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Figure 1: (top row) Input video acquired using an off-the-shelf camera, which alternates between three exposures separated by two stops.
(bottom row) Our algorithm reconstructs the missing LDR images and generates an HDR image at each frame. The HDR video result for this
ThrowingTowel3Exp scene can be found in the supplementary materials. This layout is adapted from Kang et al. [2003].

Abstract

Despite significant progress in high dynamic range (HDR) imaging
over the years, it is still difficult to capture high-quality HDR video
with a conventional, off-the-shelf camera. The most practical way
to do this is to capture alternating exposures for every LDR frame
and then use an alignment method based on optical flow to register
the exposures together. However, this results in objectionable arti-
facts whenever there is complex motion and optical flow fails. To
address this problem, we propose a new approach for HDR recon-
struction from alternating exposure video sequences that combines
the advantages of optical flow and recently introduced patch-based
synthesis for HDR images. We use patch-based synthesis to enforce
similarity between adjacent frames, increasing temporal continuity.
To synthesize visually plausible solutions, we enforce constraints
from motion estimation coupled with a search window map that
guides the patch-based synthesis. This results in a novel recon-
struction algorithm that can produce high-quality HDR videos with
a standard camera. Furthermore, our method is able to synthesize
plausible texture and motion in fast-moving regions, where either
patch-based synthesis or optical flow alone would exhibit artifacts.
We present results of our reconstructed HDR video sequences that
are superior to those produced by current approaches.

CR Categories: I.4.1 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Digitization and Image Capture

Keywords: High dynamic range video, patch-based synthesis

Links: DL PDF WEB

1 Introduction

High dynamic range (HDR) imaging is now popular and becoming
more widespread. Most of the research to date, however, has fo-
cused on improving the capture of still HDR images, while HDR
video capture has received considerably less attention. This is a
serious deficit, since high-quality HDR video would significantly
improve our ability to capture dynamic environments as our eyes
perceive them. The reason for this lack of progress is that the bulk
of HDR video research has focused on specialized HDR camera
systems (e.g., [Nayar and Mitsunaga 2000; Unger and Gustavson
2007; Tocci et al. 2011; SpheronVR 2013; Kronander et al. 2013]).
Unfortunately, the high cost and general unavailability of these
cameras make them impractical for the average consumer.

On the other hand, still HDR photography has leveraged the fact
that a typical consumer camera can acquire a set of low dynamic
range (LDR) images at different exposures, which can then be
merged into a single HDR image [Mann and Picard 1995; Debevec
and Malik 1997]. However, most of the methods that address arti-
facts in dynamic scenes (e.g., [Zimmer et al. 2011; Sen et al. 2012])
only produce still images and cannot be used for HDR video.



The fundamental challenge is that producing high-quality HDR
video from a set of alternating LDR exposures requires reconstruct-
ing well-aligned and temporally coherent LDR images. This needs
to be done for each exposure in every frame so that the resulting
HDR video is free of artifacts. Optical flow based solutions [Kang
et al. 2003; Mangiat and Gibson 2010; Ginger HDR 2013] are suit-
able for scenes with small motion, but fail with complex motion.
In these cases, they produce visible tearing and “ghosting” artifacts
due to the failure of optical flow near motion boundaries.

Our method builds upon the recent work on HDR reconstruction
for still images that poses the problem as a patch-based optimiza-
tion [Sen et al. 2012]. Although this approach produces high-
quality still HDR images, it is unsuitable for HDR video due to
the lack of temporal coherency (see, e.g., ThrowingTowel3Exp
in the supplementary materials1).

In this work we propose a new, temporally coherent patch-based
optimization algorithm that can produce high-quality HDR video
from an input sequence of alternating exposures captured with an
off-the-shelf camera. We show how optical flow can be utilized in
conjunction with a patch-based method to achieve motion smooth-
ness, providing robustness to failures of optical flow in areas of
fast motion and occlusions. Where the optical flow fails, the patch-
based method synthesizes plausible textures and the artifacts are
typically confined to very small regions close to motion boundaries.
Masking effects in the human visual system make these artifacts
very difficult to detect in moving video.

Our key contribution is to combine optical flow with a patch-based
synthesis approach similar to Sen et al. [2012] to achieve tempo-
ral coherency. We show that a simple combination of the two
components does not work well and propose a method to com-
pute spatially-varying search windows for handling complex mo-
tions. A secondary contribution is jitter suppression for temporal
coherency, using multiple motion models to regularize the patch-
based alignment in under-constrained regions. As a result of these
contributions, we are able to demonstrate high-quality HDR videos
for scenes with large camera and non-rigid scene motion.

