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ABSTRACT
Recently, there has been growing interest in using compressed sens-
ing to perform imaging. Most of these algorithms capture the image
of a scene by taking projections of the imaged scene with a large set
of different random patterns. Unfortunately, these methods require
thousands of serial measurements in order to reconstruct a high qual-
ity image, which makes them impractical for most real-world imag-
ing applications. In this work, we explore the idea of performing
sparse image capture from a single image taken in one moment of
time. Our framework measures a subset of the pixels in the pho-
tograph and uses compressed sensing algorithms to reconstruct the
entire image from this data. The benefit of our approach is that we
can get a high-quality image while reducing the bandwidth of the
imaging device because we only read a fraction of the pixels, not
the entire array. Our approach can also be used to accurately fill in
the missing pixel information for sensor arrays with defective pix-
els. We demonstrate better reconstructions of test images using our
approach than with traditional reconstruction methods.

Index Terms— Compressive imaging, sampling/reconstruction

1. INTRODUCTION
It is well known that real-world images are compressible in
transform domains, which is the reason for the success of
transform-coding compression algorithms such as JPEG and
JPEG2000. However, most imaging systems do not take ad-
vantage of this compressibility when capturing the image. In-
stead, they measure the information at every pixel and then
throw out most of this information during the compression
process. Naturally, this raises the question if we can measure
only the “important” information in an image directly without
wasting effort (time, power, bandwidth, etc.) measuring data
that will be thrown away eventually during compression.
To address this issue, there has been a growing amount

of interest in recent years in applying results from the field
of compressed sensing (CS) to imaging applications, an area
known as compressive imaging. The theory of compressed
sensing states that if a signal is sparse in a transform domain,
then under certain conditions it can be reconstructed exactly
from a small set of linear measurements using tractable op-
timization algorithms [1, 2]. Although an in-depth review of
CS is beyond the scope of this paper, we present some of its
key ideas in this section to put our contribution into context.
Readers seeking more detail are referred to the many papers
on the subject found in the Rice University repository [3].
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To understand how compressed sensing is traditionally
used for imaging applications, suppose we have an n-pixel
image represented by vector x ∈ R

n. We can write the trans-
form of the image as x̂ = Ψx, where Ψ is a matrix whose
rows represent the compression basis. We say that x̂ is m-
sparse if ‖x̂‖0 ≤ m, meaning that it has at most m non-zero
coefficients (wherem � n and ‖ ·‖0 represents the �0 norm).
Since we would like to take advantage of this sparsity in order
to improve the imaging process, it seems that we would need
to measure the image directly in the transform domain.
Initially, it appears that measuring them non-zero coeffi-

cients of x̂ in the transform domain would still take n mea-
surements, since we do not know which coefficients are the
largest ones. Fortunately, the theory of compressed sensing
allows us to recover the sparse vector x̂ from a smaller set
of measurements under certain conditions. Specifically, we
write the process of taking k < n linear measurements as
y = Ax̂, where y is the k×1 observation vector composed of
the k measurements andA is the k × n measurement matrix.
Here, A = SΨT , where S a k × n sampling matrix which
specifies the linear combination of basis functions measured
at every step and ΨT is obviously the inverse transform. If
the sampling matrix S and the compression matrix Ψ are in-
coherent and the number of measurements k > 2m, it has
been shown that we can recover x̂ exactly by solving the fol-
lowing �0-minimization problem [1]:

min ‖x̂‖0 s.t. y = Ax̂ (1)

Unfortunately, this problem is difficult to solve because
�0 algorithms are combinatorial in nature. However, recent
work in greedy matching pursuit algorithms have shown that
they approximate sparsity and are therefore a tractable way to
approximately solve the system in Eq. 1 for x̂. In this work,
we use one of these techniques called Regularized Orthogonal
Matching Pursuit (ROMP) [4], which tries to select the largest
m coefficients through a greedy iterative process.
In traditional compressive imaging, we take k serial mea-

surements (with k < n) where image x is projected onto each
of the k sampling basis functions of A and use CS to recon-
struct the sparse x̂, which can then be transformed into an
approximation x̃ of the original image x with relatively little
loss. This process requires us to take k photographs of the
scene. Unfortunately as we shall see later, the size of k is still
substantially large which presents a significant obstacle for a
practical implementation of compressive imaging.



