. As shown in Fig. 4, the error
in our approach occurs only in the boundary regions that are
within rmin from the edge of the block. Samples in the in-
terior of each block are correct, assuming a proper Poisson-
disk method was used to generate the initial patch. We quan-
tify the amount of error in our approximation by taking the
ratio of the volume of the regions in which conflict can hap-
pen to that of the whole space. To calculate the volume of the
conflict region, we examine a single block, which is of size
(1/m)n. In this block, the middle region which will not have

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

0 50 100 150 200 250

Frequency

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

Nx = 2040 Nx = 630

0 50 100 150 200 250

Frequency

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

Nx = 90

0 50 100 150 200 250

Frequency

Nx = 230

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

Dart throwing
Our method

Figure 5: The number of total samples Nz in all cases is
around 6,400. As expected by our metric in Eq. 4, decreas-
ing Nx results in a reduction in quality (more error) of the
generated samples.

any conflicts is of size (1/m−2rmin)
n, which means that the

conflict region is of size 1/mn − (1/m− 2rmin). Since there
are mn blocks, our error metric gives us:

ε = mn[1/mn − (1/m−2rmin)
n], (2)

where we have set the volume of the whole space to 1. Note
that in Eq. 2, rmin is proportional to 1/ n

√
Nz. By substituting

this in and doing some simplifications, we get:

ε = a(1− (1−2m/ n
√

Nz)
n), (3)

where the a is a constant to account for the proportionality
between rmin and 1/ n

√
Nz. By replacing m from Eq. 1 and

canceling out the n
√

Nz terms, we get:

ε = a(1− (1−4
√

n n
√

1/Nx)
n), (4)

Therefore, our error is only a function of Nx, which means
that it is bounded for a fixed Nx. This means that for a fixed
Nx, the user can generate an arbitrary number of samples in
a space with a fixed error, or for a desired quality determine
the Nx that would produce this result. We examine this effect
in Fig. 5, where we vary the value of Nx for a fixed total
number of samples. We see that when the Nx is reduced, the
quality of the generated samples is reduced as compared to
dart throwing.

Furthermore, if we keep the value of Nx constant but vary
the number of blocks per dimension m to generate more sam-
ples, the quality of our results will stay the same. This can
be seen in Fig. 6. For our results, we use a value of Nx = 630
because it maintains a sufficient level of quality.

3. Results

We implemented our method in C++ and since the method is
parallelizable we used OpenMP. All timings are obtained on
an Intel dual quad-core Xeon X5570 3.06GHz machine with

m = 9 m = 12

0 50 100 150 200 250

Frequency

m = 15

0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency

m = 18

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

Dart throwing
Our method

Nz = 6400 Nz = 11000 Nz = 17200 Nz = 24800

Figure 6: We set Nx = 630 and generate samples using dif-
ferent values for m, which changes the number of samples
Nz. The initial set for our method is generated using dart
throwing. The radial power of dart throwing and our method
are similar, regardless of the value of m.

16GB of memory. We also implemented our algorithm on a
GPU and we used OpenGL and all the timings are obtained
on an NVIDIA GeForce Tesla C2070 with 6 GB of memory.
Since our method aims to accelerate existing Poisson-disk
sampling methods, most of our results will compare the ex-
isting method for generating all the samples to our combina-
tion of using the existing method for only generating the ini-
tial patch and then using our approach for replicating it over
the entire space. This allows to demonstrate that our method
produces results that are comparable to existing methods.

We start by studying the spectrum of our generated
samples with different input approaches in Fig. 7. We
compare with dart throwing, boundary sampling [DH06]
(the fastest method among all the variations), Gamito and
Maddock [GM09], and the tile-based method of Kopf et
al. [KCODL06]. The total number of samples Nz gener-
ated by the boundary method and Gamito and Maddock is
around 8,600 and 6,700, and for dart throwing and Kopf et
al. method is around 6,400. The quality of our spectrum is
comparable to those of the original methods, but our method
is much faster. This shows that any existing method can be
used to generate the input patch, which our method then uses
to generate a large set of samples with comparable quality to
the original method.

To compare against approaches such as the template Pois-
son disk tiles [LD05b], we can also generate several initial
small patches and select them randomly and use them to fill
the space, as shown in Fig. 8. For both methods, we gen-
erated the initial tiles using dart throwing. Unlike our ap-
proach, template Poisson disk tiles need processing to pre-
serve the minimum distance criterion between all tiles be-
fore they can be used. However, despite the fact that they
make an effort to respect the minimum distance criterion, the
spectrum of the samples they produce is not good – it suf-
fers from regular grid spikes. When these points are used to
sample the zone plate pattern (bottom row of Fig. 8), the re-
sult has visible aliasing artifacts. Our approach, on the other
hand, does not have these artifacts and the quality is com-
parable to dart throwing. Our result shows that if the goal is

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

O
ri

gi
na

l M
et

ho
d

O
ur

 m
et

ho
d

us
in

g
di

ff
er

en
t m

et
ho

ds
 a

s
in

pu
t

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
o

w
e

r

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency
0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
o

w
e

r

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

Dart throwing Gamito and Maddock Boundary Kopf et al.

