Graphics Hardware (2004)
T. Akenine-Moéller, M. McCool (Editors)

Silhouette Maps for Improved Texture Magnification

Pradeep Sen

Stanford University

L——Standard bilinear filtering

I Proposed silmap technique ———

Abstract

Texture mapping is a simple way of increasing visual realism without adding geometrical complexity. Because it is
a discrete process, it is important to properly filter samples when the sampling rate of the texture differs from that
of the final image. This is particularly problematic when the texture is magnified or minified. While reasonable
approaches exist to tackle the minified case, few options exist for improving the quality of magnified textures in
real-time applications. Most simply bilinearly interpolate between samples, yielding exceedingly blurry textures.
In this paper, we address the real-time magnification problem by extending the silhouette map algorithm to general
texturing. In particular, we discuss the creation of these silmap textures as well as a simple filtering scheme that
allows for viewing at all levels of magnification. The technique was implemented on current graphics hardware
and our results show that we can achieve a level of visual quality comparable to that of a much larger texture.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture
1.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Texture mapping was developed by Catmull as simple a way
of improving realism without increasing the geometric com-
plexity of a scene [Cat74]. Since then, texturing has become
a ubiquitous primitive in computer graphics, employed with
much success in both high-end rendering for feature film as
well as real-time graphics applications such as video games.

The sampling process inherent in computer graphics man-
dates that one must sample these textures carefully or risk
introducing unsightly artifacts, a fact noted by Catmull in
his original work. These can occur when the rendering sam-
ples in screen space coincide poorly with the discrete tex-
ture samples, eg. when the texture is magnified or minified
on the screen. Although there has been extensive work for
ameliorating artifacts during texture minification, relatively
little work has been done in the regime where the texture
is magnified, particularly for interactive applications. In this
paper, we extend the silhouette maps introduced by Sen et

(© The Eurographics Association 2004.

al. [SCHO3] to reduce the artifacts of textures under mag-
nification. Our solution targets real-time applications and is
amenable to acceleration on graphics hardware.

1.1. Previous work

We will begin with a survey of previous work specifically
relating to the antialiasing of textures, and thus refer readers
who seek an introduction to texture mapping to Heckbert’s
survey of the subject [Hec86]. As stated in the introduction,
most of the previous work deals with textures under minifi-
cation. One of the seminal papers in this area is Williams’s
work on mipmaps [Wil83]. A mipmap is a pyramidal data
structure that maintains pre-filtered versions of a texture at
different resolutions. The base layer contains the texture at
full resolution, and each successive layer in the pyramid is
1/2 the resolution of the layer below it. Texels in upper lay-
ers are computed by applying a simple box filter to the 2x2
texel neighborhood in the layer below it. To query for a fil-

P. Sen / Silhouette Maps for Improved Texture Magnification

tered texture value, the algorithm must compute the size d
of the pixel’s projection onto the texture and then use this
value to find the two neighboring mipmap levels with tex-
els closest to that size. Texels from these two levels are then
each bilinearly interpolated using the u and v texture coor-
dinates, and the two results are linearly interpolated using
d. The linear interpolation between levels prevents popping
of the texture as the object moves back and forth. The main
advantage of mipmaps is that they allow for a constant-time
lookup of a filtered texture value regardless of the size of
the pixel’s footprint. They are also straightforward to imple-
ment in graphics hardware and are thus popular in real-time
applications.

There have been other proposed approaches for acceler-
ating the filtering of minimized textures for real-time appli-
cations (eg. Crow’s summed-area tables [Cro84]). However,
these approaches have not gained as widespread use as the
mipmap algorithm in today’s interactive applications.

So far, we have discussed previous work dealing with the
regime where the texture is minified, or in mipmapping par-
lance the region of d > 0. Unfortunately, the problem of an-
tialiasing of magnified textures has not received as much at-
tention. The naive approach is to simply perform a nearest
lookup on the texture, resulting in a jagged “pixelated” tex-
ture. An improvement of this is to bilinearly interpolate the
data, which results in blurry textures but alleviates pixela-
tion considerably. Since this interpolation is fast and simple
to implement (and supported natively on modern graphics
hardware), most interactive applications use this technique
despite low quality results. Finally, there is also the possi-
bility of a brute-force approach which would simply store
a higher resolution texture to begin with so that the user is
never able zoom in beyond the base level in the mipmap. To
reduce the memory consumption, compression techniques
such as rendering from compressed textures [BAC96] could
be implemented. Our proposed solution yields results com-
parable to that of a larger texture but with a modest memory
overhead.

An approach that specifically addresses the magnification
problem is SGI’s GL_SGIS_sharpen_texture which tries to
generate a higher resolution version of the texture by extrap-
olating from lower resolution versions. Unfortunately, with-
out any more information other than the pixel values this
extrapolation is often prone to error.

Schilling et al. describe detail maps in their Texram
paper[SKS96], which provide a hierarchical resolution
framework that allow certain regions of the texture to be
stored at much higher resolutions than others. Unfortunately,
because of the potentially large chain of indirect texture ref-
erences, this method could be difficult to implement effi-
ciently on consumer graphics hardware and can inherently
only improve the quality of a few regions of the texture. Sim-
ilar detail textures were implemented by SGI in their Infinite
Reality system.