2 Related work

The problem of HDR imaging has been extensively studied in the
past, although most of the previous work has focused on the recon-
struction of still HDR images. For brevity, we shall only consider
methods that have been specifically developed for – or shown to
handle – HDR video, and refer readers interested in general HDR
imaging to texts on the subject [Reinhard et al. 2010].

As mentioned earlier, the systems that have produced perhaps the
most high-quality results to date have been specialized cameras that
capture HDR videos directly. These include cameras with special
sensors to measure a larger dynamic range [Brajovic and Kanade
1996; Seger et al. 1999; Nayar and Mitsunaga 2000; Nayar and
Branzoi 2003; Unger and Gustavson 2007; Portz et al. 2013], or
with beam-splitters that split the light to different sensors so that
each measures a different portion of the radiance domain simulta-
neously [Tocci et al. 2011; Kronander et al. 2013]. However, these
approaches are limited by the fact that they require specialized, cus-
tom hardware, which make them expensive and less widespread.

One possible way to capture HDR video with conventional cameras
is to use external beam-splitters [McGuire et al. 2007; Cole and
Safai 2013]. However, this additional hardware makes the system

1Some artifacts are difficult to observe in still images, and so in the paper

we refer the reader to our supplementary video materials by scene name.

bulky and difficult to use. Moreover, even simple tasks like chang-
ing the focus or zooming become difficult because of the necessary
camera synchronization. Therefore, the more practical way is to use
a single camera that alternates exposures for each frame. Although
not all video cameras can currently do this, there are efforts to in-
crease the programmability of digital cameras (e.g., [Adams et al.
2010]). Furthermore, it is not difficult to find off-the-shelf cameras
that can alternate exposures (e.g., the Basler acA2000-50gc cam-
era used in this work). This approach has been explored in the
past [Kang et al. 2003; Mangiat and Gibson 2010; Magic Lantern
2013], and we use it for our capture as well.

Kang et al. [2003] demonstrate the first practical method for gen-
erating HDR video using an off-the-shelf camera with a system
that acquires sequences that alternate between short and long ex-
posures. They first use optical flow to unidirectionally warp the
previous/next frames to a given frame. They then merge them to-
gether in the regions where the current frame is well-exposed with
a weighted blend to reject ghosting. For the over/under-exposed re-
gions of the current frame, they bidirectionally interpolate the pre-
vious/next frames using optical flow followed by a hierarchical ho-
mography algorithm to help with the alignment process. Although
Kang et al.’s method can increase the dynamic range of videos, their
algorithm has visible artifacts when the input video contains non-
rigid or fast motion as can be seen in Figs. 6 and 7. This problem is
due to the fact that the algorithm relies heavily on existing motion
estimation methods that are still prone to errors in these cases.

The recent work of Mangiat and Gibson [2010] is perhaps the state-
of-the-art for producing HDR video using off-the-shelf cameras.
To overcome the problems of gradient-based optical flow used in
Kang et al., they propose a block-based motion estimation approach
to approximate motion between adjacent frames. Moreover, they
propose a motion refinement stage and a filtering stage that uses
a cross-bilateral filter to remove the block boundary artifacts. In
follow-up work, Mangiat and Gibson [2011] demonstrate improved
results by filtering the regions with large motion to hide the artifacts
of mis-registration. However, their results still suffer from blocking
artifacts, as shown in Fig. 6. Moreover, their method is designed to
handle sequences with only two exposures.

Finally, some publicly-available software has been developed to
capture alternating exposures and produce HDR video. For exam-
ple, the MagicLantern firmware available for certain Canon DSLR
cameras [2013] has an HDR video mode that allows for capturing
video with alternating ISOs. The resulting video can then be used
with Ginger HDR [2013], which features a stand-alone “Merger”
tool that utilizes optical flow to register frames and produce an HDR
output. However, like the optical flow based method of Kang et al.,
it has many artifacts that are visible in scenes with large motion.