2. PREVIOUS WORK
2.1. “Single-pixel” cameras
Single-pixel cameras feature a monolithic photosensor that
measures one intensity value at a time, unlike the sensor ar-
rays of conventional cameras where every pixel measures a
different value simultaneously. Although single-pixel cam-
eras have been around for a long time (e.g. the “flying spot”
camera of the 1920’s), the growing interest in applying com-
pressed sensing to imaging problems has been spurred by
more recent work in single-pixel camera systems.
In 2005, Sen et al. demonstrated the first single-pixel cam-

era from a DLP projector and a single photosensor, a process
which they called “dual photography” [5]. Since the theory of
CS had not yet been developed, they implemented an efficient
adaptive algorithm that was able to capture high-quality im-
ages with less than a thousand patterns. This work was later
extended by Sen and Darabi to include compressive sensing,
which substantially simplified the acquisition process [6].
In 2006, the DSP group at Rice implemented another ver-

sion of the single-pixel camera by modulating the image of
the scene directly onto the photosensor using a DLP device [7,
8]. This work was novel because it used the ideas of com-
pressed sensing to efficiently capture images for the first time,
without requiring an adaptive algorithm. The ability to cap-
ture projections of imaged scenes with arbitrary basis func-
tions has led to a flurry of activity into applications of imaging
in the compressed sensing research community.
2.2. Compressive Imaging Algorithms
Most compressive imaging algorithms developed to-date take
a series of measurements of the image over time by project-
ing it onto random patterns. Extensions include block-based
compressed sensing [9] and CMOS hardware to accelerate
the measurement of the coefficients [10]. Haupt and Nowak
compare conventional pixel sampling to CS imaging, but in
their comparisons they treat the two differently: for conven-
tional imaging they interpolate between the k pixel samples,
for compressive imaging they assume k serial projections of
the image [11]. Finally, there is other work in compressive
imaging where the samples are taken in the frequency do-
main, e.g. [12]. Unfortunately, these Fourier-domain imag-
ing algorithms are impractical for real camera applications.
The fact that the majority of compressive imaging algorithms
require k serial samples to reconstruct the image forces us
to critically examine the practical consequences of these ap-
proaches. We discuss this in detail in the next section.

3. THE NEED FOR NEW CS IMAGING PARADIGMS
Although we are excited about the potential of compressive
imaging, we must play devil’s advocate and take a hard look
at the practical ramifications of many of these algorithms.
Unfortunately, the fundamental drawback of most these ap-
proaches is that they require k serial measurements, a num-
ber which is dependent on the sparsity m of the transformed
representation. For standard images, the best-known com-
pression bases (such as the CDF 9/7 used in JPEG2000) usu-

ally require about 3% of the coefficients for a faithful repro-
duction of the image. In practice, CS algorithms require 5×
more samples than non-zero coefficients in the compression
domain, which means that for an image of reasonable qual-
ity, say 10 megapixels, we would need to measure 1,500,000
coefficients to capture a visually acceptable image. Unfor-
tunately, these measurements must all be done serially, for
example in the case of the “single pixel” cameras by either
projecting the appropriate light pattern [6] or modulating the
DLP [7] once for each measurement.
This creates a fundamental bottleneck for many of the

proposed CS-imaging approaches. A conventional consumer
camera, e.g. the $100 Nikon Coolpix S550, can capture a 10
Megapixel image in 1/1500 of a second losslessly, despite the
wasted “effort” in capturing more information than is needed.
The serial CS-imaging approaches, however, would need to
modulate the acquisition patterns and make measurements at
the rate of 2.3 GHz to acquire a lossy version of the same im-
age. Furthermore, since each sampling pattern (the rows of S)
is 10 megapixels in size, the bandwidth to drive the sampling
modulator is considerable. Assuming the best-case scenario
of binary sampling patterns, the resulting bandwidth would be
2.8 PB/sec. This is one of the reasons that high-speed single-
pixel camera implementations using CS have very low reso-
lutions and a very small set of fixed patterns. For example,
the terahertz single-pixel camera system [13] uses 32 × 32
sampling patterns physically printed on a PCB. These funda-
mental bottlenecks present serious engineering challenges to
practical implementations of these algorithms.
On the other hand, one of the main arguments in favor