152.5 milliseconds71.3 milliseconds 54.2 milliseconds 2.0 milliseconds

20.1 + 0.7 = 20.8 milliseconds4.5 + 0.7 = 5.2 milliseconds 0.2 + 0.7 = 0.9 milliseconds8.3 + 0.77 = 9.07 milliseconds

Figure 7: The group on top shows the spectrum result for
different methods while the bottom shows the result of our
method by generating the input patch using the different ap-
proaches. For the boundary method [DH06], Nx = 680 and
for all the other methods Nx = 630. We express the total time
of our method as the sum of two numbers: the first is the
time to generate the initial sample patch and the second is
the time for generating the final samples using our method.
These timings are obtained with our CPU implementation
using 2 cores. Use of more cores in this case does not lead
to speed up because of the overhead of creating the threads.
The implementation codes for the original methods (except
for the dart throwing algorithm) were provided by the au-
thors and they were single threaded. As shown, our method
has comparable quality and is much faster than the other
methods.

to have a good blue noise spectrum for purposes of Monte
Carlo integration, then the minimum distance criterion can
be ignored to some extent and that there is more value in the
simple rotation and jittering of our approach.

We also show that our method is faster than any ex-
isting approach in generating a large number of samples
from an initial patch to prove that it can be used to ac-
celerate any method. For this, we generated sample sets
of different sizes with our CPU and GPU implementations

0 50 100 150 200 250

Frequency

Template Poisson disk tiles Our method

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0 50 100 150 200 250

Frequency

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

Dart throwing Template Poisson Disk Tiles Our method

8
ti

le
s

12
8

ti
le

s
10

24
 ti

le
s

Figure 8: We compare our method against template Poisson
disk tiles [LD05b] when the total number of samples in the
entire tile set is equal. Since the template Poisson disk tiles
are 8× smaller than ours (they are not jittered or rotated),
each of their tiles has 8× less samples (80 vs. 640 for our
method). Each row shows the results with a different num-
ber of template Poisson disk tiles (8 for the top, 128 for the
middle, 1024 for the bottom). Because the total number of
samples in the entire set should be equal, our method used
1/8 the number of tiles in each row. The total number of sam-
ples in all the figures was equal to 6,400. The images on the
bottom show the sampling of a zone plate pattern with ap-
proximately 1 sample/pixel. The template Poisson disk tiles
used 1024 tiles (the best in quality of the ones shown here),
while our result is generated using only one tile. As can be
seen, the template Poisson disk tiles have artifacts while our
method is close to the dart throwing result.

and compared our performance to the tile-based method of
Kopf et al. [KCODL06] (the fastest available). Note that the
Kopf et al. method is also approximate and as Lagae and
Dutré [LD08] mentioned, they can have two samples close
together, like ours. We would have liked to compare with
Wei’s [Wei08] method as well, but the implementation is not
available. However, this method has a performance which is
in the ballpark of Kopf et al.’s, as mentioned in their paper. In
Fig. 9 we can see that our method has linear time complexity
for both CPU and GPU implementations. For a low number
of samples, our GPU implementation is slower than the CPU
version due to the large overhead of reading back the data,
but this overhead is negligible as the number of samples in-
creases. Our CPU and GPU implementations can generate
more than 29M and 49M samples/second respectively. For
comparison, Kopf et al.’s prototype implementation gener-
ates around 3.3M samples/second, although it might be pos-
sible to accelerate it and they also can produce variable den-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

0 2 4 6 8 10 12

x 10
5

0

50

100

150

200

250

300

Number of samples

T
im

e
 (

m
ill

is
e

co
n

d
s)

Kopf et al.

GPU

CPU−4cores

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

2

4

6

8

10

12

14

16

18

Number of samples

T
im

e
 (

m
ill

is
e

co
n

d
s)

GPU

CPU−4cores

Figure 9: (left) Time vs. number of samples for
our CPU/GPU implementations compared to Kopf et
al. [KCODL06] (not including the time to generate the ini-
tial samples for our approach). (right) Zoom in of the inset,
only comparing our two implementations.