3 Proposed algorithm

In order to acquire an HDR video stream with a conventional video
camera, we must first capture an input video that alternates between
different exposures for each frame, as shown in Fig. 2. Formally,
given a set of N LDR images taken by alternating between M
different exposures (Lref,1, Lref,2, . . . , Lref,N ), our goal is to recon-
struct the N HDR frames (Hn, n ∈ {1, . . . N}) for the entire video

sequence2. To do this, our algorithm must reconstruct the missing
LDR images at each frame (Lm,n, m ∈ {1, . . . ,M},m �= ref),
shown with dashed red squares in Fig. 2. Note we use the term “ref-
erence images” to refer to the LDR images captured by the camera.

2Note that the exposure of the reference image is not fixed and depends

on the frame number. Therefore, the correct notation would be ref(n), but

for the ease of notation we skip this formality.
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Figure 2: An example video sequence with N frames. To capture
HDR video, our off-the-shelf camera alternates between M differ-
ent exposures, capturing only one specific exposure at each frame
(shown with solid black squares). Our algorithm reconstructs the
missing exposures at each frame (dashed red squares) by doing a
patch search/vote on the two neighboring frames. To maximize the
temporal coherency, the patch searches are performed around an
estimated motion flow (given by the green arrows). Once these
missing LDR frames have been reconstructed, the different expo-
sures can be merged together for every frame to produce the final
sequence of HDR images.

To reconstruct the HDR images from the LDR inputs, Sen et
al. [2012] had proposed a patch-based optimization system for still
HDR photography that satisfied two properties: 1) the final HDR
image Hn should be very close to the reference image n after map-
ping it to the radiance domain h(Lref,n) wherever Lref,n is well-
exposed, and 2) Hn should include information from the captured
images at the M different exposures neighboring frame n. Al-
though this often works well for still images, their method is un-
suitable for our application since it lacks temporal coherency (see
ThrowingTowel3Exp in the supplementary materials), a neces-
sity for high-quality HDR video. Furthermore, their method can
also generate unsatisfactory results when a large region of the refer-
ence image is under- or over-exposed. This is particularly relevant
for our video application since the reference frame must vary in
exposure for each time instant, resulting in large missing regions in
many reference frames. Therefore, a direct application of the Sen et
al. method to video yields unacceptable results, as shown in Fig. 3.

To address the problem of temporal coherence, we first observe that
despite the motion from frame to frame in a video, the content of
consecutive frames is very similar. For example, the LDR images of
consecutive frames that have the same exposure (each of the rows in
Fig. 2) will be very similar. The second observation is that many dy-
namic scenes can be approximated using multiple large regions that
move coherently across consecutive frames. Guided by these ob-
servations and drawing some of the elements from the patch-based
optimization framework of Sen et al. [2012], we propose the fol-
lowing energy function for HDR video reconstruction:

E(allLm,n’s) =

N∑

n=1

∑

p∈pixels

[
αref,n(p)

· (h(Lref,n)(p) −Hn(p))
2

+ (1− αref,n(p)
) ·

M∑

m=1,m �=ref

Λ(Lm,n)(h(Lm,n)(p) −Hn(p))
2

+ (1− αref,n(p)
) ·

M∑

m=1

TBDS(Lm,n , Lm,n−1, Lm,n+1)
]
.

(1)

Sen et al. Ours

Figure 3: Three HDR frames of the ThrowingTowel3Exp

scene generated by both the method of Sen et al. [2012] and our
method. The method of Sen et al. works best when the reference
image is the middle exposure (middle). In the frames where the low
or high exposed images are the reference (top and bottom, respec-
tively), their method has artifacts, as indicated by the green arrows.
Our method generates plausible results in all cases.

In the first term, h(Lref,n) is a function that maps the LDR image
Lref,n to the linear radiance domain, and αref,n is a function (Fig. 5)
that approximates how well each pixel in Lref,n is exposed. This
term ensures that the HDR reconstruction Hn is similar to h(Lref,n)
in an L2 sense in the well-exposed regions. The second term en-
sures that all the LDR images in one frame are similar to the HDR
image in that frame in an L2 sense for the regions that are not well-
exposed in the reference image. This term maintains the relation-
ship between the HDR image and the LDR’s that compose it, so it
is weighted by the triangle function Λ() used for merging [Debevec
and Malik 1997]. Finally, the third term helps enforce temporal co-
herence by leveraging ideas from Regenerative Morphing [Shecht-
man et al. 2010]. In this case, we propose to use temporal bidirec-
tional similarity (TBDS) to measure the bidirectional similarity of
the LDR image Lm,n to its counterparts in the previous (Lm,n−1)
and next (Lm,n+1) frames:

TBDS(Lm,n , Lm,n−1 , Lm,n+1) = BDS(Lm,n , Lm,n−1)

+ BDS(Lm,n , Lm,n+1).
(2)

Here we use the patch-based bidirectional similarity (BDS) metric
proposed by Simakov et al. [2008], except that we constrain the
search based on the estimated local motion to further improve tem-
poral coherence:

BDS(T, S) =
1

|S|

∑

p∈pixels

min
i⊂fT

S
(p)±wT

S
(p)

D(s(p), t(i))

+
1

|T |

∑

p∈pixels

min
i⊂fS

T
(p)±wS

T
(p)

D(t(p), s(i)), (3)

where s(p) and t(p) denote the patches centered at pixel p in the
source and the target images, and D() refers to the sum of the
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Figure 4: To validate fn−1
n (p), the flow from Ln to Ln−1 shown

with red arrow, we first compute fn+1
n (p) and fn−1

n+1 shown with

blue arrows. We then concatenate these two flows to get fn−1
n+1 (p′)

where p′ = fn+1
n (p). If this flow is inside a small window (shown

in green) around fn−1
n (p), we keep it, otherwise we discard it. In

this case, the flow shown in red will be discarded since it does not
pass the consistency check.

squared differences (SSD) between two patches. We have modi-
fied the standard BDS equation by adding the fT

S (p) and wT
S (p) to

constrain our search: fT
S (p) is the approximate motion flow at pixel

p from the S to T and wT
S (p) scales the search window around it.

Intuitively, the first term (completeness) ensures that for every patch
s(p) in the source, there is a similar patch in the region defined by

fT
S (p) ± wT

S (p) in the target image and vice versa for the second
term (coherence). As shown by Simakov et al. [2008], minimizing
this metric implies that the target image contains most of the con-
tent from the source image in a visually coherent way. As a result,
minimizing the third term in Eq. 1 ensures that each LDR image
Lm,n contains similar content to its temporal neighbors. Moreover,
constraining the patch searches around an initial motion estimation
results in temporal coherency in the output video.

In our algorithm, we first estimate a rough initial motion, then use
it to calculate a local search window size. We then minimize Eq. 1
using a two-stage iterative algorithm that iterates between the two
stages until convergence. This method reconstructs the missing
LDR images, which are finally combined to form the final HDR
results. Therefore, our method consists of three main steps:

1. Initial motion estimation (Sec. 3.1): A rough motion is
estimated in the two directions between consecutive frames
(fT

S (p) and fS
T (p) in Eq. 3). We use a planar model (similar-

ity transform) for the global motion and optical flow for the
local motion estimation.

2. Search window map computation (Sec. 3.2): A window
size is computed for every flow vector (wT

S (p) and wS
T (p) in

Eq. 3). This search window map is used as the search window
size around each initial estimate of the motion.

3. HDR video reconstruction (Sec. 3.3): A two-stage iterative
method is used to minimize Eq. 1. In the first stage, a multi-
scale constrained patch search-and-vote is performed to min-
imize the last term of Eq. 1, and, in the second stage, an HDR
merge step with reference injection [Sen et al. 2012] is used
to minimize the first two terms. The algorithm iterates be-
tween these two stages until convergence. This reconstructs
the missing LDR images and produces the final HDR frames.

We now discuss each of these steps in turn in the following sections.

3.1 Initial motion estimation

Computing the BDS between a pair of images requires performing
a search in two directions, each requiring a motion flow estimation
as per Eq. 3. Therefore, the two BDS terms in Eq. 2 involve the es-

timation of four motion flows at every frame n: fn−1
n (p), fn

n−1(p),
fn+1
n (p), and fn

n+1(p), . Our motion estimation algorithm com-
bines a similarity transform (rotation, translation, isometric scale)
for the global motion followed by an optical flow computation.
The camera motion can be approximately removed by a similarity
transform since there is little camera movement between adjacent
frames, while local scene motion is estimated by optical flow.

The first step is to find a similarity transform between the next and
previous frames (Lref,n+1 and Lref,n−1) to the current frame Lref,n.
This requires raising the exposure of the image with the lower expo-
sure time to that of the other image to compensate for the exposure
differences. To do this, we first apply the inverse camera response
function to take the image with the lower exposure into the linear
radiance domain. We then multiply it by the exposure ratio of the
two images, and, finally apply the camera response function to map
the radiance values into the LDR domain. After performing the ex-
posure adjustment, we use RANSAC to find a dominant similarity
model from the correspondences between the two images. Next,
we warp the two neighboring images using the calculated similar-
ity transforms to remove the global motion and facilitate the local
motion estimation using optical flow. The rest of the process is per-
formed on the warped images.

