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Practical High Dynamic Range Imaging of Everyday Scenes
Photographing the world as we see it with our own eyes

H
igh dynamic range (HDR) imaging enables the capture 
of an extremely wide range of the illumination present in 
a scene and so produces images that more closely resem-
ble what we see with our own eyes. In this article, we 

explain the problem of limited dynamic range in the standard 
imaging pipeline and then present a survey of state-of-the-art 
research in HDR imaging, including the technology’s history, 

specialized cameras that capture HDR images directly, 
and algorithms for capturing HDR images using 

sequential stacks of differently exposed images. 
Because this last is among the most common meth-

ods for capturing HDR images using conventional 
digital cameras, we also discuss algorithms to 
address artifacts that occur when using with this 
method for dynamic scenes. Finally, we consider 
systems for the capture of HDR video and con-
clude by reviewing open problems and challeng-
es in HDR imaging.

Overview of HDR imaging
The world around us is visually rich and com-

plex. Some of this richness comes from the wide 
range of illumination present in daily scenes—the 

illumination intensity between the brightest and the 
darkest parts of a scene can vary by many orders mag-

nitude. Fortunately, the human visual system can 
observe very wide ranges of luminosity by means of bright-
ness adaptation, which allows us, for example, to easily see 
the bright scene outside a window as well as the darkened 
interior. A digital camera, on the other hand, has a sensor 
that responds linearly to illumination; coupled with the sen-
sor pixels’ limited capacity to store energy and the noise 
present in the acquisition process, this fundamentally limits 
the sensor’s measurable dynamic range. The low dynamic 
range (LDR) of modern digital cameras is a major factor 
preventing them from capturing images as humans see 
them (Figure 1). For this reason, an entire research com-
munity, both in academia and industry, is engaged in 
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developing HDR imaging algorithms and systems to allow 
better photographs to be captured.

In this article, we describe research within the computa-
tional photography community on HDR imaging that enables 
the capture of a wider range of illumination than is normally 
captured and produces images closer to what we see with our 
own eyes. In a way, HDR imaging represents the epitome of 
computational photography: many of the solutions involved 
require novel optics, new acquisition processes, and clever 
algorithms in the back end to produce better images. As such, 
this article will focus only on the acquisition of HDR images 
and will not discuss related topics that have been extensively 
studied such as HDR image representation (how to compress 
and store HDR images) or tone mapping (turning an HDR 
image into an LDR image suitable for standard display) [2]. 
Further, because of this tutorial’s strict space limitations, we 
cannot cover in depth the large body of existing work on HDR 
imaging and refer interested readers instead to textbooks and 
papers that survey the subject [1]–[6].

Historical background
As early as the mid-1800s—soon after the invention of pho-
tography itself—early photography pioneers were already 
struggling with the limited dynamic range of film and began 
to develop techniques that provided the basis of what we now 
know as HDR imaging. The French photographer Hippolyte 
Bayard was the first to propose that two negatives, each one 
properly exposed for different content, could be combined to 
create a well-balanced photograph. His compatriot Gustave 
Le Gray captured many beautiful seascape photographs with 
his ciel rapporté technique, where one negative was used for 
the dark sea and the other for the bright sky. Others, such as 
Oscar Rejlander, combined many well-exposed negatives to 
produce photographs that emulated contemporary paintings 
in which everything was properly “exposed” (Figure 2).

This idea of combining images acquired with different 
exposures to produce an HDR result was reintroduced for 

digital photography in the 1990s (almost 150 years later) by 
Madden [7] and Mann and Picard [8]. However, HDR imag-
ing received relatively little attention until the seminal paper 
by Debevec and Malik [9] placed it at the forefront of the bur-
geoning computational photography community. Since then, 
there has been almost 20 years of research on HDR imag-
ing. Before we delve into this research, however, we must 
first review the standard imaging pipeline and understand the 
reasons for its limited dynamic range. In addition, we need to 
formalize colloquial terms such as brightness by introducing 
the appropriate radiometric units that characterize light.

