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ABSTRACT
In this paper, we propose XModal-ID, a novel WiFi-video

cross-modal gait-based person identification system. Given

the WiFi signal measured when an unknown person walks

in an unknown area and a video footage of a walking person

in another area, XModal-ID can determine whether it is the

same person in both cases or not. XModal-ID only uses the

Channel State Information (CSI) magnitude measurements of

a pair of off-the-shelf WiFi transceivers. It does not need any

prior wireless or video measurement of the person to be iden-

tified. Similarly, it does not need any knowledge of the op-

eration area or person’s track. Finally, it can identify people

through walls. XModal-ID utilizes the video footage to simu-

late the WiFi signal that would be generated if the person

in the video walked near a pair of WiFi transceivers. It then

uses a new processing approach to robustly extract key gait

features from both the real WiFi signal and the video-based

simulated one, and compares them to determine if the person

in the WiFi area is the same person in the video. We exten-

sively evaluate XModal-ID by building a large test set with 8

subjects, 2 video areas, and 5WiFi areas, including 3 through-

wall areas as well as complex walking paths, all of which are

not seen during the training phase. Overall, we have a total

of 2,256 WiFi-video test pairs. XModal-ID then achieves an

85% accuracy in predicting whether a pair of WiFi and video

samples belong to the same person or not. Furthermore, in a

ranking scenario where XModal-ID compares a WiFi sample

to 8 candidate video samples, it obtains top-1, top-2, and

top-3 accuracies of 75%, 90%, and 97%. These results show

that XModal-ID can robustly identify new people walking

in new environments, in various practical scenarios.
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1 INTRODUCTION
Person identification is an important problem that has been

widely studied and implemented in various modalities, e.g.,

fingerprints, iris, and voice. Recently, there has been exten-

sive work establishing that a person’s gait can serve as a

unique signature for identification [5]. Gait-based identifica-

tion is attractive as it does not require a person to perform

any specific active task (e.g., fingerprint scanning) and can

automatically recognize a person based on his/her way of

walking. This is very useful for many applications: smart

buildings, personalized services, and security/surveillance.

Given the importance of gait-based person identification,

there has been considerable research in using either videos

or Radio Frequency (RF) signals to extract a person’s gait for

identification purposes. Vision-based approaches extract the

walking person’s silhouette and calculate various gait fea-

tures to learn people’s identities [5]. However, they require

an unobstructed view of the person in good lighting and

camera coverage everywhere, which are not always feasible.

On the other hand, RF-based approaches are more versatile

as RF signals can pass through walls/obstacles, and are not

affected by lighting conditions. Additionally, RF signals are

more ubiquitous due to the increasing presence of wireless

devices. However, all existing RF-based gait identification

approaches rely on extensive training with prior instances of

the same people walking in the same area [30, 32, 33]. This

significantly limits the practical use of this technology on
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data of new people and in new locations. In addition to these

technical limitations, RF-only approaches are not applicable

to an important class of identification applications in the se-

curity domain, where, for instance, only a crime-scene video

footage of a suspect that is being looked for is available.

In this paper, we propose a novel WiFi-video cross-modal

person identification system, whichwe callXModal-ID (pro-

nounced: Cross-Modal-ID). More specifically, givenWiFi mea-

surements of an unknown person walking in an unknown

area, and the video footage of a walking person in another

area, XModal-ID is able to determine whether it is the same

person in both theWiFi area and the video footage.One key
characteristic of XModal-ID is that it does not require
any prior wireless or video data of either the person to
be identified or the area where the identification is to
be conducted. In other words, it does not need to be trained

on prior WiFi or video data of the person being identified,

or the identification area. It also does not need any knowl-

edge of the test area or the person’s track. Moreover, it only
uses CSImagnitudemeasurements of a pair of off-the-
shelf WiFi transceivers. Finally, it can identify people
through walls. To the best of our knowledge, such a cross-

modal gait-based identification system has not been studied

before. This new technology can enable a wide range of new

real-world applications that would not be possible with ex-

isting technologies. We next briefly describe two broad sets

of applications that this system can be used for.

• Security and Surveillance: Consider the scenario where
the footage of a crime is available and the police is search-

ing for the suspect. A pair of WiFi transceivers outside a

suspected hide-out building can use XModal-ID to detect

if this person is hiding inside. Moreover, the existing WiFi

infrastructure of public places can further be used to report

the presence of the suspect. To the best of our knowl-
edge, there is currently no existing technology that
can enable such applications.

• Personalized Services: Consider a smart home, where

each resident has personal preferences (e.g., lighting, mu-

sic, and temperature). The home WiFi network can use

XModal-ID and one-time video samples of the residents to

recognize the person walking in any area of the house and

activate his/her preferences,without the need to collect
wireless/video data of each resident for training pur-
poses. New residents can also be easily identified without

a need for retraining. This is in contrast to the existing

technologies that would require training with the wireless

data of every resident collected in all areas of the house.

In order to achieve such cross-modal identification capa-

bilities, XModal-ID compares the gait characteristics of a

given WiFi measurement to that of a given video footage,

and deduces their similarity. More specifically, given the

video footage of a walking person, XModal-ID constructs a

3D mesh of the person from the video and then calculates

the corresponding WiFi signal that would have been gener-

ated by this person walking in the area where a pair of WiFi

transceivers are present (it does so without any knowledge

of the person’s track or the area). It then compares this simu-

lated WiFi signal to the real WiFi signal measured in the area

where the person-of-interest walks. Based on the similarity

between the simulated WiFi signal and the real WiFi one, the

system determines whether the person walking in the WiFi

area is the same person in the video. Once XModal-ID is

trained on a pool of data, it can be deployed in any new, un-

seen area and can perform cross-modal identification of new

people, of whom it has no prior knowledge during training.

We next explicitly discuss the contributions of this paper.