Another option is to use procedural textures [EMP*94].
Since these have a functional representation as opposed to
a bitmap representation, they can be magnified arbitrarily.
These textures tend to work well for some natural phenom-
ena such as clouds, but are typically not well-suited for the
textures normally found on signs, characters, etc. because it
is often impossible to describe their artwork in functional
form. They can also be computationally expensive, and all
but the simplest are unsuitable for real-time.

This paper uses discontinuity information for improving
filtering to reduce aliasing, something that is not new to
graphics. One example of this was the successful use of dis-
continuity meshes for improved radiosity algorithms in the
early 90°s ([Hec92, LTG92]). On a more related topic, Salis-
bury et al [SALS96] described a piece-wise linear structure
to allow magnification of pen-and-ink illustrations. Their
technique is more complicated than the algorithm presented
here and is not easily applied to current graphics hardware.

Bala et al. use an edge-and-point image, a representation
that stores both samples and discontinuity information, to
improve interpolation of sparse samples for high-end render-
ing [BWGO03]. In work done concurrently to our own, Bala
et al. extend their idea to texturing [RBWO04]. Their tech-
nique, known as feature-based textures, approximates dis-
continuities in each cell with splines and can store several
discontinuities in each cell. Feature-based textures target ap-
plications requiring high reconstruction quality, and it is not
easy to see how the spline intersection and filtering parts of
their algorithm could be mapped to graphics hardware.

Finally, in work done concurrently with our own, Tumblin
et al. embed boundary information into a bitmap to create
what they call bixels[TC04]. Bixels can be thought of as a
silhouette map with two bits of extra information to indicate
the boundary conditions. This is similar to our proposed ex-
tension of silhouette maps. The main difference in the two
approaches lies in the reconstruction filter, with bixels us-
ing a more complex patch-based scheme. Our algorithm is
simpler and has been implemented directly on the graphics
hardware.

Our contribution is an algorithm that significantly im-
proves the quality of magnified textures at comparable mem-
ory sizes and can be implemented on current graphics hard-
ware. We do this by extending the silhouette map work of
Sen et al. [SCHO3] to general textures. While the standard
bilinear interpolation attempts to reconstruct the original tex-
ture by applying a bilinear filter to all the bitmap samples,
we improve the reconstruction by enhancing the point sam-
ples with a silhouette map that contains boundary informa-
tion. We modify the original silhouette map algorithm to fil-
ter neighboring samples while preserving the discontinuities.
Finally, we describe a simple way of antialiasing the texture
when the textured object is minified. This results in a texture
that can be viewed from up close or from far away without
a degradation in quality and with a memory footprint com-

(© The Eurographics Association 2004.

P. Sen / Silhouette Maps for Improved Texture Magnification

V/_

yaT
|
1

|
=) > :

B D F

Figure 1: This design was converted into a texture 32x32
pixels in size. The region indicated is a little over 3 pixels on
a side. (A) Filtered bitmap (32 % 32) generated from the orig-
inal vector representation. (B) Bilinear interpolation per-
formed on the filtered bitmap during rendering. (C) Closeup
of the bitmap used by the silmap algorithm, which is different
than (A) because we do not pre-filter across discontinuities.
(D) The same bitmap as (C), but this time bilinearly inter-
polated. (E) Positions of the silhouette points in the texels,
with the deformed cells shown. Original silmap cells are in
dashed lines. (F) Final result of our algorithm.

parable to that of standard texturing. We call these silhouette
map textures, or silmap textures for short.

2. Silhouette maps for textures

Silhouette maps were introduced by Sen et al. as a way to
remove the jagged artifacts from the shadow mapping algo-
rithm [SCHO3]. Standard shadow maps store visibility from
the light source in a depth texture which is then projected
onto the scene during the final rendering pass. This projec-
tion often enlarges the depth texture in screen space, mag-
nifying the depth texels and resulting in visible jagged con-
tours along shadow boundaries.

The shadow silhouette map algorithm ameliorates these
boundary artifacts by storing additional information about
the position of the shadow edge in a data structure with fast,
constant-time lookup. Specifically, a silhouette map is a uni-
form grid structure that stores the coordinates of single point
in each cell. Every cell has a default point at the cell’s cen-
ter, (0.5, 0.5) in local coordinates, except when the silhou-
ette boundary of an object passes through the cell. In this
case, the point is placed on the silhouette boundary, and col-
lectively the points form a piece-wise linear approximation
to the shadow contour. This yields a better approximation
of the true shadow contour than the piece-wise constant ap-
proximation achieved with standard shadow maps. To shade
a point in the final rendering pass, it is first projected into the
appropriate silhouette map texel. Lines connecting the cell’s
silhouette point to those of its four neighbors divide the cell
into four skewed quadrants, and the point must be shaded
according to the depth test result of its skewed quadrant.

At the end of the paper, the authors observe that a sil-
houette map can be thought to deform a regular grid to fit
discontinuities. In this paper, we build on this idea and apply

(© The Eurographics Association 2004.