The standard imaging pipeline  
and its limited dynamic range
The standard imaging pipeline (Figure 3) starts with a set of 
rays leaving the scene in the direction of the camera, with 
each ray carrying some amount of radiant power called radi-
ance (L; units: / ) .W m sr2  The rays entering the lens aperture 
and striking the sensor at a point are integrated over the solid 
angle subtended by the aperture (thereby integrating away the 
steradian sr term), resulting in a radiant power density at the 

(a) Images Taken at Two Different Exposures (b) Full Stack of Images and HDR Result

Figure 1.  (a) Images captured by standard digital cameras cannot reproduce the wide range of illumination we see in everyday scenes, even after adjust-
ing the exposure, as illustrated by these two images taken at different exposures. (b) HDR imaging allows for the capture of a wider range of illumination; 
here, a stack of images was captured at different exposures (left) and merged with the algorithm described in [1] to reduce motion artifacts and produce 
the result shown on the right. 

Figure 2.  Two Ways of Life, Oscar Gustave Rejlander, 1857. This is one of 
the earliest examples of combination printing, in which differently exposed 
negatives are combined to extend the dynamic range of the final result. In 
this case, 32 negatives were combined to complete the final image. (Image 
in the public domain.)
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sensor called irradiance (E; units: / ) .W m2  This irradiance is 
then integrated over the time the shutter is open to produce an 
energy density, commonly referred to as exposure (X; units: 
/ ) .J m2  If the scene is static during this integration, the expo-

sure can be written simply as ( ) ( ) · ,X p E p t=  where p  is the 
point on the sensor and t  is the length of the exposure (inte-
gration time).

The exposure can then be integrated over the pixel’s foot-
print (integrating away the m2 term) to result in the total 
energy (units: )J  accumulated in each pixel’s photon well. 
The measured energy is then read out by an analog-to-digital 
converter (ADC), often with an analog gain factor applied 
to amplify the energy before it is converted. For non-raw 
images, the digital value is then mapped through a nonlinear 
camera response function (CRF) to emulate the logarithmic 
response of the human eye and make the final image look 
better. This produces the final pixel values that are output in 
the image file.

Two aspects of the pipeline limit the sensor’s dynamic 
range of measurable light. First, the pixels’ photon wells are 
of finite size and will saturate if too much energy is accumu-
lated, creating an upper limit for the amount of light energy 
that can be measured at each pixel. Second, the minimum 
amount of detectable light is limited by the sources of noise 
in the imaging pipeline. The first is dark current, which is 
caused by thermal generation and induces a signal even if no 
photons arrive at the sensor (i.e., it is dark). Next is photon shot 
noise, which is caused by the discrete nature of light and is the 
variance of the number of photons arriving at the sensor dur-
ing exposure time t. Like many arrival processes, this count 
is modeled by a Poisson random variable, the expected value 
(as well as the variance) of which is based on the true irradi-
ance E(p). The spatial nonuniformity of the sensor also causes 
different pixels to respond differently to the same amount of 
incident photons, which is modeled by the photo-response 
nonuniformity (PRNU) factor. Finally, there is readout noise 
caused by thermal generation of electrons when the signal is 
being read from the sensor.

Given all of these noise sources (excepting dark current), 
the actual measured exposure value ( )X pt  for well-exposed 

regions can be modeled as a Gaussian random variable with 
mean and variance [4]
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where g  is the camera gain, ( )a p  is the PRNU factor for the 
pixel, and Rn  and R

2v  are the readout mean and variance, 
respectively. The Poisson nature of the photon shot noise is 
responsible for the pixel variance’s dependence on the irradi-
ance. Without loss of generality, we can think of this mea-
sured exposure ( )X pt  at each point p  in the sensor as being 
mapped to a final digital pixel value ( )pZ  with a function f 
that effectively combines the CRF with the quantization and 
saturation steps: ( ) ( ( )) .Z p f X p= t

The challenge of HDR imaging, therefore, is to recover 
the original HDR irradiance E(p) from noisy LDR images 
such as ( )pZ . To do this, two main approaches have been 
proposed: 1) specialized HDR camera systems that measure 
a larger dynamic range directly and 2) capturing a stack of 
differently exposed LDR images that are merged together to 
produce an HDR result, as described in the following two sec-
tions, respectively.