Statement of Contributions:
1. We propose a new approach to simulate the WiFi signal

that would have been measured by a pair of transceivers,

based on the video footage of a person walking. More specif-

ically, we extract a 3D mesh model of the person in the video

and apply Born approximation to simulate the correspond-

ing WiFi CSI magnitude measurements if the person in the

video was walking in a WiFi area.

2. We propose a new framework and set of features that cap-

ture the gait characteristics of a person based on WiFi CSI

magnitude signals. More specifically, we utilize a combina-

tion of Short-Time Fourier Transform and Hermite functions

to generate a spectrogram, and extract a key set of features

that are subsequently used for identification. We further pro-

pose a way to extract key parts of the spectrogram as well as

the direction of motion, which allows us to do identification,

without the need to know the track of the person.

3. We extensively evaluate our proposed framework using a

large test set, where all the test subjects and test areas are

completely unknown in the training phase, thus allowing

us to demonstrate the generalizability of XModal-ID to new,

unknown people and environments. In the test set, there

are 8 subjects, 2 video areas, and 5 WiFi areas, including 3

areas where the transceivers are placed behind a wall and

scenarios where the walking paths are complex. The walking

paths are further assumed unknown in all the experiments.

Overall, the test set contains a total of 2,256 pairs of WiFi and

video samples to be identified. Given a pair of video andWiFi

samples, XModal-ID achieves a binary classification accuracy

of 85%, in judging whether the two samples belong to the

same person. Furthermore, given a queried WiFi data sample

and 8 candidate video samples, XModal-ID achieves top-1,

top-2, and top-3 accuracies of 75%, 90%, and 97%, respectively,

in ranking the video samples.

We discuss the current limitations and future extensions

of our system in Sec. 8.



2 RELATEDWORK
Existing gait-based identification work can be broadly classi-

fied into two categories: RF-based and video-based.

2.1 RF-Based Person Identification
RF-based approaches utilize RF signals to deduce information

about the gait of a person. RF signals from the transmitter re-

flect off of different parts of the body of a walking person and

reach the receiver, thereby implicitly carrying information

about the movement of various body parts.

Radar-based: Various radar-based approaches have utilized
dedicated hardware and/or wideband signals for gait analysis.

For instance, in [19, 26], the authors utilize radar signatures

to extract stride rate and velocities of different body parts.

Orovic et al. [20] classify various body part motions using the

received radar signals andHornsteiner et al. [12] characterize

the gait features in a time-frequency analysis using a 24 GHz

radar. In [27], the authors use a 77 GHz radar to extract micro-

Doppler signatures from a walking person for identification.

WiFi-based: Recently, there has been considerable interest

in using off-the-shelfWiFi devices for gait-based person iden-

tification. WiFiU [30] uses WiFi CSI to generate spectrogram-

based gait features, which are then used to classify the iden-

tities of a pre-defined set of people. WiWho [32] uses the

time-domain signals measured during people’s motion to

identify people. Similarly, a few other papers [18, 31, 33, 35]

identify a person from a priorly-known set of people. In

addition to walking, Wang et al. [29] show that respiration

patterns can also be used for identification. WiID [34] uses

the CSI measured while a person performs several actions

for identification, using two links in the area. Shi et al. [23]

identify a person based on his/her daily habits. All these ex-

isting approaches require the transceivers to be in the same

area as the person, with a line-of-sight view at all times,

with the only exception of Hoble [17], which uses a Software

Defined Radio to identify people in both line-of-sight and

through-wall settings in a known area.

All these existing RF-based papers identify people from a

pre-defined group and require prior wireless measurements

of these people for training. In other words, they cannot

handle new people without retraining. They also require the

training and test walking paths/actions and locations to be

the same. Thus, a model that is trained in one location and on

one type of path cannot be used in other scenarios. The radar-

based approaches further require extensive hardware setup.

Moreover, aside from [17], none of the existing methods have

through-wall identification capabilities. In this paper, on the

other hand, we propose a novel person identification system

that does not require training with prior measurements of

the subjects/areas, does not require the test areas/tracks to be

known, and can identify people through walls. Finally, our

proposed system enables a new set of applications not
possible before, i.e., given a video footage of a person,
it can detect if this person is present in a WiFi area.

2.2 Video-Based Person Identification
Video-based person identification using gait is a well-studied

problem in the computer vision literature. There are broadly

two types of approaches: model-based, where gait features

are extracted by fitting a walking human model to the video

frames, and model-free, where features are extracted directly

from the video. Model-based methods include fitting a walk-

ing human with ellipses [16], estimating the lengths of body

parts and joint angles [28], and estimating the joint trajec-

tories [25]. Model-free approaches rely on the person’s sil-

houette in the video. Commonly-used features include the

silhouette key frames [4] and gait energy image [9]. These

features are then fed into machine learning pipelines for

training. We refer the readers to [5] for a detailed survey.

Overall, video-based methods require installing cameras ev-

erywhere and lack through-wall identification capabilities.

3 PROBLEM FORMULATION AND
SYSTEM OVERVIEW

In this paper, we propose a WiFi-video cross-modal person

identification system. More specifically, given the WiFi CSI

magnitude measurements of a pair of WiFi transceivers, ob-

tained in an area where a person is walking, and the video

footage of a person in another area, we propose a system

that determines whether this given pair of video and WiFi

measurements correspond to the same person or not. Unlike

existing RF-based person identification systems, our system

does not need prior wireless or video measurements of the

person-of-interest for training purposes. It further does not

need prior measurements in the operation environments.

The overall architecture of our proposed XModal-ID sys-

tem and the various steps involved in the pipeline are shown

in Fig. 1, and briefly described below:

• Given the video footage of a person, we construct a 3D

mesh model of the person. We then propagate this mesh

model over time and use Born approximation to simulate

the corresponding received WiFi signal if the person was

walking near a pair of WiFi transceivers. We then use

the signal magnitude to generate the spectrogram of the

signal, using Short-Time Fourier Transform (STFT). It is

noteworthy that we do not need to know the track of the

person or details of the operation area.