For simplicity, we only explain the process for estimating motion
from frame n to n − 1 (denoted by fn−1

n (p)), but the other flows
are calculated in a similar manner. Since most optical flow algo-
rithms rely on the brightness constancy assumption, we first adjust
the exposure of all three images (n − 1, n, n + 1) to match the
one with the highest exposure. This is necessary because our flow
validation process, which will be explained later, works on all the
three images under the assumption that they were captured under
the same conditions. After adjusting the exposures, we use the op-
tical flow method of Liu [2009] to compute fn−1

n (p).

As is well known, this flow might be inaccurate because of noise,
saturated pixels, or complex motions. One common way for esti-
mating erroneous flow is to compare fn−1

n (p) with fn
n−1(p) and

keep the flows only if they are close to each other [Brox and Malik
2011]. However, we found this approach was not robust enough,
often validating incorrect flow since errors are often symmetric.
Therefore, we use a more robust flow consistency test based on
triplets of frames, as shown in Fig. 4. To do this, we calculate
the flows fn−1

n , fn+1
n (p) and fn−1

n+1 (p) and check if the concatena-

tion fn−1
n+1 (f

n+1
n (p)) is inside a small window around fn−1

n (p). We
keep the flow vectors where the concatenation is within a very small
window bmin, and otherwise we discard it as invalid. In addition,
we discard the flows in the regions where Lref,n is highly saturated
(all three channels greater than δs) due to the lack of meaningful
content. The final flow is obtained by concatenating this optical
flow result with the similarity transform. In our implementation,
we set bmin to 0.002 times the image size and δs to 0.99.

The estimated flow is used as a guide during the patch synthesis
process to constrain the search to a small, local window around the
flow vector. The size of the local window depends on the accuracy
estimation of the optical flow, which is described next.

3.2 Search window map computation

The search window map defines the size of the search window
around each flow obtained in the previous step. This search win-
dow should be large enough so that the correct patch can be found
during the patch search process, but not so large that it causes tem-
poral jittering in the final result. The ideal size would be equal to
the distance of the correct motion to the estimated flow, but, since
we do not know the correct motion a priori, we need a method to



estimate a window size where a good match can be found. Note
that traditional optical flow confidence measures (e.g., [Jahne et al.
1999]) are not suitable for our purpose as they usually give a score
map reflecting the probability to estimate correct motion.

We propose to use a patch search process to determine the size of
the search window around each flow vector. We start with a small
search window around the flow and perform a patch search to find a
similar patch. If a good match is not found within a given threshold,
the process is continued for several iterations, increasing the search
window each time. Once a good patch is found, we use that search
window size as the value in the search window map.

More explicitly, in order to find a search window wn−1
n (p) around

a flow vector fn−1
n (p) from Lref,n to Lref,n−1, we first match the

exposure of the two images by raising the exposure of the lower
one to match the higher one. For simplicity in this explanation,
we simply use Lref,n and Lref,n−1 to refer to the exposure adjusted
versions of these images. Next, for a patch in Lref,n centered on p,
we look for the closest patch in an L2 sense in a very small window
bmin around fn−1

n (p). If the distance in color space between these
two patches is less than a threshold δn (0.04 in our implementation),
we assign wn−1

n (p) = bmin.

In order to penalize patches that diverge greatly in one color chan-
nel, we compute the patch SSD for each color channel separately
and take the maximum distance as the final value. If the distance
is above the threshold, we exponentially increase the window size
by a factor of two and continue the patch search and distance com-
parison. If a proper window size has not been found after four iter-
ations, we assign a large window size to this flow bmax, which we
set equal to 0.4 times the image size.

The regions where Lref,n is highly saturated (all three channels
greater than δs) do not have enough content, so we use a different
strategy to define the window search size. We first warp Lref,n−1

using fn−1
n (p). If the pixel value of the warped image in these

highly saturated regions is smaller than δs, we assign a large search
window bmax, otherwise we assign a very small window bmin.
Since we use a patch-based method to compute the search window
map, patches on the boundary between an accurate and inaccurate
flow region will cover both regions. Therefore, the patch distances
for these regions might be inaccurate, which makes the computed
search window unreliable. To alleviate this problem and give more
freedom to the patches in these regions, we dilate the search map by
twice the patch width (7 in our implementation) to compute the final
search map. This whole process is done for all other flow vectors
that are used in our TBDS calculation.