Specialized HDR camera systems
Previous work on specialized HDR camera systems can be 
divided into two main categories: 1) those that modify the 
measurement properties of a single sensor to capture a larger 
dynamic range and 2) those that use prisms, beamsplitters, or 
mirrors in the optical path to image a number of sensors at 
different exposures simultaneously. 

In the first category, researchers have proposed HDR sen-
sors that measure light in alternate ways, such as measuring 
the pixel saturation time [11], counting the number of times 
each pixel reaches a threshold charge level [12], or incorporat-
ing a logarithmic response like that of the human eye [13].
Others, such as Nayar and Mitsunaga [14], have proposed to 
fit different neutral-density filters over individual pixels in 
the sensor to vary the amount of light absorbed at each pixel. 

ADC

Integration
Over Time

Integration
Over Aperture

Integration
Over Pixel

Irradiance

Sensor
Saturation

Scene
Radiance

W W J J
m2 sr

LENS SHUTTER SENSOR

Dark
Current

Exposure Energy

Photon
Noise

Readout
Noise

PRNU
Factor

SCENE
CRF

F
in

al
 P

ix
el

va
lu

es

IMAGEAnalog
Gain

m2 m2
A
dω∫

t
dτ∫

∆p
dp∫

Figure 3.  The standard imaging pipeline in modern digital cameras, inspired by diagrams in [9] and [10]. The radiance from scene rays captured by the 
camera are first integrated over the angle subtended by the lens aperture, over the time the shutter is open, and over the pixel’s footprint area. This energy 
can then be cut off by the saturation of the photon well at that pixel sensor, which limits the camera’s dynamic range. The result is then quantized by an 
ADC, and the CRF is applied to get the final digital pixel values. Different kinds of noise or error are injected at various stages in the pipeline, as described 
in the article text. (Lighthouse image designed by Freepik.com.)
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The main advantage of this spatially varying pixel exposures 
(SVE) approach is that it allows HDR imaging from a single 
exposure, thus avoiding the need for alignment and motion 
estimation. Later, Nayar et al. [15] proposed using a digital 
micromirror device in front of the sensor for modulating the 
amount of light that arrives at each pixel to acquire HDR 
images. Hirakawa and Simon [16] proposed another SVE sys-
tem that exploits the different sensitivities already present in 
a regular Bayer pattern, while Schöberl et al. [17] improved 
this idea further, introducing a nonregular filter pattern to 
avoid aliasing problems. In addition, a patch-based approach 
to single-image HDR with SVE acquisition [18] uses a piece-
wise linear estimation strategy to reconstruct an irradiance 
image by simultaneously estimating over- and underexposed 
pixels as well as denoising the well-exposed ones. Finally, 
there has been related work that uses a spatial light modulator 
displaying a random mask pattern to modulate the light before 
it arrives at the sensor and then uses compressed sensing or 
sparse reconstruction to recover the HDR image [19].

In the second category, approaches include those that do 
not use a single sensor but rather split the light onto a set of 
sensors with different absorptive filters to produce simultane-
ous images with varying exposures. These exposures can then 
be merged to form the final HDR result using the stack-based 
approaches described in the following section. Some systems 
use pyramid-shaped mirrors, refracting prisms, or beamsplit-
ters to do this [21], although each such approach suffers from 
parallax errors (because each “looks” through the camera 
lens from a slightly different angle) as well as wasted light 
(because of the absorptive filters in front of the sensors). Tocci 
et al. [20] addressed these problems with a novel beamsplitter 
design that efficiently reflects the light onto three different 
sensors to produce high-quality HDR images (Figure 4).