• In the operation area where a person is walking, a WiFi

receiver (Rx) measures the CSI magnitude of the received

signal in the transmission from a WiFi transmitter (Tx).

We then generate the corresponding spectrogram from

this CSI magnitude measurement (using a combination
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Figure 1: System architecture showing the various steps involved in the video and WiFi pipelines of XModal-ID. We refer
readers to the color pdf for optimal viewing of the sample spectrograms.

Figure 2: (Right) Three sample HMR algorithm output
meshes for (left) different snapshots of a walking person.

of STFT and Hermite functions) and segment it to obtain

the parts most informative for identification, and further

estimate the direction of motion.

• We then show how to extract key features from the spec-

trograms generated from both the WiFi and video data,

and calculate the distance between them. The feature dis-

tances of a training set are fed into a small 1-layer neural

network, which, after training, outputs a score indicating

the similarity between any pair of real and simulated spec-

trograms, thus indicating if the person in a video is the

same person in a WiFi area.

4 PROPOSED XMODAL-ID SYSTEM
In this section, we lay out the details of our proposed sys-

tem, which is shown in Fig. 1. We first show how we can

use a video footage of a walking person to generate a sim-

ulated wireless signal, which would have been measured if

that person walked in a WiFi-covered area. Then, we show

how to process the raw WiFi magnitude data measured in

a real WiFi-covered area in which a person is walking. We

mathematically model the wireless signals reflected from the

person’s body and apply time-frequency analysis techniques

to generate a spectrogram, which captures the gait attributes

of the person. We further focus on extracting the informative

parts of the spectrogram as well as the direction of motion.

We finally show how we can utilize the simulated wireless

signal from the video footage to generate a corresponding

spectrogram of the person based on the video. In Sec. 5, we

then introduce a set of key features and show how we can

use them to quantify the similarity between the two spec-

trograms to determine if they belong to the same person or

two different people.

4.1 Video-to-WiFi Gait Modeling
In this section, we show how we can use a video footage of

a walking person to generate a simulated WiFi signal, which

would have been measured by a pair of WiFi transceivers

if this person walked in their vicinity. Note that we do not

assume that the real WiFi transceivers are in the same area

where the video footage was taken.

Given one video frame (snapshot) of a person, we first

utilize the Human Mesh Recovery (HMR) algorithm of [13]

to produce a dense 3D mesh, which contains a large number

of 3D points describing the outer surface of the human body.

Given a video clip of a person, we then construct a set of

3D points for each frame. The sequence of such sets then

captures the gait of the person. Fig. 2 shows a few sample

video snapshots with their corresponding 3D mesh models.

Denote by M(t) = {xm(t) ∈ R3,m = 1, . . . ,M} the set of

generated 3D mesh points of the human body at time t .1 In
the real WiFi environment, a WiFi Tx is located at xT ∈ R3

,

and a WiFi Rx is located at xR ∈ R3
, as shown in the bottom

row of Fig. 1. In order to simulate the WiFi signal that would

have been received if the person in the video was walking

in the WiFi area, we utilize the Born approximation [3] to

1
Note that the HMR method outputs 3D points in the pixel space. Trans-

forming these points to real-world 3D coordinates only requires a one-time

calibration of the camera upon fixation, using the coordinates of a few

known points in the real world that are identified within the camera frame.

See [10] for more details.



Figure 3: (a) Quasi-specular reflection model of the human
body.An incidentwave on a point xm on the body is reflected
to different directions with different amplitudes, with the
strongest reflection being in the direction rm determined by
the normal to the body surface at xm . (b) Walking path of
the generated human mesh to simulate the WiFi signal.

model the WiFi reflections off of the generated human mesh

surface. More specifically, the simulated receivedWiFi signal

at time t can be written as,

sv (t) = g(xT , xR )︸     ︷︷     ︸
direct signal

from Tx to Rx

+
∑

m∈M′(t )

AmGmg(xT , xm)g(xm , xR )︸                            ︷︷                            ︸
reflected signal from point xm

, (1)

where g(x, y) is the Green’s function from point x to point

y in R3
, and is given by g(x, y) = exp(j 2πλ ∥x−y∥)

4π ∥x−y∥ , where ∥.∥ is

the Euclidean norm of the argument, and λ is the wavelength
of the wireless signal.M ′(t) ⊂ M(t) is then the subset of all

points in the human mesh that are visible to both the Tx and

Rx, since only these points will reflect the signal to the Rx.

We determine M ′(t) by applying the Hidden Point Removal

(HPR) algorithm [15] to M(t).
The strength of the signal reflected from point xm is deter-

mined by two factors: the surface area and the orientation of

the body part to which xm belongs. For instance, the human

torso has a higher reflectivity than the other body parts since

it has a larger surface area. This factor is captured by the

scale Am . The orientation of the body part then determines

the direction in which an incident signal would be reflected.

A perfect reflector would reflect the incident wave at xm ,
only in the direction rm = xm−xT

∥xm−xT ∥
− 2

(xm−xT )⊺nm
∥xm−xT ∥

nm , where

nm is the normal vector to the body at point xm (see Fig.

3 (a)). However, the human body is best modeled as a quasi-
specular reflector [1], which reflects the signal into many

directions with different amplitudes, with the strongest in

the rm direction (as shown in Fig. 3 (a)). The amplitude of the

reflection from xm towards the Rx will then be inversely re-

lated to the angle between the vectors xR −xm and rm . Based

on our empirical studies, we capture this relation using a

Gaussian mask Gm = exp

(
−

(
cos

−1 (xR−xm )⊺rm
∥xR−xm ∥

)
2

/2σ 2

a

)
.

We simulate the receivedwireless signal for the case where

the person in the video is walking away from the link, on

Tx

Rx

φ
T

φ
R

Direction of

motion

Figure 4: A pair of WiFi transceivers are used to identify
the person.

the line that is the perpendicular bisector of the Tx-Rx link,

as shown in Fig. 3 (b). We shall see in Sec. 4.3 why we do not

need to know the real track of the person in theWiFi area and

that simulating the receptions on only the aforementioned

path will be sufficient for our XModal-ID system.