1 : o
"\ \ "o lhed, \\¥

NS R

. ° .
A B C

Figure 2: (A) Situation in which two discontinuities are in
close proximity to each other. (B) If only the discontinuity
positions are stored in each cell, one cannot determine the
true orientation of the boundaries. (C) Our solution is to
store an extra bit for each edge to indicate whether the edge
is valid. Here the valid edges are shown in a solid line.

silhouette maps to general texturing. Without much modi-
fication, the silhouette map algorithm can perform nearest-
neighbor lookups for textures, just like it did for the depth
map. To do this, we think of the silhouette map as a more
flexible structure than originally envisioned by Sen et al.
Instead of storing scalar depth values in the cells of this
deformed grid, we can easily store RGB color values (or
any kind of values, for that matter). Thus, to render silmap
textures we need two data structures at run-time: a regular
bitmap, and a silhouette map that contains the edge infor-
mation of the texture. As we will discuss later, these can be
generated manually or automatically acquired from real pho-
tographs. The bitmap and the silhouette map are of the same
resolution, and the bitmap is shifted 1/2 pixel in X,y with re-
spect to the silhouette map so that the samples of the bitmap
lie on the corners of the silhouette map cells.

During the rendering pass, the hardware projects the point
to be shaded into the deformed bitmap and the deformed
cell’s sample is used as the final color for the sample. This
yields results such as that shown in Fig. 1, where we can see
that despite the low-resolution of the silmap texture we still
get faithful reconstruction of the original texture. Since each
deformed cell can only have one color, this algorithm is bet-
ter suited for textures with regions of constant colors, such as
decals and signs than for general textures. Besides RGB, one
can also store alpha values for transparency or other vari-
ables so that shaders can be specified with high resolution
using a relatively low-resolution data structure. Details on
the implementation of this algorithm can be found in a later
section.

2.1. Filtering

The nearest-neighbor algorithm is satisfactory for only a
small number of applications. The problem with it is evident
when we apply the algorithm to more complex textures (Fig.
5). If we do not filter neighboring samples together, we see
that the interior regions appear pixelated. To reduce these
artifacts, we must filter across a neighborhood of samples
while being careful not to filter across established disconti-
nuities. We must also keep the samples localized enough so
that they can be accessed quickly on graphics hardware.

P. Sen / Silhouette Maps for Improved Texture Magnification

Figure 3: Cases requiring different interpolation schemes.
Corner samples representing bitmap entries are labeled
A,B,C,D and random points are shown in each skewed
quadrant to facilitate discussion. (4) Cell without bound-
aries, so the color is determined by bilinearly interpolat-
ing the four samples. (B) Cell contains one boundary seg-
ment. (C,D) Cell contains two boundary segments. (E) Three
boundary segments, and finally (F) all four border segments.

In order to avoid filtering across discontinuity boundaries,
we must be able to define these boundaries in our silhouette
map. The problem with the silmaps of Sen et al. is that they
contain the position of potential discontinuities but do not
indicate what is a real boundary [SCHO3]. In their imple-
mentation, the depth tests at the corners are used to establish
boundary information since shadow boundaries can only oc-
cur along an edge where the two depth tests give conflicting
results. In our situation we do not have these tests so we must
add additional information to the silhouette map structure to
indicate these boundaries. One might be tempted to address
this problem by only having silhouette points inside cells
with valid discontinuities and empty cells elsewhere, with
the hope of extrapolating boundary information by looking
at neighboring cells. This approach does not work, however,
since it can yield ambiguous situations (Fig. 2). The funda-
mental problem is that while the position of the discontinuity
can be interpreted as a property of the cell, the connectivity
of the discontinuity boundary of the cell with its neighbors
is a property of the edges. Therefore, there can be up to 4
boundary edges in each cell.

Our solution is to add two extra bits per cell, which are
then associated with two of the four boundary segments and
indicate whether they represent a discontinuity or not. Only
two of the four segments need to be labeled per cell because
we can access the information on the other two from neigh-
boring cells. This method specifies the boundaries of the tex-
ture explicitly and breaks the texture up into regions, sets of
points located on the same side of the discontinuity that must
be filtered together. In this paper, we will refer to the bound-
aries of a cell as the north, south, east, and west boundaries
depending on the neighbor they connect to.

Initially we experimented with storing a region code at
each corner of the cell to indicate its region instead of ex-
plicitly defining the boundaries. As in the shadow applica-
tion, the boundaries could then be deduced from this infor-
mation since corners with different region codes would have
an implicit boundary in between them. While this allowed
the re-use of the nearest neighbor lookup code to fetch the re-
gion information in the same way we fetched the color infor-
mation in the previous section, problems were encountered
when a region curved around and had a boundary with itself.
This required arbitrarily breaking up a continuous region
into two different regions in order to preserve the boundary.
Because of this, we found it better to explicitly express the
boundaries in each cell.

When rendering with a silmap texture, we must also deter-
mine how many samples from the bitmap to use in texture re-
construction. More complicated reconstruction schemes use
samples from neighboring cells [RBWO04, TC04], but this
makes them more difficult to implement on graphics hard-
ware. In this work, we decided to keep the samples localized
and will work only with the four corner color samples of a
silhouette cell. Not only is this realizable in current hard-
ware, but it is fast and provides reasonable results. For the
same reason, we chose bilinear interpolation as our filter ba-
sis. It works well for real-time applications and is supported
natively in the hardware, a fact that we used to our advantage
in the implementation.