3.3 HDR video reconstruction

Once we have computed the initial motion and the search window
map, we minimize the energy in Eq. 1 using a two-stage algorithm.
In the first stage, a constrained patch search-and-vote process is per-
formed for each BDS term in Eq. 2, resulting in two voted images
for each LDR image, shown with dashed red squares in Fig. 2. We
then replace the LDR image with the average of these two voted
images. We continue this search-and-vote process several times to
minimize the third term in Eq. 1 [Shechtman et al. 2010]. The sec-
ond stage, similar to Sen et al. [2012], consists of merging all the
voted images and the reference image into an HDR image at each
frame. This process simultaneously minimizes the second term of
Eq. 1 and ensures that the first term is satisfied by injecting the
well-exposed pixels of the reference image into the HDR frame.
The algorithm iterates between these two stages until it converges.

Our algorithm begins by initializing all of the LDR images to the
exposure-adjusted version of the reference image from the same

0.1 0.9 ref,nL 0.2 0.9

1

0.2 0.9

11

ref,nL ref,nL

Figure 5: The αref,n curves. (left) Sen et al. [2012], (middle) for
search windows smaller than bmax, (right) for search windows of
size bmax. Note the curves only differ in the under-exposed regions
and they are the same as Sen et al. in the over-exposed regions.

frame. Then, for each LDR image Lm,n, we perform two bidi-
rectional constrained patch searches against Lm,n+1 and Lm,n−1.
These constrained searches are performed in a window (Sec. 3.2)
around the initial motion flow estimate (Sec. 3.1). Next, in the vot-
ing process, the searched patches for completeness and coherence
(the first and second terms in Eq. 3, respectively) are weighted av-
eraged to generate a voted image for each BDS term in Eq. 2. The
LDR image Lm,n is then replaced with the average of these two
voted images. We continue this search-and-vote process several
times until convergence.

In the next step, the averaged images from all M LDR sources in
each frame (Lm,n,m ∈ {1, . . . ,M}) are combined using the HDR
merge process, as proposed by Sen et al. [2012], to form an inter-
mediate HDR frame Hn. The HDR merge process injects the well-
exposed pixels of the reference image Lref,n into the HDR frame.
For the over/under exposed regions, we blend the reference im-
age with the other LDR images in that frame using αref,n (shown
in Fig. 5 (middle)). Finally, we replace each missing LDR image
Lm,n with lm(Hn) which maps the radiance values of Hn to the
exposure range of m. This process continues iteratively and in a
multiscale fashion to minimize Eq. 1. Note that in coarse scales we
reduce the size of the window according to the resolution of the im-
age at that scale. In the coarsest scale, our images have 150 pixels
in the smaller dimension and we have a total of 6 scales with a ratio
of 5

√
x/150, where x is the minimum dimension of input frames.

We use 20 iterations at the coarsest scale and linearly decrease it
to 5 at the finest scale. Because we constrain the search to a small
window around the initial flow, our optimization converges faster
and with fewer iterations and scales relative to Sen et al.

Under-exposed regions must be treated carefully when estimating
the HDR image to avoid artifacts from the alternating exposures.
The parameter αref,n in Eq. 1 determines what is over/under ex-
posed and, therefore, controls the contribution of the reference im-
age Lref,n in the HDR image. Sen et al. used a fixed trapezoid func-
tion shown in Fig. 5 (left) as αref,n (see Eq. 1) with a valid range of
0.1 to 0.9. This means that their method heavily relies on the refer-
ence image in the dark regions, which can be problematic when the
reference image has low exposure. As can be seen in Fig. 3 (top)
this washes out the details in the dark regions. Instead, to suppress
the noise in the final HDR result, we set the minimum value of the
valid range to 0.2 and use (Lref,n(p)

/0.2)2 as αref,n in the under-

exposed regions (Lref,n(p)
< 0.2) as shown in Fig. 5 (middle).

Moreover, in the places that the search map has a large window
bmax, we use the αref,n curve shown in Fig. 5 (right), which uses
(Lref,n(p)

/0.2)0.5 in the under-exposed regions. The reason is that

the areas with large search windows are often occluded or under-
going very complex motion, so the reference needs to be injected
more to avoid deviating from the reference. Since the motion is
usually fast in these regions, artifacts are difficult to perceive.