4.2 WiFi-Based Gait Modeling
In this section, consider the WiFi-covered area where a per-

son is walking, as shown in Fig. 4. AWiFi Tx emits a wireless

signal that reflects off of different parts of the human body

and is received by aWiFi Rx. The complex baseband received

signal sb (t) can be written as follows [14],

sb (t) = αse
jθs +

∑
m

αme
j( 2πλ ψvm (t )t+ 2π

λ dm), (2)

where αse
jθs

is the complex received signal including the

impact of both the direct path and the static paths, αm is the

amplitude of the signal path reflected off of themth
part of the

body, dm is the length of that path at time t = 0, vm(t) is the
speed of themth

body part at time t , andψ = cosϕR + cosϕT
where ϕR and ϕT are as illustrated in Fig. 4.

Denoting by s(t) the magnitude square of the baseband sig-

nal sb (t) and assuming that |αs | ≫ |αm |, s(t) can be written

as follows,

s(t) = P +
∑
m

βm cos

(
2π

λ
(ψvm(t)t + dm) − θs

)
, (3)

where P = |αs |
2 +

∑
m |αm |2 is the DC component of s(t) and

βm = 2|αsαm |. Note thatψ can be time-varying.

4.3 Spectrogram Generation Based on
Measured Wireless Signals

It can be seen from Eq. 3 that the signal s(t) is the sum of

multiple sinusoids whose frequencies are linearly related

to the respective speeds of different body parts of the mov-

ing person. Hence, estimating the instantaneous frequency

components of the signal s(t) provides information about

how the person walks. To this end, we utilize the Short-Time

Fourier Transform (STFT), which is a commonly-used time-

frequency analysis technique in the RF-based gait analysis

literature. In STFT, a short moving window of length Twin
is applied to s(t) and the Fourier Transform is applied to

each instance of the moving window to estimate the fre-

quency components, resulting in a signal spectrogram. More



specifically, we have,

STFT (t , f ) =

����∫ t+Twin

t
s(µ)e−j2π f µdµ

���� . (4)

Fig. 5 (a) shows a sample STFT spectrogram of a walking

person, which is generated from the received WiFi signal

when a person walks away from a WiFi link, on a path per-

pendicular to it. A strong reflection (indicated by brighter

colors) can be seen in the spectrogram at ∼25 Hz, which cor-

responds to a speed of 0.72 m/s. This is caused by the motion

of the torso, the reflection of which is stronger due to its

larger surface area. Weaker reflections (indicated by darker

colors) of the faster body parts (e.g., legs) appear periodically

at higher frequencies in the spectrogram.

While the STFT provides valuable information about the

instantaneous speeds of different body parts, it has been

shown in the literature that the corresponding time-frequency

resolution trade-off can affect the quality of this informa-

tion [20]. Multi-window Hermite Spectrograms (HS) were

then proposed, in the Radar literature [20], to improve the

concentration of STFT spectrograms. In a Hermite spectro-

gram, multiple Hermite functions are used as windows for

the time-frequency analysis. More specifically,

HS(t , f ) =
1

2π

K−1∑
k=0

bk (t)

����∫ s(µ)χk (µ − t)e−j2π f µdµ

����2 , (5)

where χk (t) is the k
th
Hermite function, andbk (t) are weight-

ing coefficients obtained by solving the system

K−1∑
k=0

bk (t)

∫
|s(t + µ)|2χ 2k (µ)µ

n−1dµ∫
|s(t + µ)|2χ 2k (µ)dµ

=

{
1, ifn = 1

0, ifn ∈ {2, ...,K}

(6)

Fig. 5 (b) shows a Hermite spectrogram (with K = 3 Her-

mite functions) generated from the same data as the STFT

spectrogram in Fig. 5 (a). These two transformations, how-

ever, are utilized independently in different literature. In

order to combine the desirable concentration properties of

the HS and the ability of STFT to detect minute reflections

from different body parts, we propose to generate the final

WiFi spectrogram S(t , f ) by combining the two spectrograms

as follows,

S(t , f ) = STFT (t , f ) + HS(t , f ). (7)

Essentially, S(t , f ) is a multi-window spectrogram that uti-

lizes the rectangular window as well as the hermite function

windows. We have observed that this combination consid-

erably improves the visibility of the gait information in the

Fourier domain. We then normalize the resulting spectro-

gram at each time instant, with respect to the sum of the

values over all the frequencies at that time instant.

To visualize the impact of combining the spectrograms,

consider the spectrograms shown in Fig. 5 (a) for STFT and

Fig. 5 (b) for HS. As can be seen, the reflections of the person’s

limbs are clearly visible in the STFT, while the concentration

of the torso reflection is clearer in the Hermite spectrogram.

Consequently, the combined spectrogram in Fig. 5 (c) cap-

tures both these aspects of the gait. Additionally, Fig. 5 (d)

shows the combined spectrogram of another subject walking

on the same path, showing differentiable gait attributes.

Remark 1. From Eq. 3, a detected reflection at a frequency
f in the spectrogram is caused by a moving object with the
speedv = f λ/ψ . Hence, static multipath due to the background
environment appears at f = 0 and thus does not affect the gait
motion information, which appears at non-zero frequencies.

Remark 2. We extract the gait information from the fre-
quency of the reflected signal, and not from its power. Hence, as
long as the power of the reflected signal is above the noise floor,
the gait information can be extracted from the spectrogram.
This is particularly attractive for through-wall settings, where
the wall attenuates the signal power, but does not affect the
gait motion information.