At this point we can describe the full silhouette map tex-
ture algorithm with filtering. First, the uv coordinates of the
point to be textured are computed to project it into a specific
cell of the silmap. We must then decide which of the four
corner samples are in the same region as the current sample
by using our boundary information (Fig. 3). Once we have
decided which corners to include in the region, we must ap-
ply the appropriate filter to the samples to get the final color
value.

First, we determine which corner samples are available
for filtering by following these rules:

1. A point is always in the same region as its respective cor-
ner. For example, in Figure 3, point a will always include
corner sample A4 in its filter kernel.

2. Corner samples sharing a side with the point’s corner will
be included only if there is not a boundary in the way. For
example, point a will use corner sample B only if there is
no east boundary. Likewise it will include corner sample
D if there is no north boundary.

3. The corner sample directly across the point’s corner will
be included only if there is a path there that does not in-
tersect boundaries. For the case of point ¢ we can write
the decision to include corner sample C as the following
boolean expression:

inc_C = (('o_N && !b_W) || (Ib_E &&!b_8S))
where boolean b_N is a 1 if there is a north boundary, for
example. Another way to say this is that corner sample C

(© The Eurographics Association 2004.

P. Sen / Silhouette Maps for Improved Texture Magnification

will be included if we can move counter-clockwise from
A without hitting a boundary (north and west boundaries
are both 0) or we can move clockwise without hitting a
boundary (east and south boundaries are both 0).

To better understand this algorithm, we examine specific
examples from Figure 3. In Fig. 3B, we can see that point
d will include sample D by the first rule. In addition, it will
include C and dismiss 4 by rule 2. Finally, since we can ac-
cess B from D (because the west and south boundaries are
both 0), B will be included as well. Thus, point d will filter
between three corner samples, B, C, and D. In the same dia-
gram, it can be seen that point ¢ will include all four corner
samples by following the rules stated. This means that in this
example we could end up with a shading discontinuity along
the non-existent west boundary because different filters are
used on either side of the “boundary.”” While this is an arti-
fact of the simple filtering algorithm, we note that in practice
the results are reasonable and schemes that guarantee not to
have these artifacts for any case are difficult to implement
for real-time.

At this point we have determined how many corners (from
one to all four) we will use in the interpolation. Because we
are using a bilinear basis for filtering, several of the cases
become straightforward to implement on graphics hardware.
For the 1-corner case (eg. point b in Fig. 3E), we simply use
the value of the appropriate corner. For the 2-corner case (eg.
point ¢ in Fig. 3D), we linearly interpolate between the two
corner values, and with the 4-corner case we perform the full
bilinear interpolation.

The 3-corner case requires special consideration, how-
ever. Suppose we wanted to find the value for point ¢ in Fig.
3C using samples B, C, and D. We first compute the plane
going through these samples by performing the cross prod-
ucts of the two vectors

CB = (1,0,C3—C¢),CD = (0,1,Cp — C¢)
where Cp indicates the color at corner B. The cross product

of them yields the normal

= -

7
N=CBxCD = | 1
0

—_ O~

= —(Cp—Cc)i—(Cp—Cc)j+k

and so we have a plane equation which is equal to:

X — X0 X
N|y—y | =N y =0
z—2z0 z—Cc

and which simplifies to
z=(1—-x—y)Cc+xCp+yCp

This is also the same result as barycentric coordinates for
our triangle in the unit square.

We can now write down the rules for filtering each of the

(© The Eurographics Association 2004.

different cases in Fig. 3. Without loss of generality we write
down the formulas for the cases specifically as shown. In
this paper, we refer to (x,y) to be the local coordinates with
respect to the origin of the texel, corner C. The global texture
coordinates are (u,v).

Case Equation

1comner C¢

2 corner (1 —x)Cp+xD
3comer (1—x—y)Cc+xCp+yCp
4comer (1—y)((1 —x)Cc+xCp)+y((1 —x)Cp+xCy)

Now we must come up with a way so that all of the differ-
ent configurations can be handled efficiently in the hardware.
In the implementation section, we discuss how we take ad-
vantage of the bilinear interpolator available on the hardware
to perform this filtering in an efficient manner.

2.2. Mipmapping of silhouette map textures

Since silhouette maps introduce higher frequency compo-
nents to the original texture, it is important to filter them
properly when they are minimized or they will alias when
the textured surface is animated.

Our solution to this problem takes advantage of the fast
mipmapping capabilities of the current graphics hardware.
After the silhouette map and the respective bitmap are cre-
ated, a pre-processing step determines an average color for
every cell in the silhouette map by weighting the corner sam-
ples by the area coverage of each of their respective quad-
rants. This generates a bitmap with filtered colors at the same
resolution as the original silhouette map. This texture can
then be mipmapped like a standard bitmap. The mipmap is
generated from the silmap texture itself instead of simply us-
ing the original bitmap to ensure that the two are perfectly
aligned.

Because the frequency content introduced by the silmap
texture can be quite high, we switched over in some of
our examples to the mipmapped version as soon as the
screen/texture sample ratio became 1:1 to avoid aliasing.
In the implementation section we describe how we use the
mipmapping hardware to switch between the silmap and
mipmapped textures.