However, despite promising results, all of these special-
ized HDR systems require the manufacture of new cam-
era hardware, and so they are not widely available today. 
Nevertheless, this could change as HDR imaging becomes 
more mainstream.

HDR imaging using image stacks
With conventional cameras, the most practical approach for 
HDR imaging is to capture a sequence of LDR images at dif-
ferent exposures and combine them into a final HDR result 
[7]–[9]. Specifically, if we acquire a stack of N  different 
exposures , , ,Z ZN1 f  we can merge them and estimate the 
irradiance map Eu  using a simple weighting scheme that 
takes into account the measured irradiance ( ) /E X p ti i i=t t  
from each image:
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Here, the measured exposure Xit  can be recovered from well-
exposed pixel values using the inverse of the camera response 
function: ( ) ( ( )) .X p f Z pi i

1= -t  Of course, this requires the 
CRF to be known, but methods have been proposed to esti-
mate it from the image stack [9], even for highly dynamic 
scenes [22].

Because poorly exposed pixels do not have a good estimate 
for the irradiance map, the weight ( )w pi  should be adjusted 
at each pixel based on how well-exposed it is. For example, 
Debevec and Malik [9] proposed a simple triangle function for 
this weight that gives priority to pixels in the middle of the 
pixel range and reduces the influence of poorly exposed pixels: 

( ) ( ( ), ( )),minw p Z p Z p255i i i= -  where we assume the pixel 
values range from 0 to 255. Once the stack of images has been 
merged in this way, the resulting irradiance map Eu  is output 
as the final HDR result. This method is commonly implement-
ed on modern smartphones to extend their camera’s dynamic 
range (i.e., “HDR mode”).

Fundamental limits on irradiance estimation performance
It is interesting to understand the fundamental limits of irradi-
ance estimation performance for stack-based algorithms such 
as these. To study this, the problem of irradiance estimation 
from an image stack can be posed as a parameter estimation 
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(a) Optical System of Tocci et al. [20] (b)  Sample Result from Prototype

Figure 4.  In the optical system of Tocci et al. [20], (a) two beamsplitters reflect the light so that the three sensors capture images with 92%, 7.52%, and 
0.44% of the total light gathered by the camera lens (increasing the dynamic range by a factor of over 200 ×), and only 0.04% of it is wasted. (b) shows 
the sample HDR result captured by the camera (the three captured LDR images are on left); note that the detail in both the white fur and dark regions is 
captured faithfully, even though it does not appear simultaneously in any of the input images. (Figure courtesy of [20].)
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problem from a set of noisy samples. In the case of static 
scenes, N  independent samples ( ), , ( )X p X pN1 ft t  following 
the random model in (1) are given per pixel, corresponding to 
exposure times , , .t tN1 f  Assuming the camera parameters are 
known from a calibration stage, the only unknown parameter in 
(1) is the irradiance E(p) reaching each pixel .p

In this statistical framework, the Cramér–Rao lower bound 
(CRLB) gives a lower bound on the variance of any unbiased 
estimator of ( )E p  computed from those samples. Aguerrebere 
et al. [4] introduced the CRLB for this problem and showed 
that, because the bound cannot be attained, no efficient estima-
tor exists for ( )E p  under the considered hypotheses. Neverthe-
less, it was shown experimentally that the approximation of the 
maximum-likelihood estimator (MLE) proposed by Granados 
et al. [23] not only outperforms the other evaluated estima-
tors but also has nearly optimal behavior. Theoretically, the 
MLE is efficient for a large number of samples (asymptotically 
efficient), which is not the case in HDR imaging, where very 
few samples are usually available (normally N 2=  to 4 expo-
sures). Therefore, it is remarkable that, under the considered 
hypotheses, the MLE is still experimentally the best possible 
estimator for the pixel-wise irradiance estimation for static 
scenes. Improvements, however, may be possible by combin-
ing information from different pixel positions with similar 
irradiance values, such as in recent patch-based denoising 
approaches [24], or even by considering information from 
saturated samples [4].