4.3.1 Spectrogram Segmentation: As described in Eq. 3,

two parameters determine the instantaneous frequencies of

the different sinusoidal components of s(t): the direction of

motion (represented byψ ) and the instantaneous speeds of

different body parts (vm). In this section, we describe how

we segment the spectrogram S(t , f ) and extract the part in

whichψ can be considered constant. When the WiFi Tx and

Rx are close to each other, as compared to the distance of

the person to the link, a segment with an approximately con-

stantψ is obtained whenever the person walks on a straight

line towards or away from the midpoint of the Tx-Rx line. In

such a segmented spectrogram, the frequency information

mainly contains the gait attributes of the person, since it

depends only on the speeds of the different body parts (vm ).

As such, it can be very informative for person identifi-
cation, without requiring the knowledge of the track
of the person.We henceforth refer to such a segment as a

constant-ψ segment, and utilize it for our XModal-ID system.

Note that we do not need the whole track to be on a straight

line towards/away from the midpoint of the link. The person

can take any track, and as long as there is even a small part

of the track (e.g., 3 sec or longer) that satisfies this condition,

then the proposed approach can be utilized.

In order to extract a constant-ψ segment from the spec-

trogram, we search for a segment (with a minimum width

of Tmin) that satisfies two conditions. First, the spread of

the energy distribution across frequency inside the segment,

V (t) =
∫
f 2S(t , f )d f −

(∫
f S(t , f )d f

)
2

, should remain be-

low a certain threshold Vth, since a higher value of V (t) in-
dicates that the spectrogram is close to being flat at time t ,
which implies that there is no walking detected within this
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Figure 5: (a) Spectrogram based on Short-Time Fourier Transform (STFT) for a person walking away from the link, on a
straight line perpendicular to the Tx-Rx line. (b) Spectrogram of the same data based on the Hermite method. (c) Combined
Spectrogram S(t , f ) of STFT and the Hermitemethod. (d) Combined spectrogram S(t , f ) of another person walking on the same
path. It can be seen from (c) and (d) that the combined spectrograms of different people are well differentiable, e.g., the torso
speed, leg speed, and gait cycles are different. See the color pdf for optimal viewing of the spectrograms.
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personwalks (experiment area of Fig. 9 (g)), withWiFi Tx-Rx
placed behind a wall. (Right) The spectrogram of the mea-
sured WiFi data, showing different parts of the walk. The
dashed lines show two extracted constant-ψ segments.

segment. Secondly, the variations of the average torso speed

within this segment should remain below a certain threshold

vth. Since the average torso speed of a walking person is con-

stant in a small time window, a varying average torso speed

in the spectrogram is due to a varyingψ . The average torso
speed can be calculated from the spectrogram, as we shall

see in Sec. 5. When a segment satisfies the aforementioned

conditions, it is declared as a constant-ψ segment.
2

Next, we consider what would be a good value for Tmin

(the minimum acceptable width of the segment). A small

Tmin would result in many false positives, in whichψ could

be falsely considered constant simply because the segment

was too short. On the other hand, a largeTmin would require

the person to walk for a long time in order to be identified.

We observe that usingTmin = 3 sec is a good trade-off, which

provides a sufficient number of gait cycles (for a casual walk)

for extracting meaningful gait features.

Fig. 6 shows an example of the spectrogram segmentation

algorithm for the walking experiment depicted on the left,

2
Note that there can be multiple constant-ψ segments in one spectrogram,

depending on the track of the person, which we assume unknown.
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Figure 7: Plots of Z (f ,τ ) when a person is walking (left) to-
wards the link, and (right) away from the link. Energy dis-
tribution of Z over the four quadrants indicates the motion
direction. See the color pdf for better viewing.

where the constant-ψ portion corresponds to parts 2 and 3

of the track. The figure on the right shows the un-segmented

spectrogram S(t , f ) of the entire walking experiment, as well

as the constant-ψ segments detected by our algorithm.

4.3.2 Walking Direction Estimation: We have observed

that the segments of the spectrogram corresponding to a per-

son walking away from the link have clearer gait patterns

than those corresponding to walking towards the link (for in-

stance, compare parts 2 and 3 in Fig. 6). Similar observations

have been made in [22]. Therefore, we propose to utilize

only the spectrogram segments corresponding to when the

person is walking away from the link in our subsequent

processing pipeline. Let Sw (t , f ) denote a constant-ψ spec-

trogram segment detected by the spectrogram segmentation

algorithm. The information about the direction of motion,

i.e., whether the person is walking towards or away from

the link, is theoretically contained in the sign ofψ . However,
this information cannot be extracted from Sw (t , f ) since
both a positive and a negative ψ would result in the same

spectrogram, given that we only use signal magnitude mea-

surements. In this section, we then propose a new method

that can estimate the walking direction.

Despite the absence of the information about the sign ofψ
in Sw (t , f ), we can still determine the walking direction by

exploiting the fact that a WiFi signal spans frequencies in the



band [fc − B/2, fc + B/2], where fc is the carrier frequency
and B is the WiFi bandwidth, as we shall see next. Based on

Eq. 3, the magnitude squared WiFi signal, s(t ; ρ), measured

in a very short time on a frequency range fc + ρ, for ρ ∈

[−B/2,B/2], can be written as,

z(t ;ρ) = s(t ; ρ) − P

=
∑
m

βm cos

(
2π

c
(fc + ρ)(vmψt + dm) − θs

)
≈
∑
m

βm cos

(
2π

c
(fcvmψt + fcdm + ρdm) − θs

)
, (8)

where c is the speed of light. The approximation in the last

line of Eq. 8 relies on the fact that, in a very short time

window, the product ρt is negligible as compared to the

other terms in the cosine argument. By taking the Fourier

Transform of z(t ; ρ) along the t dimension and the inverse

Fourier Transform along the ρ dimension, we get,

Z (f ;τ ) =

����∬ z(t ; ρ)e−j2π f te j2πτ ρdtdρ

����
=
∑
m

βm
2

(
δ

(
f −

vmψ

λc
,τ−

dm
c

)
+ δ

(
f +

vmψ

λc
,τ+

dm
c

))
, (9)

where δ (. , .) is the 2D Dirac Delta function, and λc = c/fc .
By examining Eq. 9, we can see that for a positiveψ (a person

moving towards the link), the components of Z lie in the first

and third quadrants of the (f ,τ ) space, while, for a negative
ψ (a person moving away from the link), the components of

Z lie in the second and fourth quadrants of the (f ,τ ) space.
Therefore, we can determine the walking direction of the

person according to the following decision rule,∫ ∞

0

∫ ∞

0
|Z (f ;τ )|2d f dτ∫ ∞

0

∫
0

−∞
|Z (f ;τ )|2d f dτ

towards

≷ 1

away

. (10)

Fig. 7 shows an example of the direction estimation output

Z (f ;τ ) when a person is walking towards the link (left),

and away from the link (right). It can be clearly seen that

the energy of Z (f ;τ ) is concentrated in the first and third

quadrants for the former case, and in the second and fourth

quadrants for the latter case.