2.3. Authoring of silhouette map textures

Silhouette map textures can be created in many ways. A
drawing tool that combines bitmap and vector graphics
would allow artists to manually create the silmap directly.
Silmap textures can be generated from photographs by either
extracting the discontinuity edges through standard com-
puter vision techniques (eg. [Can86]) or manually annotat-
ing the edges. Once the edges are annotated, the original im-
age can be filtered down to the appropriate size for the sil-
houette map while respecting the discontinuity edges. It is

P. Sen / Silhouette Maps for Improved Texture Magnification

essential that one does not filter across discontinuities when
generating the bitmap data for the silmap texture (Fig. 6).
In a way, the process of generating a silmap texture from an
original image is similar to the texturing process.

2.4. Memory usage

The full silhouette map texturing algorithm proposed in this
paper requires three pieces of information per texel: the color
information from the bitmap, a silhouette point that encodes
the position of the discontinuities, and the explicit identifi-
cation of boundaries.

In order to reduce the memory overhead, the silhouette
map and the region map can be packed into a single byte by
using three bits for both x and y. This gives us 8 quantized
locations in x and y, for a total of 64 possible locations inside
the texel. The remaining two bits can be used for directly
labeling the edges for discontinuities.

3. Implementation
3.1. Nearest-neighbor silhouette map textures

The nearest-neighbor silhouette map texture algorithm was
implemented in ARB_fragment_program code. The algo-
rithm is shown below (including instruction counts):

1. Fetch current silhouette point and 4 neighbors. [5 TEXs]

2. Translate neighboring points into the cell’s local coordi-
nate frame. [4 ADDs]

3. Fetch corner color samples. [4 TEXs]

4. Compute line equations for the 4 boundary segments and
for 3 of the 4 line segments that connect the point to the
corners of the cell. These corner line segments divide 3
quadrants in the cell into 2 slices each. The last quadrant
is not tested since it is the default. [7 XPDs]

5. Test the point to shade against each line to see where it
lies. [7 DP3s]

6. Move the correct color into the output depending on the
quadrant we are in. [2 CMPs/slice x 2 slices/quadrant x
3 quadrants (last one is default)]

The explanation as to why we also test against the corner
line segments is given in Figure 4.

3.2. Filtered silhouette map textures

For the hardware implementation of the filtered silmaps, we
must first determine which corners are in the same region as
the sample point. Since we do not have conditional execu-
tion, we must assume that our point can be any of the generic
points a, b, ¢, or d in Fig. 3. A reachability vector (to use
Bala’s terminology [BWGO03]) V' is computed whose com-
ponents indicate which corner samples should be included
in the order {4, B,C, D}. This vector is generated for each of
the generic points, and then the nearest neighbor algorithm
is used to determine which skewed quadrant the point is in

A B C

Figure 4: Taking the dot product of the point to shade with
the boundary lines to identify the quadrant only works when
the angle formed by these lines is less than 180°. In this di-
agram, the hatched patterns indicate the regions where the
dot product is of the same sign for each of the two bound-
ary lines. (A) When the angle is less than 180°, the entire
skewed quadrant is covered by the two tests, therefore we
can simply AND the result of the two tests to determine if the
point is in this quadrant. (B) If the angle becomes greater
than 180°, however, the cross-hatch does not cover the entire
quadrant and our test would give false negatives in regions
with only one hatched pattern. To avoid these problems, we
also test against the lines to the corners of the cell, turning
each quadrant into two pie-shaped slices. (C) Here we show
the results of testing against the first slice in the NE quad-
rant. This slice is guaranteed to be covered by the two tests.

in order to move the correct /' into the proper variable to be
used in the filtering portion of the algorithm. As an example,
the reachability vector for point a would be:

Va.x = 1 //A is always reachable

Va.y = Ib_E // include B if no east boundary

/l the C corner is more complicated, as we discussed...
Va.z=(Ib_N && !b_W) || (Ib_E && !b_S)

Va.w = Ib_N // include D if no north boundary

Similar vectors can be written for the other quadrants. We
must now implement the filtering equations f(x,y) for each
of'the cases in an efficient manner for all the possible reacha-
bility vectors. We observe that it is possible to accelerate the
computation in every one of these cases by using the bilinear
interpolation already available in the hardware:

g(x,y) = (1=)((1 =x)Cc +xCp) +y((1 —x)Cp +xCy)

In the 1-corner case we simply want to use the color sam-
ple at the corner. Suppose that this is corner C. We can access
this value with g(0,0). If we have a 2-corner situation, say
corners B and C, we can access the result of the linear inter-
polation through g(x,0). Finally, the 4-corner computation
is the same as simply accessing g(x,y) directly.

The 3-corner case requires more work. Take as an exam-
ple point ¢ in Fig. 3C. We have determined that for this case,
f(x,y) = (1 =x—y)Cc +xCp +yCp. We note that:

g(x,0) = (1 —=x)Cc+xCp

£(0,y) = (1 =y)Cc+yCp

(© The Eurographics Association 2004.