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15
A

n
is

o
tr

o
p

y
(d

B
)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

0 50 100 150 200 250

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
e

r

0 50 100 150 200 250

Frequency

−15

−10

−5

0

5

10

15

A
n

is
o

tr
o

p
y

(d
B

)

X
Y

sl
ic

e
YZ

 s
lic

e
XZ

 s
lic

e

Gamito and Maddock Our method

Figure 10: (left) 2D slices of the 3D spectrum for Gamito
and Maddock’s [GM09] method with 81,000 3D samples,
generated in 28.2 seconds. (right) spectrum result of our
method when the Gamito and Maddock’s method is used for
generation of initial sample patch. Here, Nx = 15,600 and
the total number of samples Nz is around 81,000. The time
to generate initial sample patch is 5.6 seconds, and the time
for our method to generate the final samples is 6.35 millisec-
onds. As in the 2D case, our method has comparable quality
but is much faster.

sity sets. This shows that we can use any method as the input
to our algorithm and still enjoy a significant speed up.

We also studied the performance of our method for the
generation of 3D samples. Fig. 10 shows the spectrum com-
parison and Fig. 11 shows the timing. Our result using the
Gamito and Maddock [GM09] method for generating the
initial patch is comparable to their full result. Moreover, the
CPU and GPU implementations of our method can generate
around 9.1M and 17.3M 3D samples/second.

Since the purpose of generating blue noise point sets is to
use them in applications such as Monte Carlo integration, we
also conducted experiments to investigate the performance
of our method for antialiasing as shown in Figs. 12 to 14.
We begin by verifying that our method’s error only depends
on the number of samples in the initial patch. To do this, we
rendered a checkerboard scene with approximately 4 sam-
ples/pixel at three different resolutions (thereby changing the
total number of samples for each image). Fig. 12 shows the

0 2 4 6 8 10 12

x 10
5

0

20

40

60

80

100

120

Number of samples

T
im

e
 (

m
ill

i s
e

co
n

d
s)

GPU

CPU−4 cores

Figure 11: Time vs. number of samples for our GPU and
CPU implementations for generation of samples in 3D. Nx =
15,600 in this experiment.

MSE: -42.49 dB MSE: -40.68 dB MSE: -38.98 dB

MSE: -42.45 dB MSE: -40.64 dB MSE: -38.94 dB
D

ar
t t

hr
ow

in
g

O
ur

 m
et

ho
d

512 512 256 256 128 128

Figure 12: These scenes are all rendered with approximately
4 samples/pixel, but their sizes are different so they have a
different total number of samples. Here Nx = 630. All the
MSE values are obtained with respect to the groundtruth im-
age rendered with 2048 samples per pixel and are in dB.
Since they are all negative, values with larger magnitude are
better. Our algorithm has a constant error with respect to
dart throwing which verifies our analysis in Section 2.

error with respect to dart throwing does not depend on the
total number of samples and is constant.

Fig. 13 and 14 show the results for sampling the zone plate
test pattern and rendering a checkerboard scene using differ-
ent methods. The top row in both figures show the results
when all the samples are generated using an existing meth-
ods while the bottom row shows the result of using these
methods only to generate the initial patch and then using our
algorithm to generate the final point set. We can see subjec-
tively and objectively that the quality is comparable and the
error is small.

The time complexity of our method is O(n2Nz) where the
n2 factor is the complexity of rotation. Note that the more
accurate complexity is O(n2Nz +

√
Nzn5) where the second

term is the complexity for multiplication of n(n− 1)/2 n-
dimensional rotation matrix for each block. Therefore by
assuming

√
Nz to be larger than n3 which is a correct as-

sumption in practice, we can neglect the second term in com-
plexity. Also the space complexity of our method is O(nNz)
which is needed for writing Nz n-dimensional samples.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

N. Khademi Kalantari & P. Sen / Fast Generation of Approximate Blue Noise Point Sets

Kopf et al.

MSE: -12.88 dB

MSE: -12.81 dB

Dart throwing

MSE: -12.86 dB

MSE: -12.84 dB MSE: -12.84 dB

Gamito and Maddock

MSE: -12.86 dB

MSE: -12.77 dB

Boundary

MSE: -12.87 dB

O
ri

gi
na

l m
et

ho
d

O
ur

 m
et

ho
d

us
in

g
di

ff
er

en
t

 m
et

ho
ds

 a
s

in
pu

t

Figure 13: This zone plate test pattern is sampled with ap-
proximately 1 sample/pixel and smoothed with a 3 pixel-
wide Gaussian filter. MSEs are obtained with respect to the
reference zone plate image with 10,000 samples per pixel.
Here, our method uses (Nx = 630). Although our algorithm
is faster than any other method, we see here the error intro-
duced is small.

Kopf et al.Dart throwing Gamito and Maddock Boundary

MSE: -40.63dBMSE: -40.68 dB MSE: -40.67 dB MSE: -40.68 dB

MSE: -40.61 dBMSE: -40.64dB MSE: -40.64 dB MSE: -40.66 dB

O
ri

gi
na

l m
et

ho
d

O
ur

 m
et

ho
d

us
in

g
di

ff
er

en
t

 m
et

ho
ds

 a
s

in
pu

t

Figure 14: In all cases the images are of size 256×256 and
the scene is rendered with approximately 4 samples/pixel.
Again Nx = 630 and the error of our method is small.