4.4 Video-Based Spectrogram Generation
In Sec. 4.1, we proposed a way of simulating the wireless

signal based on the video footage of the person, using the

HMR algorithm, HPR algorithm, and Born approximation.

Since we are only interested in the constant-ψ parts of the

spectrogram of the real WiFi measurement, as discussed in

Sec. 4.3, we only need to simulate the corresponding wireless

signal of Eq. 1 when a person walks away from the link, on

the line that is the perpendicular bisector of the link (see

Fig. 3 (b)), while being far enough from the link, as compared
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gait attributes. (b) Video-based simulated spectrograms of
two different people, showing their distinct gait attributes.

to the distance between the Tx and Rx (e.g., at least 2 m when

the Tx and Rx are 1.5 m apart). As such, no knowledge of

the track or operation area is needed. After the calculation

of sv (t) using Eq. 1 on the aforementioned path, a spectro-

gram of the simulated WiFi signal Sv (t , f ) is generated from

|sv (t)|
2
via STFT, using the procedure described by Eq. 4.

To validate our framework of video-based spectrogram

generation, we conduct a preliminary experiment where a

subject walks away on a path that perpendicularly bisects the

WiFi link, while simultaneously being videotaped. Fig. 8 (a)

shows the spectrogram of the real WiFi data as well as the

video-based simulated spectrogram. The figure further shows

some gait attributes extracted from both spectrograms. It can

be seen that our video-based spectrogram closely resembles

the real WiFi data spectrogram, demonstrating the accuracy

of our proposed framework. Additionally, Fig. 8 (b) shows

two sample video-based spectrograms of two different sub-

jects. It can be seen that the gait attributes of the two subjects

are well differentiable in the two spectrograms.

Next, we show how to measure the similarity between the

video-based simulated spectrogram and the spectrogram ob-

tained from the real measured WiFi data, in order to identify

whether the video and the WiFi data correspond to the same

person or two different people.

5 FEATURE EXTRACTION AND
SIMILARITY PREDICTION

So far, we have described our approach to extract spectro-

grams from both WiFi data and video data. In order to deter-

mine whether a WiFi sample and a video sample belong to



the same person, we extract several features from the corre-

sponding spectrograms. We then compute a set of distances

between the WiFi-based and video-based features. Given

these feature distances, we train a simple 1-layer neural net-

work to properly combine the distances and determine if a

pair of WiFi and video samples belong to the same person.

After training, the network not only provides this binary

prediction, but also provides a score indicating the similarity

between the WiFi and video samples. Once the network is

trained, we use it on unseen WiFi and video data. In other

words, none of the test data and locations is used for training.

5.1 Spectrogram Features
We have identified 12 features that are key for capturing the

main characteristics of a person’s gait. We compute each

feature on both the WiFi and video spectrograms, and use a

distance metric to measure the difference between the two

spectrograms with respect to each feature. More specifically,

we look at the frequency and time dimensions of the spec-

trogram, which carry different types of gait signatures that

can be used for identification, as we describe next.

The frequency dimension carries information about the

speeds of different body parts.We use the following frequency-

related features:

• Frequency distribution (FD): This feature is obtained by
averaging the spectrogram over time. This feature captures

the distribution of frequency components, or equivalently,

the speeds of different body parts, during the person’s walk.

• Frequency distribution in 4 gait phases (FD4): Similar

to the previous feature, we calculate the time-average of

the spectrogram for each of the 4 phases of the gait cycle,

resulting in 4 corresponding feature vectors [30].

• Average torso speed: We calculate the average of the

torso speed curve, which can be extracted from the spectro-

gram using the method in [30].

• Average of the range of torso speed: After extracting
the torso speed curve, we calculate the range of the torso

speed variation in one gait cycle. This range is then averaged

over all the gait cycles in the spectrogram.

The time dimension carries temporal information (e.g.,

periodicity patterns) about a person’s gait. We capture the

temporal signatures using the following features:

•Autocorrelation (AC): Given a spectrogram, we compute

the autocorrelation across time (with a maximum lag of 2

sec) for each frequency bin, resulting in an autocorrelation

matrix. We then compute a weighted sum of this matrix over

the frequency dimension based on the energy distribution

over the frequencies. This feature carries information on the

gait cycle and the periodicity of the walk.

• FFT of spectrogram over time: Similar to the method

in [22], we calculate the Fast Fourier Transform (FFT) of

the spectrogram over time for each frequency bin. We then

compute aweighted sum over the frequency dimension based

on the energy distribution over the frequencies.

•Histogram of autocorrelation gradient: This is the his-
togram of the gradient of the AC feature vector.

• Histogram of torso speed gradient: We calculate the

histogram of the torso speed gradient, which carries infor-

mation on how the torso speed changes with time.

• Stride length: This is obtained bymultiplying the average

torso speed by the gait cycle length, which can be extracted

from the torso speed curve.

Given the 12 features of aWiFi spectrogram and the 12 fea-

tures of a video-based simulated spectrogram, we compute

the distance between each corresponding feature in WiFi

and video. This results in a vector of 12 feature distances.