Handling dynamic scenes
The stack-based HDR capture algorithms described in the pre-
vious section work very well when the scene is static and the 
camera is tripod-mounted. However, when the scenes are 
dynamic or the camera moves while the different pictures are 
being captured, the images in the stack will not line up proper-
ly with one another. This misalignment results in ghost-like 
artifacts in the final HDR image, which are often more objec-
tionable than the limited dynamic range that is being compen-
sated for (see Figure 5). Because this is the most common 
scenario in imaging, there has been almost 20 years of 
research into HDR deghosting algorithms that seek to elimi-
nate these artifacts from motion. Specifically, three different 

kinds of methods have been proposed to deal with motion, 
each of which we discuss in the three sections that follow, 
using a taxonomy similar to those in two previous publica-
tions by the first author [1], [10]. Because of space limitations, 
we limit the discussion here to a couple of key algorithms in 
each category.

Algorithms that align the different exposures
The first kind are algorithms that attempt to deghost the HDR 
reconstruction by warping the individual images in the stack 
to match a reference image and so eliminate misalignment 
artifacts. Unlike the rejection methods discussed in the “Algo-
rithms That Reject Misaligned Information” and “Patched-
Based Optimization Algorithms” sections, these algorithms 
can actually move content around in each image and can, 
therefore, potentially handle dynamic HDR objects.

The simplest methods in this category assume the images 
can be aligned with rigid transformations. For example, a com-
mon method is to compute scale-invariant feature transform 
(commonly called SIFT) features in the image and use them 
to estimate a homography that warps the images to match 
[25]. Of course, these simple rigid-alignment algorithms can-
not handle artifacts caused by parallax due to camera transla-
tion or from significant motion in the scene, although they can 
serve as a preprocess for more complex algorithms, such as 
those described later in the article.

One of the first algorithms of this kind was proposed by 
Bogoni [26]. This method first uses an affine motion esti-
mation step to globally align the images and then estimates 
motion using optical flow to further align the images. To make 
the optical flow more robust, some have proposed acquisition 
schemes to make the different exposures more similar. The 
Fibonacci exposure bracketing work of Gupta et al. [27], for 
example, cleverly adjusts the exposure times in the sequence 
so that the longer exposure times are equal to the sum of the 
shorter exposure times. Because of this, optical flow can be 
computed between a longer exposure and the sum of the short-
er exposures, thereby ensuring that the two images will have 
similar exposure times and, therefore, comparable motion blur.

The state-of-the-art HDR alignment algorithm is perhaps 
the work of Zimmer et al. [28], which aligns the images using 

Figure 5.  Ghosting artifacts can occur when stack-based HDR algorithms are applied to dynamic scenes. (a) Stack of input LDR images. Note, how 
some images capture the details in the dark sweater, while others capture the detail in the bright exterior. (b) HDR results from the standard HDR merging 
algorithm produces ghosting artifacts because of the motion. (c) HDR results from the patch-based optimization algorithm of Sen et al. [1]  
contains detail in all regions of the image without artifacts.  

(a) Input LDR Images (b) Result from Standard Merge  (c) Result from Sen et al. [1]
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an energy-based optical flow optimization robust to changes in 
exposure. Specifically, their energy function has a data term 
that encourages the image to align to the reference and a reg-
ularizer that enforces smooth flow wherever the reference is 
poorly exposed. However, these alignment algorithms all suf-
fer from the problem of finding good correspondences, which 
is extremely difficult, in particular for highly dynamic scenes 
with deformable motion (e.g., a person moving). Furthermore, 
scenes with occlusion and/or parallax do not even have valid 
correspondences between the images in these regions, mak-
ing it impossible to align the images in the stack correctly. 
Therefore, the HDR results from alignment algorithms often 
still contain objectionable ghosting artifacts for scenes with 
complex motion.