P. Sen / Silhouette Maps for Improved Texture Magnification

Configuration

A B C D fxy

0 0 O O invalid

0o 0 o0 1 g,

0 o0 1 0 g(0,0)

0 o0 1 1 g0,y

0 1 0 0 g1,0

0 1 0 1 invalid

0 1 1 0 gx,0)

0 1 1 1 2(x,0) + g(0,y) - £(0,0)
1 0 0 0 gLl

1 0 0 I gx1)

1 0 1 0 invalid

L0 1 1 gx)+g0y)-g01)
1 1 0 0 gy

L1 0 1 gxh+aly-gll
L1 1 0 gx0)+gly)-gdl,0)
1 1 1 1 gxy)

Table 1: Computing the interpolated value using only g(x,y)

which when added give us
g(x,0)+g(0,y) = (1 -x)Cc+xCp+ (1 -y)Cc+yCp
= 2Cc —xCc —yCc +xCp +yCp

so to get f(x,y) for this configuration, we need to simply sub-
tract out the extra Cp term:

fxy) = gx,0)+g(0,) —(0,0)
Cc —xCc —yCc +xCp +yCp
= (1—=x—y)Cc+xCp+)yCp.

Thus it is possible to preform the 3-corner interpolation
by performing a linear interpolation of the two sides and sub-
tracting out the sample at the right-angle corner. This allows
us to derive Table 1 which shows how to compute f(x,y) us-
ing only g(x,y) for all possible configurations. The 1’s and
0’s in the table indicate which corners are in the same region
as the current sample. There are three invalid entries in this
table. The corner the sample is in is automatically included,
so we can ignore the all-zero case. The other two invalid
configurations cannot occur in the silhouette map.

The table shows that the interpolated value can be ac-
cessed with one texture lookup for the 1, 2, and 4-corner
cases and with 3 texture lookups for the 3-corner case. In
the 3-corner case, we must be careful since it is possible
that f(x,y) could be bigger than any of the three colors in-
volved (this can happen when the sample is outside the tri-
angle formed by the three corners). In this case we perform
a per-component clamp to the maximum component of the
two corners on the diagonal of the triangle. For example, if
we are dealing with the 3-corner situation we have looked
at before, we would clamp to max(Cp,Cp), where the max
is done per-component. We found in initial experimentation
that if we did not clamp in this manner, we would have prob-

(© The Eurographics Association 2004.

lems in the cases where there was a large gradient between
two of the corner samples of the triangle. This would yield a
color that was noticeably incorrect yet still in the still in the
range 0, 1.

To implement this in an ARB_fragment_program, we
constructed the Karnaugh map of the function to compute
the coordinates of each g(x,y) term. For example, the x co-
ordinate of the first g(x,y) term is sometimes 0, sometimes 1
and sometimes x. By simplifying the Boolean logic that take
the inputs ABCD and maps them to one of these values, we
were able to come up with expressions that mapped well to
the conditional move statements available in the hardware.
This yielded a fragment program that was 45 instructions
long.

3.3. Mipmapping

The mipmapped versions of the silhouette maps were com-
puted as a pre-process. During rendering, certain portions of
the texture might need to be mipmapped while others are be-
ing magnified at the same time. In order to switch between
the silhouette map texture and the mipmapped version, we
first rendered the mipmap levels into a texture in solid colors.
This is similar to the way mipmap levels are visualized, but
in our case only the base level was of a different color (Fig.
7). To prevent popping as the program switched between the
silmap texture and the mipmapped version, we blended be-
tween levels to get a smooth transition. Our tests suggested
that even without the smooth blending between levels the
popping was not noticeable. Once we had established which
regions of the screen we wanted to use with which algorithm,
we used the this texture to combine the results of a silmap
texture pass and a mipmap pass. The final result was a scene
that would smoothly switch between the mipmap and the
silmap texture as needed.

4. Results

Using a silhouette map editor we developed, we created
several silmap textures and scenes to test our algorithm.
Our implementation runs on both NVIDIA and ATI hard-
ware at real-time rates. To give some concrete numbers, the
knight scene with the full algorithm including blending and
mipmapping runs at 70 fps on a pre-release ATI X800XT
(500/500MHz). The knight is an animated md2 character
and is textured by a silmap 256 <256 texels in size. Images
from this and other tests are shown throughout the paper. In
places where we compare to standard bilinear interpolation,
we use a prefiltered version of the bitmap (not the bitmap we
incorporate into the silhouette map), since this is what you
would normally use in practice and it makes the quantization
artifacts less visible. This causes the images to look differ-
ent even in regions where full bilinear interpolation occurs
in both. When we substitute the bitmap from the silhouette
map into the standard algorithm, the fully-blended regions
are identical as one would expect.

P. Sen / Silhouette Maps for Improved Texture Magnification

Texture Resolution Original size ~ Mipmapped size Silmap texture algorithm
Knight 256x256 196.6KB 262.1KB 524.3KB

Teddy Bear 64 x 64 12.3KB 16.4KB 20.5KB

EG logo 32x32 3.1KB 4.1K 8.2K

Pedestrian X-ing ~ 128x128 49.1KB 65.5K 131.1K

Table 2: Survey of memory usage for some of the textures we tested. Our algorithm yielded results equivalent to using a standard
texture many times larger in size while typically only doubling the amount of memory required.

Since our algorithm can be considered a form of texture
compression, it is of particular interest to study the mem-
ory consumption of our new technique. A comparison with
standard texture maps is shown in Table 2 for a few textures.