More specifically, for the frequency distribution (FD), we use

the Kullback-Leibler Divergence (KLD) as the distance met-

ric. For the frequency distributions over 4 gait phases (FD4),

for each gait phase, we first align the WiFi-based and video-

based features by offsetting their respective average torso

speeds. We then use KLD as the distance metric between the

two aligned features. The alignment removes the effect of

area-dependent average speeds (see Sec. 8) and places more

focus on the relative speeds of body parts. For autocorre-

lation (AC), we use the cosine similarity. For all the other

features, we use the Euclidean distance.

5.2 Similarity Prediction
Given a pair of WiFi and video data samples, we compute a

set of 12 distances as described previously. We then utilize

a simple neural network to combine these distances into a

final decision on whether this WiFi-video pair belongs to

the same person. We train the network on WiFi/video data

and locations disjoint from the test subjects and areas (more

details in Sec. 6). During training, these 12 distances are fed

into the neural network, which has 1 hidden layer with 30

units, along with a binary label indicating whether these

two samples belong to the same person. After training, the

network can provide a binary decision on a given pair and a

confidence score indicating the similarity between the pair.

6 EXPERIMENTAL SETUP AND DATA
COLLECTION

In this section, we describe the experimental setup for col-

lecting data (both wireless and video) and validating our

proposed methodology. We then show how we construct the

training set for training a small neural network described in

Sec. 5.2, and the test set for evaluating our proposed system.

6.1 Experiment Subjects
In order to collect WiFi and video data, we have recruited

a total of 18 subjects. We divide them into two disjoint sets



of 10 and 8 subjects, for training and test, respectively. As

a result, the test set consists of the walking data of people

that have never been seen during training, which allows us

to evaluate the proposed system’s ability to generalize to

new people. In the training set, the 10 subjects (referred to as

the training subjects) consist of 9 males and 1 female, with

heights ranging from 163 cm to 186 cm. In the test set, the 8

subjects (referred to as the test subjects) consist of 6 males

and 2 females, with heights ranging from 160 cm to 186 cm.

The speeds of the test subjects have a mean of 1.43 m/s and

a standard deviation of 0.26 m/s, while their gait cycles have

a mean of 1.06 sec and a standard deviation of 0.17 sec.

6.2 WiFi Data Collection
In this part, we describe the experiments where we use a pair

of WiFi transceivers to collect the WiFi data of the subjects.

6.2.1 Experiment Platform and Data Processing: For
theWiFi data collection process, we use two laptops equipped

with Intel 5300 WLAN Network Interface Cards (NICs). We

mount NTx = 2 omni-directional antennas to a tripod of

height 85 cm, and connect them to two antenna ports on

the Tx laptop, which transmits WiFi packets on WiFi chan-

nel 36 with a carrier frequency of 5.18 GHz. Similarly, we

mount NRx = 2 receiving antennas to a tripod of the same

height, located 1.5 m away from the Tx antennas, and con-

nect them to two antenna ports on the Rx laptop, which logs

the CSI information on 30 subcarriers with a rate of 2,000

packets/sec. The data is then processed offline to extract the

CSI information using Csitool [8]. The setup results in a total

of NTx × NRx × 30 = 120 streams of data which we process

using the method in [30]. More specifically, we denoise the

data using Principal Component Analysis (PCA). We first

generate spectrograms of the first 15 PCA components of

the measured signal, using time windows of Twin = 0.4 sec,
with a shift of 4 ms. We then average these 15 spectrograms

to obtain the final spectrogram. The frequency axis ranges

from 15 Hz to 125 Hz (which translates to speeds of 0.4 m/s

to 3.6 m/s). For the spectrogram segmentation algorithm, we

set Vth = 0.8 for indoor areas and 0.88 for outdoor areas.

These values were determined by using the experimental

data of 3 training subjects. We also set the allowable change

in average speed to vth = 0.3 m/s.

6.2.2 Experiment Scenarios: In the WiFi experiments,

we use three different settings for collecting the WiFi CSI

data, as described below and shown in Fig. 9:

• Line-of-Sight Straight-Path (LOS-SP): In this setting, a

WiFi link is deployed in the environment where the person is

walking, with a direct view of the person. In each experiment,

the subject walks from a starting point that is at least 8 m

from the link and towards the link. The subject turns around

when he/she is ∼1 m away from the link and then walks

back to the starting point. This setting captures how people

typically walk in a hallway or a pathway environment. The

corresponding areas are shown in Fig. 9 (a) - (d). Areas of

Fig. 9 (a) and (b) are only used for training while areas of

Fig. 9 (c) and (d) are only used for testing.

• Through-Wall Straight-Path (TW-SP): In this setting,

the subjects walk on a path similar to the LOS-SP setting.

However, in this case, the WiFi Tx and Rx are placed be-

hind a wall, without any view of the walking subject. We

use plywood and drywall for the through-wall experiments,

which are used for the walls of ∼90% of residential and small

commercial buildings in the U.S. [24], hence, showing the

applicability of our proposed system to typical through-wall

environments. Our two TW-SP areas are shown in Fig. 9 (e)

and Fig. 9 (f). TW-SP areas are only used for testing.

• Through-Wall Complex-Path (TW-CP): In this setting,

the WiFi Tx and Rx are placed behind a wall. Unlike the

previous straight-path settings, the subjects walk on more

general and complex paths. As shown in Fig. 9 (g), in the

TW-CP experiments, the subjects are asked to walk on two

different complex paths that are representative of how people

would typically walk in a lounge environment. TW-CP area

and complex paths of Fig. 9 (g) are only used for testing.

6.2.3 Experiment Areas (see Fig. 9): We use the walking

data of the 10 training subjects in 2 LOS-SP areas (Fig. 9 (a)

and (b)) for training the neural network. The walking data

of the remaining 8 test subjects in the remaining 5 areas, 3

through-wall (2 TW-SP and 1 TW-CP) and 2 line-of-sight, is

then used for testing. The training and test areas all vary in

size and geometry. In order to createmore statistics and avoid

biasing the results to a particularly favorable or unfavorable

data point, each test subject walks back and forth in each

area twice. Each such data instance (one back-and-forth) is

then treated independently in the data pool.