Algorithms that reject misaligned information
A second set of algorithms for HDR reconstruction assume 
that the camera is static (or that the images have been prereg-
istered using a rigid alignment process, such as those 
described in the “Algorithms That Align the Different Expo-
sures” section) and that the scene motion is localized, mean-
ing that the majority of pixels contain no motion artifacts. 
The basic goal of these methods is to iden-
tify those pixels that are affected by motion 
and those that are not. The pixels that do 
not contain motion artifacts can be merged 
using the standard HDR merging algo-
rithms described in the “HDR Imaging 
Using Image Stacks” section. For the pixels 
that are affected by motion, however, only 
a subset of the images deemed to be static 
at these pixels will be merged to suppress 
artifacts from moving objects.

To accomplish this, two different kinds 
of rejection methods are possible: 1) those 
in which a reference image is specified by 
the user and 2) those that do not use a reference image. For 
algorithms in the first category, the user first selects an image 
from the stack as the reference. These algorithms then simply 
revert back to this reference for any pixels where motion is 
detected so that the main difference between them is in how 
they detect motion. For example, the method of Grosch [29] 
assumes two images in the stack and predicts values in the 
second image by multiplying the values in the reference by the 
ratio of the exposure times, taking into account the nonlinear 
camera response curves. With this approach, a pixel is deemed 
to be affected by motion if the actual color is beyond a given 
threshold from the predicted value. In such cases, the algo-
rithm simply reverts back to using the values in the reference 
image for these pixels.

Gallo et al. [30] improved on this work by using the log-
irradiance domain to do the threshold comparisons. Further, 
for robustness they compare patches instead of individual 
pixels, so that a patch from an image in the stack would be 
merged with the corresponding patch from the reference only 
if a certain number of pixels meet the threshold constraint. To 

reduce visible seams between different patches, the authors 
apply Poisson blending to the final results.

In the second category are rejection algorithms without a 
reference image, which must select a “static” subset of images 
at every pixel to merge to produce HDR values. These methods 
have a fundamental advantage over those that utilize a single 
reference image because motion may occur in areas where the 
reference might be poorly exposed. At these pixels, an HDR 
value cannot be properly computed solely from the reference 
image. However, rejection algorithms that do not use a refer-
ence must ensure that subsets are selected for neighboring  pix-
els in a way that does not introduce artifacts.

Reinhard et al. [3] proposed one of the earliest methods 
in this category. For every pixel that is deemed to be affected 
by motion, the authors try to use the longest exposure that 
is not saturated (effectively, a single-image subset). To deter-
mine which pixels are affected by motion, they first compute 
the variance of the irradiance values at each pixel ,p  weighted 
to exclude poorly exposed pixels. This estimated variance is 
then thresholded, and the result is smeared out with a 3 # 3  
kernel to reduce edge and noise effects. Adjacent regions 
are then joined together to form the “ghosted” regions for 

which a single image from the stack will 
be used. To select which image they will 
use for each region, the authors find the 
biggest irradiance value in the region that 
is not in the top 2% (deemed to be outliers). 
They then select the longest exposure that 
includes this value within its valid range 
to fill in this ghosted region, because the 
longest exposure will contain least noise. 
To further suppress artifacts, Reinhard et 
al. linearly interpolate this exposure with 
the original HDR result, using the per-pixel 
variance as a blending parameter.

An alternative approach is proposed by 
Khan et al. [31]; here, instead of detecting and handling dif-
ferently the pixels affected by motion, the authors propose to 
iteratively weight the contribution of each pixel depending on 
the probability of its being static (i.e., belonging to the back-
ground of the scene). To do this, they assume that most of the 
pixels are of the static background and so determine the prob-
ability of a pixel being static by measuring its similarity to the 
neighborhood around it.

Finally, some recent methods cleverly use rank minimi-
zation to deghost HDR images [32], [33]. These methods are 
based on the observation that if the scene is static, the different 
exposure images ( )X p  would simply be linear scalings of one 
another. Therefore, they use the different exposure images to 
construct a matrix and essentially minimize its rank to solve 
for the motion-free image. 