Although we constrain the patch search to a small window around
the rough initial motion flow, the HDR results might still exhibit a
small amount of jittering. This jittering occurs in the under- and
over-exposed regions of the reference image, where the valid infor-
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Figure 6: A comparison of our algorithm and several other methods for a two-exposure input. From top to bottom, ThrowingTowel2Exp,
WavingHands, and Fire.

mation needs to be propagated from other exposures. To alleviate
this problem, after performing the patch search, we find a few dom-
inant similarity models in the nearest neighbor field (NNF) in the
under/over exposed regions using RANSAC. We then overwrite the
NNF values of the inliers using their corresponding model. Note
that this process only removes jittering from regions where mo-
tion can be modeled with similarity transforms. Since no similarity
model fits the regions with non-rigid motion, they will be detected
as outliers and their NNF values will not be changed.

3.4 Acceleration and other details

To accelerate the search-and-vote process, we use the PatchMatch
implementation of Barnes et al. [2009]. We found that, in most
cases, one iteration of the search-and-vote process in the first stage
of HDR video reconstruction algorithm results in convergence.

To compute the similarity transforms (Sec. 3.1), we observed that
PatchMatch can find better correspondences in the smooth regions
than the more commonly used SIFT features [Lowe 2004], provid-
ing a better similarity transform estimation. However, the Patch-
Match correspondences are very dense, which slows down the sim-
ilarity model estimation. Since we perform the similarity transform
estimation twice, once in the motion estimation stage (Sec. 3.1)
and then again in the HDR video reconstruction stage to remove
the small jittering (Sec. 3.3), it is crucial to accelerate this process.

To do this, we use only a subset of the correspondences to estimate
the model. In the HDR video reconstruction stage where we need
to correct all the inliers, we first find a model using a uniform sub-
set of the samples and then find all of the inliers using this model
and correct them. For speed-up, we only perform this process at
the finest scale. Empirically, we found one model is enough for
correcting the inliers and fixing the problem of small jitter.

4 Results

All of the results shown in the paper were captured at 30 frames per
second and with a resolution of 1280 × 720 using an off-the-shelf
Basler acA2000-50gc camera. We captured input sequences with
both two and three alternating exposures. We implemented our al-
gorithm in MATLAB and compared against the method of Kang et
al. [2003], Mangiat and Gibson [2010], and Ginger HDR [2013],
a commercial software application that uses optical flow to register
frames and merges them into HDR. We used our implementation
of the method of Kang et al., but for Mangiat and Gibson’s ap-
proach we asked the authors to run their algorithm on our datasets.
Their core algorithm is proposed in [Mangiat and Gibson 2010] and
includes improvements from [Mangiat 2012] that utilize hierarchi-
cal motion estimation. Tonemapping was done using the method
of Reinhard et al. [2002] modified for temporal coherency, as pro-
posed by Kang et al. Results of each method are in the appropriate
folder in the supplementary material organized by scene name.

We begin by demonstrating the results of the naı̈ve combination
of optical flow with the method of Sen et al. [2012]. For this,
we constrained all the patch search processes in their method to
a fixed window size around the optical flow. We experimented
with small and large window sizes. The results of this experi-
ment for the ThrowingTowel3Exp scene can be found in the
NaivePatchHDR folder of the supplementary materials. As can
be seen, the results are not temporally coherent.

Next, we demonstrate the importance of each stage of our al-
gorithm. For this, we ran four different experiments on the
ThrowingTowel3Exp scene. These results can be found in the
AlgorithmBreakdown folder of the supplementary materials,
where they are appropriately named by their corresponding exper-
iment. In the first experiment, initial motion flows (Sec. 3.1) are



used to simply warp the next and previous frames to the current
frame and generate HDR video. This results in large artifacts in re-
gions of motion, and jittering problems arise due to the inaccuracy
of the motion estimation. Second, we applied a search window of
a small fixed size around all of the flows and generated results with
our HDR video reconstruction system (Sec. 3.3). Due to this lim-
ited window search, our HDR reconstruction system cannot correct
the inaccuracies of initial motion flow and produces visible ghost-
ing artifacts around moving objects. Third, we repeated this ex-
periment with a large search window instead. The accompanying
video shows that even our model fitting (Sec. 3.3) fails to correct
the jittering caused by the broader search window. Finally, our full
method, excluding model fitting, results in small jittering in the out-
put. For comparison, our full algorithm exhibits the final result with
minimal artifacts.