4. Limitations and Conclusion
Although our algorithm is intended to produce samples suit-
able for Monte Carlo integration, it cannot be used in some
applications like object placement, because of close samples
at block boundaries. We leave the investigation of how to ad-
dress this for future work. Moreover, our method is not able
to directly do variable-density sampling, which can also be
investigated in the future.

We have presented a fast algorithm for generating blue
noise samples which is linear in time and space. We use a
small patch of samples generated with any existing methods
and replicate it to generate a large set of blue noise samples.
Since the operations on each sample are independent of the
other samples, our method is parallelizable. We demonstrate
a GPU implementation of our method which is significantly
faster than existing approaches.

Acknowledgements

The implementations for the algorithms of Gamito et al. [GM09],
Dunbar and Humphreys [DH06], and Kopf et al. [KCODL06] were
provided by the respective authors. This work was supported by

the National Science Foundation under the NSF CAREER award
#0845396.

References

[Coo86] COOK R. L.: Stochastic sampling in computer graphics.
ACM Trans. Graph. 5 (January 1986), 51–72. 1

[CSHD03] COHEN M. F., SHADE J., HILLER S., DEUSSEN O.:
Wang tiles for image and texture generation. ACM Trans. Graph.
22 (July 2003), 287–294. 1

[DH06] DUNBAR D., HUMPHREYS G.: A spatial data structure
for fast Poisson-disk sample generation. ACM Trans. Graph. 25
(July 2006), 503–508. 1, 4, 5, 7

[DW85] DIPPÉ M. A. Z., WOLD E. H.: Antialiasing through
stochastic sampling. SIGGRAPH Comput. Graph. 19 (July
1985), 69–78. 1, 2

[EDP∗11] EBEIDA M. S., DAVIDSON A. A., PATNEY A.,
KNUPP P. M., MITCHELL S. A., OWENS J. D.: Efficient max-
imal poisson-disk sampling. ACM Trans. Graph. 30, 4 (Aug.
2011), 49:1–49:12. 1

[GM09] GAMITO M. N., MADDOCK S. C.: Accurate multidi-
mensional Poisson-disk sampling. ACM Trans. Graph. 29 (De-
cember 2009), 8:1–8:19. 1, 4, 6, 7

[HDK01] HILLER S., DEUSSEN O., KELLER A.: Tiled blue
noise samples. In Proceedings of the Vision Modeling and Vi-
sualization Conference 2001 (2001), VMV ’01, pp. 265–272. 1

[Jon06] JONES T. R.: Efficient generation of Poisson-disk sam-
pling patterns. journal of graphics, gpu, and game tools 11, 2
(2006), 27–36. 1

[KCODL06] KOPF J., COHEN-OR D., DEUSSEN O., LISCHIN-
SKI D.: Recursive wang tiles for real-time blue noise. ACM
Trans. Graph. 25 (July 2006), 509–518. 1, 4, 5, 6, 7

[KS11] KALANTARI N. K., SEN P.: Efficient computation of
blue noise point sets through importance sampling. Computer
Graphics Forum 30, 4 (2011), 1215–1221. 1

[LD05a] LAGAE A., DUTRÉ P.: A procedural object distribution
function. ACM Trans. Graph. 24 (October 2005), 1442–1461. 1,
2

[LD05b] LAGAE A., DUTRÉ P.: Template Poisson Disk Tiles. Re-
port CW 413, Departement Computerwetenschappen, Katholieke
Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee, Bel-
gium, May 2005. 1, 2, 4, 5

[LD08] LAGAE A., DUTRÉ P.: A Comparison of Methods for
Generating Poisson Disk Distributions. Computer Graphics Fo-
rum 27, 1 (2008), 114–129. 1, 5

[MF92] MCCOOL M., FIUME E.: Hierarchical Poisson disk sam-
pling distributions. In Proceedings of the conference on Graphics
interface ’92 (1992), Morgan Kaufmann Publishers Inc., pp. 94–
105. 1

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.:
Fast hierarchical importance sampling with blue noise properties.
ACM Trans. Graph. 23 (August 2004), 488–495. 1

[Ost07] OSTROMOUKHOV V.: Sampling with polyominoes. In
ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007),
SIGGRAPH ’07, ACM. 1

[WCE07] WHITE K. B., CLINE D., EGBERT P. K.: Poisson disk
point sets by hierarchical dart throwing. In Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing (2007), IEEE
Computer Society, pp. 129–132. 1

[Wei08] WEI L.-Y.: Parallel Poisson disk sampling. ACM Trans.
Graph. 27 (August 2008), 20:1–20:9. 1, 5

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