The biggest problem with these and other rejection algo-
rithms is that they cannot handle dynamic HDR content 
because they do not move information between pixels but rath-
er only merge information from corresponding pixels across 
the image stack. Therefore, if different parts of a moving HDR 

The biggest problem with 
rejection algorithms is 
that they cannot handle 
dynamic HDR content 
because they do not move 
information between 
pixels but rather only 
merge information from 
corresponding pixels 
across the image stack.
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object are well exposed in disjoint regions of the different 
images, these parts cannot be brought together to produce an 
acceptable result.

Patch-based optimization algorithms
Recently, Sen et al. [1] proposed a new alternative for HDR 
deghosting that uses patch-based optimization, which 
addresses the problems of both the rejection and alignment 
methods. Specifically, a formulated equation codifies the 
objective of most reference-based HDR reconstruction algo-
rithms: 1) to produce an HDR result that resembles the refer-
ence image in the parts where the reference is well exposed 
and 2) to leverage well-exposed information from other imag-
es in the stack wherever the reference is poorly exposed. This 
HDR synthesis equation can be written as

( ) [ ( ) · ( ( ( )) / ( ))

( ( )) · ( | , , )] .

E p f Z p t E p
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The first term states that the desired HDR image E should be 
close in an L2 sense to the LDR reference Zref  mapped to the 
linear irradiance domain by applying the inverse camera 
response function f 1-  and dividing by the exposure time .tref  
This is only to be done for the pixels where the reference is 

properly exposed, as given by the refa  term, which is a trape-
zoidal function in the pixel value domain [similar to the 
weighting function in (2)] that favors intensities near the mid-
dle of the pixel value range.

In the regions where the reference image Zref  is poorly 
exposed (indicated by ),1 refa-  the algorithm draws informa-
tion from the other images in the stack using a bidirectional 
similarity metric, given by the EBDS  term. This energy term 
enforces that for every pixel patch in the image stack (given by 

, , ),Z ZN1 f  there must be a similar patch in the final result E, 
and vice versa. The first similarity ensures that as much well-
exposed content from the image stack is included in the final 
HDR result, while the second ensures that the final result does 
not contain objectionable artifacts, as these artifacts would 
not be found anywhere in the stack. This energy equation is 
optimized with an iterative method that solves for the aligned 
LDR images and the HDR image simultaneously, producing 
high-quality results (Figure 6).

Patch-based optimization algorithms like this are funda-
mentally different from those discussed in the “Algorithms 
that Align the Different Exposures” section, which warp the 
images to match based on correspondences. As was pointed 
out earlier, alignment methods fail in cases of occlusion or par-
allax (which happen commonly in dynamic scenes) because 

(a)

(b)

Figure 6.  (a) and (b) show sample HDR results (right) from the input LDR images (left) using the patch-based optimization of Sen et al. [1].  
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they do not have valid correspondences in these regions and so 
the images cannot be aligned in these parts. Patch-based HDR 
reconstruction, on the other hand, is related to patch-based 
image synthesis methods (e.g., for single-image hole filling) 
because they both use a patch-based similiarity optimization 
to resynthesize content in the final reconstruction without 
an underlying correspondence. Because of this advantage, 
these methods have proved to be the most successful HDR 
deghosting algorithms proposed to date.

For example, a recent state-of-the-art 
report by Tursun et al. [6] testing many 
deghosting algorithms found that the algo-
rithm of Sen et al. [1] and the later, related 
method of Hu et al. [34] ranked first and 
second over other deghosting techniques by 
a fairly large margin. The success of patch-
based optimization for HDR reconstruction 
has led others to explore ways to further 
improve the quality of these approaches. For 
example, Aguerrebere et al. [24] focused on 
reducing the noise of the estimated irradi-
ance. First, this method synthesizes a “refer-
ence” containing well-exposed, de-ghosted 
information in all parts of the image using 
Poisson image editing (although the meth-
od in Sen et al. [1] could also be used). Noise is then reduced 
through a patch-based denoising method that finds all patches 
in the image stack within a threshold to each patch in the refer-
ence, where the L2 distance between patches is normalized by 
the variance from (1). The MLE of the patch-centers at each 
pixel is then computed to significantly reduce the noise in the 
final result.