Our results show that our algorithm roughly doubles the
size of the memory needed while at the same time providing
an image quality of a texture many times larger. Increasing
the size of the texture to improve quality is expensive since
you can only increase the texture in v/2 times in each direc-
tion before it doubles in size.

Note that the memory consumption of our silmap tech-
nique is based on theoretical calculations. In practice we had
to use a larger texture because we cannot pack everything
into a single byte (fragment programs do not have bitwise
operations). If the algorithm had native hardware support
then these numbers could be achieved.

5. Discussion
5.1. Artifacts

The artifacts associated with silhouette maps have been dis-
cussed by Sen et al [SCHO3]. These artifacts occur when the
discontinuity has a region of high curvature that cannot be
represented by a single point or when multiple discontinu-
ity curves intersect inside a cell. These artifacts can also oc-
cur in silmap textures. In addition, the simple interpolation
scheme we propose can sometimes cause banding artifacts,
especially when two cells with a different number of valid
corners are next to each other. Our experimentation demon-
strated that these artifacts are not objectionable.

Despite these constraints, it should be emphasized that
silmap textures are created as a pre-process and, unlike the
silhouette map shadows, they can be modified and adjusted
to eliminate all artifacts. Once the silmap texture is artifact-
free it is guaranteed to be correct at run-time. When creating
the examples of this paper, we found that after some practice
it became straightforward to avoid problematic situations.

5.2. Real photographs

The algorithm was tested on real photographs like those
in Figures 5 and 6. While the results look reasonable, the
sharp discontinuity boundaries tend to give the photographs
a cartoon-like quality, especially when viewed under large

magnification. The explanation of this phenomenon is not
complicated. Natural photographs are composed of wide
range of different frequencies. Our algorithm explicitly pre-
serves discontinuities, which are stored as high frequency
components in the frequency domain. Because we aggres-
sively downsample the image, we filter away all of the mid-
dle frequencies and end up with a representation that pre-
serves the low and high frequencies of the original photo-
graph but lacks the mid-range. Our minds automatically in-
terpret these images as being cartoon-like, since cartoons of-
ten consist of low-frequency regions of fairly constant color
carefully separated from each other through high-frequency
outlines. Thus this is not something particular to our algo-
rithm, but inherent to all the algorithms that attempt to ex-
plicitly store high-frequency discontinuity information while
filtering down the color information (eg. bixels and feature-
based textures). This suggests that simply avoiding filtering
across discontinuity boundaries is not enough for high qual-
ity rendering of enlarged photographs.

5.3. Other applications

The silhouette map textures we propose in this paper can be
used for more than just simple texturing. In Figure 9, we use
a texture to modulate a procedural noise shader [EMP*94]
on a surface. Because the silmap texture gives us a piece-
wise linear approximation of the discontinuities of the de-
sign pattern, even a low resolution texture can give us pre-
cise control of the shader on the surface of the object. An-
other potential application of silmap textures are for bill-
boarding, where the alpha channel is typically a boolean in-
dicating transparency. Using current techniques, billboarded
trees appear jagged when viewed from up close. Silmap tex-
tures would greatly reduce this problem.

5.4. Hardware acceleration

The silhouette map texture algorithm could benefit tremen-
dously from hardware acceleration, even if only part of it is
performed by the hardware. One can imagine a texture unit
that automatically performs a nearest-neighbor lookup on a
texture that has been enhanced with a silhouette map. Such
a unit could be used to automatically generate the images
in Figs. 1 and 8 without the need of a fragment program.
It could also be accessed by the shader in Fig. 9 as easily as
one does a texture fetch. To filter more complex textures, one

(© The Eurographics Association 2004.

P. Sen / Silhouette Maps for Improved Texture Magnification

can write a fragment program that relies on this unit to help
compute the reachability vector to decide which corners to
include in the filtering operation. Finally, this unit would al-
low the silhouette map shadow algorithm to access the depth
map through the same mechanism, thus eliminating the need
for a fragment program in the final pass altogether.

6. Further work and conclusion

Any future work on silhouette map textures should probably
begin by exploring the application of the technique to nat-
ural photographs. As presented in this paper, our algorithm
stores RGB values in each cell which we then interpolate
together to get the final image. While RGB is one useful
basis, other bases (eg. DCT coefficients or indices to texture
patches) might be better suited for reproducing photographs.
This could open the door to interesting hybrid techniques for
image representation. On the more practical side, there needs
to be hardware and software support for silhouette maps if
the technique is to be adopted by the game development
community. Therefore, a good editor that merges seamlessly
into current production pipelines is a must.

This paper presented a simple algorithm that considerably
improves the quality of textures under magnification while
modestly increasing the memory required. The silmap tex-
tures are fairly easy to create and the algorithm runs on cur-
rent graphics hardware.

7. Acknowledgments

The initial ideas that led to this work were conceived through
discussions with Mike Cammarano and Pat Hanrahan while
working on the paper on silhouette map shadows. Yasamin
Mostofi, Mike Houston, and Tim Foley proofread the paper
and gave valuable feedback during writing. Special thanks to
Anup Lobo who beta-tested the silmap editor and generated
the silmap for Figure 9. Thanks also to Fluff for willing to
be photographed. The model for the knight shown through-
out the paper is available at www.polycount.com and the en-
gine to render it was based on the NVIDIA shadow volumes
demo. We would also like to thank NVIDIA and ATI for
providing the hardware and support needed to run our ex-
periments. Pradeep Sen was supported by a research grant
from ATI, NVIDIA, and SONY.