of single-pixel cameras (which has, in turn, spurred research
in compressive imaging) has been that they can have more
computational/optical processing per-pixel and can do things
like multispectral and infrared imaging – a point raised by
the first author of this paper in his dual photography work [5].
However, recent improvements in sensor technology (e.g. Kr-
ishna et al.’s work on large, focal-plane arrays of quantum
dots for multispectral and infrared imaging [14]) allow for
fast, high-resolution image capture using conventional “inef-
ficient” methods that measure all n pixels. These recent de-
velopments have forced us to reconsider the true usefulness
of the traditional approaches in compressive imaging.
Therefore, in this paper we propose a different paradigm

for compressive imaging. Rather than applying the projec-
tions to the image over time in a serial manner, we propose to
perform our sampling spatially and therefore parallelize the
process so that all the data is captured at a single moment of
time. We describe our approach in the next section.

4. SINGLE-IMAGE COMPRESSIVE IMAGING
Our approach is simple. Instead of taking k serial mea-
surements of the imaged scene as with most CS imaging
approaches, we measure a random subset of the pixels in the
final image in a single moment of time and use the measured
pixels to determine the missing pixel values using compressed



Fig. 1. CS imaging with Fourier basis. The top row shows the re-
sults of using a sparsified version of the LENA image. On the left is
the input, where all but the 2% largest Fourier coefficients have been
forced to zero. On the right is the reconstruction using CS from 25%

of pixels samples. The two are virtually identical (PSNR = 87.8dB).
On the bottom row, we show the problem with using this approach
on real images. On the left we reconstruct the original Lena image
using simple interpolation from 25% of the pixels (PSNR = 32.2dB).
On the right, we reconstruct from the same samples using CS and a
Fourier basis (PSNR = 27.4dB). These results were initially discour-
aging, since CS is easily beat by the far simpler interpolation.

sensing. In other words, given k random pixel samples, we
use sparsity in a transform domain to determine the values of
the missing pixels. To do this, we write our measurements
as y = Sx where S is a k × n point-sampling matrix, a
matrix with a single “1” in each row and up to a single “1” in
each column. This measurement equation just takes random
pixel samples of x and observes them at y. To get it in the
form described in Sec. 1, we substitute x = ΨT x̂ and get
y = SΨT x̂, which we will solve using CS algorithms.
Initially, it seems that we need to use the Fourier basis

for Ψ because the Fourier basis is incoherent with the point-
sampling basis S (wavelets, on the other hand, are not). This
works well for artificially-sparsified images and is able to
produce near-perfect reconstructions (see top row of Fig. 1).
Since this is difficult to do with other interpolation techniques,
it motivates our overall approach. However, when dealing
with real images that are not sparsified, the algorithm fails,
performing worse than bilinear interpolation (see bottom row
Fig. 1). The problem is that the sparsity of real images in the
Fourier domain is not large enough, and since we typically
need about 4 to 5× more samples than the number of sparse
coefficients in practice, this approach does not work.
In this paper, we propose a way to overcome this problem

and develop an algorithm that performs significantly better
than bilinear interpolation. Specifically, we do this by us-
ing a wavelet basis for compression, which offers increased

Fig. 2. (left) CS reconstruction with wavelets from 25% pixel sam-
ples has problems since Ψ is not incoherent with point-sampled S

(PSNR = 13.4dB). (right) Result of using the filtered wavelet for-
mulation presented from the same samples (PSNR = 32.7dB). This
new approach beats traditional interpolation techniques.