Since the method of Mangiat and Gibson and Ginger HDR can only
handle two-exposures, we first compare the results of our algorithm
with all the other methods on sequences with two alternating ex-
posures separated by three stops. Fig. 6 shows the result of this
comparison on the ThrowingTowel2Exp, WavingHands, and
Fire scenes (from top to bottom). Ginger HDR and the method
of Kang et al. have similar artifacts around moving objects due to
failure of optical flow. Specifically, the method of Kang et al. re-
lies on the interpolated frames in the under-constrained regions, so
it sometimes cannot reconstruct fast-moving objects. Moreover,
the method of Mangiat and Gibson shows visible blocking artifacts
around the moving objects. On the other hand, our method can
plausibly reconstruct the areas containing fast-moving objects.

Next, we show our results on videos with three alternating expo-
sures separated by two stops, which has not been demonstrated be-
fore. Among the three previous methods, only the method of Kang
et al. can be extended to work with three exposures. We note that
Kang et al. was only previously demonstrated for two exposure in-
puts and, thus, a three exposure input may not be ideal for their
system. Fig. 7 shows the results of our comparison with Kang et
al. on the Dog, CheckingEmail, and Skateboarder scenes
(from top to bottom). As can be seen, the method of Kang et al. has
visible artifacts around the moving objects, while ours reconstructs
visually-pleasing HDR video.

As for timing, our implementation takes roughly three and a half
minutes per frame for a two exposure sequence, in most cases.
This timing consists of the following: initial motion estimation (Sec
3.1): 40 secs, search window map computation (Sec 3.2): 30 secs,
search/vote (first stage in Sec 3.3): 125 secs, and HDR merge (sec-
ond stage in Sec 3.3): 25 secs. We note that these timings are ob-
tained by decreasing from 12 iterations at the coarsest scale to 3
iterations at the finest scale during the HDR video reconstruction
stage (Sec. 3.3). In practice, we found that these iteration counts
generate high-quality results for most cases. However, a few scenes
(e.g. WavingHands in Fig. 6) required additional iterations (20
decreased to 5, as explained in Sec 3.3) to generate satisfactory re-
sults, increasing timings by 70%.

5 Limitations and future work

Our algorithm relies on motion estimation, so this can occasion-
ally result in problems for the output video. For example, the
Skateboarder scene, shown at the bottom of Fig. 7, exhibits
some frames where limbs blur or partially disappear due to mis-
estimated motion. However, these artifacts are difficult to perceive,
since they are small, infrequent, and occur around motion bound-
aries. Thus, because our algorithm does not rely too strongly on
optical flow and can also synthesize plausible texture in these re-
gions, it avoids generating noticeable artifacts.

OursKang et al.Input frames

Figure 7: A comparison of our method and Kang et al. for a three-
exposure input. From top to bottom, Dog, CheckingEmail, and
Skateboarder.

Furthermore, our search window map can sometimes be inaccurate
due to our reliance on similarity transform in the saturated regions.
In these cases, the patch search will be limited to small regions
around an inaccurate flow and, therefore, our method is unable to
place the patches in the correct position, resulting in artifacts. An
example is the Skateboarder scene, where the shoulder of the
skateboarder exhibits slight jittering. Although our artifacts are still
more plausible than those of Kang et al., a better way of handling
the saturated regions can be investigated in the future.

In terms of speed, our algorithm’s runtime can be significantly im-
proved with a more optimized implementation. We observed that,
in practice, most of the regions have a very small search window. In
these areas, our optimization system is more constrained and con-
verges faster, enabling us to decrease the number of iterations and
improve runtime. We leave the acceleration of our algorithm for
future work.

6 Conclusion

In conclusion, we have demonstrated a new method for producing
HDR video with an off-the-shelf camera, which combines the ad-
vantages of patch-based synthesis and optical flow. We observed
that patch-based synthesis lacks temporal coherency and that op-
tical flow can fail in the presence of complex motion. To solve
this issue, we combine the two methods through spatially varying
search maps. Our HDR reconstruction is solved as a simultaneous
optimization of a single energy over all known and unknown LDR
images. We demonstrated that our method can generate visually
pleasing results with good temporal coherency that are superior to
the existing approaches.
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