References

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA
N.: Rendering from compressed textures. In
Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques

(1996), ACM Press, pp. 373-378.

[BWG03] BALA K., WALTER B., GREENBERG D. P.:
Combining edges and points for interactive
high-quality rendering. ACM Trans. Graph. 22,

3(2003), 631-640.

(© The Eurographics Association 2004.

[Can86]

[Cat74]

[Cro84]

[EMP*94]

[Hec86]

[Hec92]

[LTG92]

[RBW04]

[SALS96]

[SCHO3]

[SKS96]

[TC04]

[Wil83]

CANNY F. J.: A computational approach to edge
detection. IEEE Trans PAMI 8, 6 (1986), 679—
698.

CATMULL E. E.: A4 subdivision algorithm for
computer display of curved surfaces. PhD thesis,
University of Utah, 1974.

Crow F. C.: Summed-area tables for texture
mapping. In Proceedings of the 11th annual con-
ference on Computer graphics and interactive
techniques (1984), ACM Press, pp. 207-212.

EBERT D., MUSGRAVE K., PEACHEY D.,
PERLIN K., WORLEY: Texturing and Model-
ing: A Procedural Approach. Academic Press,
Oct. 1994.

HECKBERT P. S.: Survey of texture mapping.
IEEE Comput. Graph. Appl. 6, 11 (1986), 56—
67.

HECKBERT P. S.: Discontinuity meshing for
radiosity. In Rendering Techniques '92 (1992),
Chalmers D. P. A,, Sillion F., (Eds.), Eurograph-
ics, Consolidation Express Bristol, pp. 203-216.

LISCHINSKI D., TAMPIERI F., GREENBERG
D. P.: Discontinuity meshing for accurate ra-
diosity. IEEE Computer Graphics and Applica-
tions 12(6) (Nov. 1992), 25-39.

RAMANARAYANAN G., BALA K., WALTER B.:
Feature-based textures. In Proceedings of the
Eurographics Symposium on Rendering (2004),
Eurographics Association.

SALISBURY M., ANDERSON C., LISCHINSKI
D., SALESIN D. H.: Scale-dependent repro-
duction of pen-and-ink illustrations. In Pro-
ceedings of the 23rd annual conference on
Computer graphics and interactive techniques
(1996), ACM Press, pp. 461-468.

SEN P., CAMMARANO M., HANRAHAN P.:
Shadow silhouette maps. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH
2003) 22, 3 (July 2003), 521-526.

SCHILLING A., KNITTEL G., STRASSER W.:
Texram: A smart memory for texturing. /EEE
Comput. Graph. Appl. 16, 3 (1996), 32—41.

TUMBLIN J., CHOUDHURY P.: Bixels: Picture
samples with sharp embedded boundaries. In
Proceedings of the Eurographics Symposium on
Rendering (2004), Eurographics Association.

WILLIAMS L.: Pyramidal parametrics. SIG-
GRAPH Comput. Graph. 17,3 (1983), 1-11.

P. Sen / Silhouette Maps for Improved Texture Magnification

{03

Figure 5: Performing our algorithm on more complex tex-
tures highlights the need for proper filtering. In the top row,
a photograph has been turned into a 64X 64 silmap and the
area indicated magnified to 512x512. The nearest neighbor
silmap algorithm is shown on the left, the filtered version of
the algorithm on the right. The bottom row shows unfiltered
(left) and filtered (middle) closeups of the knight’s shield.
For reference, standard bilinear filtering disregarding dis-
continuities is shown on the right.

Figure 6: Filtering a photograph to generate bitmap data
for silmap texture. (A) Original photograph (1024x1024).
(B) 6464 pre-filtered bitmap magnified using standard bi-
linear interpolation. (C) Silmap technique, using a bitmap
incorrectly pre-filtered ignoring discontinuities. (D) Results
of our algorithm using a 64x 64 silmap and properly filter-
ing bitmap data. The improperly filtered image in (C) has
a noticeable bluish tint in the space above the Earth and a
brownish tint in the Red Sea.

Figure 7: (Left) The mipmap levels were rendered to switch
to the silmap texture when necessary. The red regions indi-
cate the areas that are being magnified. (Right) The result is
a smooth blend of the silmap texture with mipmaps.

A
Figure 8: An example of a sign that might appear in a racing
video game, with resolution 128x 128. The parts shown are

magnified to 512x512. (Left) Standard texturing with bilin-
ear interpolation. (Right) Our technique.

Figure 9: The 6464 bitmap shown in the inset is used to
modulate a procedural noise shader. (A) Results of perform-
ing a standard, nearest-neighbor lookup on the texture. (B)
In an effort to improve the quality, we interpolate the pixels
and threshold the shader at 0.5, a technique often employed
in games to improve the quality of textures used in this man-
ner. (C) Using a silmap texture of the same resolution yields
a visibly better result.

(© The Eurographics Association 2004.