HDR video
Up to now, we have focused exclusively on the HDR 
acquisition of still images. However, the problem of cap-
turing HDR video sequences is of considerable interest as 
well. For example, filmmaking companies incur a signifi-
cant cost to light sets, a cost that would be largely elimi-
nated by high-quality, HDR video systems. For this 
reason, professional movie camera system suppliers such 
as RED have been pushing the dynamic range of standard 
sensors. Moreover, specialized HDR camera systems such 
as that of Tocci et al. [20] have been proved capable of 
capturing high-quality HDR video, although they are not 
yet widely available.

For conventional digital cameras, the only way to cap-
ture HDR video is to alternate exposures through the entire 
sequence. This problem was first tackled by Kang et al. [35], 
who use gradient-based optical flow to compute a bidirectional 
flow from the current frame to neighboring frames and unidi-
rectional flows from neighboring frames to the current frame 
(four flows total). Once computed, the flows can be used to 
produce four warped images by deforming each of the two 
neighboring frames. The resulting images can be merged with 
the reference to produce an HDR image at every frame of the 

sequence, while rejecting the pixels that are still misaligned, 
to avoid artifacts.

The state of the art in HDR video reconstruction is the 
work of Kalantari et al. [5], which extended the patch-
based optimization work of Sen et al. [1] to produce coher-
ent HDR video streams. Specifically, they modify the HDR 
image synthesis equation (3) to enforce temporal coherence 
by performing a bidirectional similarity between adjacent 

frames. In addition, they use optical flow 
during the optimization to constrain the 
patch-based search, which produces a 
stream of high-quality HDR frames.

Open problems and challenges
Despite the tremendous progress of the 
computational photography community 
on HDR imaging over the last 20 years, 
many challenges remain. For example, 
the capture of high-quality HDR images 
of highly dynamic scenes with conven-
tional digital cameras is still a challeng-
ing problem. Although state-of-the-art 
deghosting algorithms like the patch-
based optimization of Sen et al. [1] can 
suppress many of the ghosting artifacts 

that would normally occur in these scenes, these methods 
cannot recover scene content that is poorly exposed in the 
reference image and is not visible in any of the other images 
in the stack. Moreover, the patch-based optimization in 
these algorithms is computationally  expensive and can take 
several minutes to compute an image. This limits the appli-
cability of these methods to long video sequences or for 
real-time, on-board computation in current smart phones, 
for example.

It is entirely possible that new sensor technologies, such 
as Fuji Film’s recent Super CCD EXR sensor, will bypass the 
problems inherent in stack-based methods by capturing a sin-
gle image with extended dynamic range. However, even these 
new technologies will likely raise interesting questions, such as 
how users will employ and interact with HDR images. Further-
more, as HDR imaging becomes more mainstream, we expect 
that new applications for HDR imaging (such as for medical 
imaging or manufacturing) will be proposed and explored.

Conclusions
In this article, we first summarized the main aspects of HDR 
imaging, starting with an overview of the problem of limited 
dynamic range in standard digital cameras and the physical con-
straints responsible for this limitation. We then surveyed state-
of-the-art approaches developed to tackle the HDR imaging 
problem, focusing on both specialized HDR camera systems 
and stack-based approaches captured with standard cameras. 
For the latter, we discussed algorithms to address ghosting arti-
facts that can occur when capturing dynamic scenes. Finally, we 
discussed algorithms for capturing HDR video and concluded 
with a review of open problems in HDR imaging. We hope that 

Patch-based HDR 
reconstruction is related 
to patch-based image 
synthesis methods (e.g., 
for single-image hole 
filling) because they 
both use a patch-based 
similiarity optimization to 
resynthesize content in 
the final reconstruction 
without an underlying 
correspondence.
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this article encourages researchers from areas such as signal 
processing, solid-state devices, and image processing to contin-
ue to pursue this interesting set of problems.
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