sparsity. However, we must be careful since wavelets are not
incoherent with the spatial point-samples. After all, the better
a transform is at defining localized features, the more coher-
ent it will be with the spikes of a point-sample basis and the
less likely it will work with the CS framework. The result of
trying to use a wavelet basis by itself asΨ is shown in Fig. 2.
To reduce the coherence between S and Ψ, we modify

our measurement equation to include an invertible filtering
process before sampling: y = Sx = SΦ−1xb, where Φ is
an invertible blurring filter and xb = Φx is a blurred version
of the image. We can now add the wavelet compression basis
back in and solve for the sparsest x̂b that meets the constraint:

min ‖x̂‖0 s.t. y = SΦ−1ΨT x̂b = Ax̂b (2)
with the approaches we described earlier. In this work, we
set Φ to be a Gaussian filter, which we apply by multiplying
with a diagonal Gaussian matrixG in the frequency domain:
Φ = FT GF , where F is the Fourier transform and G has a
Gaussian function along its diagonal. To compute our inverse
filter, we need to evaluateG−1, which is also a diagonal ma-
trix. Since the inversion of Gaussian curves is prone to noise
amplification, we use a linear Wiener filter to invert the Gaus-
sian [15] which means that the diagonal elements of our in-
verse matrix areG−1

i,i = Gi,i/(G2
i,i+λ). In our experiments,

we set λ = 0.4. The variance σ2 of the Gaussian function in
G depends on the sampling rate, e.g. for the images of this
paper with 25% of samples σ2 = 3.38 × 103.
After the addition of the filter, our measurement matrix

now is composed of point-samples S and the filtered wavelet
matrixΦ−1ΨT . Since the coherence between a sampling ba-
sis and compression basis can be found by taking the maxi-
mum inner product between any two basis elements times

√
n

[16], we can check if our formulation has indeed increased
incoherence. For the filtered wavelet, the coherence with the
point-sampling basis is 158.3, where the coherence without
the filter is 261.6. This reduction in coherence allows us to
apply CS to this problem.

5. IMPLEMENTATION AND RESULTS
The framework of Sec. 4 results in a simple algorithm that can
be performed in three steps:
Step 1: Measure k random pixels of the image sensor



Original Interp. CS

Fig. 3. Images reconstructed from 25% pixels using interpolation
and our compressive imaging framework. For each inset we show
the original, the interpolated result, and the result of our CS method.
The PNSR results are LENA Interp: 31.2dB, CS: 31.4dB, OBAMA
Interp: 33.7dB, CS: 33.9dB.

Step 2: Use CS greedy algorithm to estimate x̂b in Eq. 2
Step 3: Compute the desired image x = Φ−1Ψ−1x̂b

The first step involves the selection of k random pixels.
We found that a Poisson-disk distribution [17], where all the
pixel samples are separated by at least a fixed distance, works
better than completely random samples. Once the pixels were
selected, we simulate the imaging process by simply measur-
ing the original image at these pixel locations. We then solve
for the missing pixels with Regularized Orthogonal Match-
ing Pursuit (ROMP), using Daubechies-8 (DB-8) wavelets for
compression. AMATLAB implementation of ROMP is avail-
able from Vershynin’s website [4]. Once x̂b is found, we
can compute the desired x. The entire reconstruction algo-
rithm was written in C and takes 100 seconds on a laptop with
2.2GHz processor to process a 512 × 512 image.
To compare our results, we need to interpolate the entire

image from the non-uniform pixel locations. One traditional
way to do this is to tessellate the samples into a triangular
mesh using Delaunay triangulation and then bilinearly inter-
polate across each triangle to fill in the missing pixels. We
show our results for two color images in Fig. 3. A graphi-
cal comparison showing the PSNR for the two algorithms is
shown in Fig. 4. We can see from these results that the pro-
posed algorithm works better than the traditional approach.

6. DISCUSSION
The proposed algorithm raises the possibility of practical,
high-resolution camera systems which only measure a frac-
tion of the pixel samples in order to reduce the bandwidth of
the read-out circuitry. Furthermore, it could also find values
of missing pixels caused by defects in the sensor, reducing
the cost of manufacture. Instead of using traditional inter-
polation techniques to determine these unmeasured pixels,
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Fig. 4. Error curves as a function of the number of samples for
two test images. Our approach results in better reconstruction than
bilinear interpolation as the sampling rate increases.

we use compressed sensing to leverage the compressibility
of the image in the wavelet domain. The resulting images
have crisper edges than the interpolated results. We hope that
these initial results encourage others to explore paradigms for
compressive imaging based on a single image measurement.
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