6.3 Video Data Collection
In order to train and test XModal-ID, we collect the video

data of the 18 subjects walking in an area. For training, we

have collected videos of the 10 training subjects walking in

one area, shown in Fig. 10 (a). For testing, we have collected

videos of the 8 test subjects walking in two different areas

shown in Fig. 10 (b). The video data collection areas are

completely disjoint from the WiFi experiment locations. In

each video area, a subject walks back and forth on a 7-m

straight path and a side-view video (with a frame rate of

60 fps) is recorded. The videos are then manually clipped

such that each resulting video clip contains a subject walking

on a straight path in one direction. Overall, each video clip

has an average duration of 4.7 sec. Each video clip is then

treated independently in the data pool. We collected a total

of 100 such video clips of the training subjects and 96 clips of



Figure 9: (a) – (b) WiFi training areas, Line-of-Sight Straight-Path (LOS-SP) setting: we collect WiFi CSI data of the train-
ing subjects in these two areas. (c) – (d) WiFi test areas, Line-of-Sight Straight-Path (LOS-SP) setting. (e) – (f) WiFi test areas,
Through-Wall Straight-Path (TW-SP) setting. (g) WiFi test area, Through-Wall Complex-Path (TW-CP) setting, with two com-
plex routes indicative of how people generally walk in this lounge area.

the test subjects (by having them repeat the back and forth

path a number of times).

We process the frames of each video clip using the algo-

rithm described in Sec. 4.1. The HMR algorithm outputs a

total of 2,300 mesh points on the human body for each frame.

The number of mesh point sets (frames) is then upsampled

to have a frame rate of 250 fps. Based on the surface area

values mentioned in [7], we approximate the reflectivity of

the torso points to be 3 times the reflectivity of other body

parts (which are all taken to have the same reflectivity). For

the quasi-specular reflection beam, we set σ 2

a = 40 based on

the data of 3 training subjects.

To obtain the final video-based features of a walking per-

son, we average the 12 features (described in Sec. 5) over 4

randomly-selected video-based spectrograms of that person

(i.e., over 4 video clips of that person). Such averaging is

feasible in practice as these 4 spectrograms can be generated

from chunks of a longer video or from a few short video

clips of the same person. In this paper, the 4 spectrograms

amount to a total video duration of 18.8 sec on average.

6.4 Training and Test Sets
Given the collected WiFi and video data, we construct a

training set and a test set. For both sets, we first generate the

spectrograms for the WiFi data samples and the video clips

as described in Sec. 4. After the spectrogram generation, each

training or test instance consists of a WiFi data sample and

a video data sample (drawn from the corresponding training

or test pools), a distance vector between their corresponding

features, and a label indicating whether they belong to the

same subject. A positive label indicates that the pair belongs

to the same person and a negative label denotes otherwise.

The training set is based on the 10 training subjects walk-

ing in the 2 WiFi training areas in the LOS-SP setting (Fig. 9

(a) and (b)) and in the 1 video training area (Fig. 10 (a)). The

training set consists of a total of 7,280 pairs of WiFi-video in-

stances. As we have a different number of pairs with positive

and negative labels, we utilize oversampling [2] to obtain

a balanced training set. The neural network discussed in

Sec. 5.2 is then implemented in PyTorch [21].

The test set is based on the 8 test subjects’ data in the 5

WiFi test areas (Fig. 9 (c) - (g)) and the 2 video test areas

(Fig. 10 (b)). The test set includes all the 3 scenarios: LOS-SP

(Fig. 9 (c) and (d)), TW-SP (Fig. 9 (e) and (f)), and TW-CP

(Fig. 9 (g)) in the WiFi experiments. In the test set, each

WiFi sample is paired with several randomly-selected video

samples. Overall, we have a total of 2,256 instances (i.e.,

pairs of WiFi and video data samples) in the test set, with 768

pairs in the LOS-SP setting, 744 pairs in the TW-SP setting,

and 744 pairs in the TW-CP setting. In addition to binary

classification (i.e., does a WiFi-video pair belong to the same

person or not?), we also test the ranking accuracy of our

proposed system (see Sec. 7.1). In each ranking test, a WiFi

sample serves as a query and 8 video samples serve as the

candidates, with one of them containing the same subject

as in the WiFi sample. We have a total of 282 such ranking

tests in the test set, with 96 in the LOS-SP setting, 93 in the

TW-SP setting, and 93 in the TW-CP setting.



7 SYSTEM EVALUATION
In this section, we present extensive experimental evalua-

tions of our proposed system in various practical settings

using a large test set. Unlike existing studies on WiFi-based

person identification, our test set only contains subjects and

areas that have never been seen during the training process.

7.1 Evaluation Criteria
We use the following two evaluation criteria, which are both

relevant in different applications:

1. Binary classification accuracy: In this setting, we eval-

uate our proposed system by using pairs of WiFi and video

samples. Given a pair of WiFi and video data samples, the

system predicts whether they belong to the same person or

not. The resulting binary classification accuracy is used as

the evaluation metric. As we have different numbers of test

instances with positive (same-person) labels and negative

(different-people) labels, we report the balanced classifica-

tion accuracy, i.e., the average of the respective accuracies

over the same-person and different-people pairs.

2. Ranking Accuracy: In each ranking test, the system is

given a WiFi sample of a test subject and the video samples

of several subjects from the test set. Among these candidate

video samples, only one of them belongs to the person cor-

responding to the queried WiFi sample, to which we refer as

the correct video sample. The system then ranks the video

samples based on their similarity to the WiFi sample. We

report the top-1, top-2, and top-3 ranking accuracies in this

setting, where the top-k accuracy is defined as the percent-

age of cases where the correct video sample is ranked among

the top k positions of all the video samples in a test.

Remark 3. Note that if the number of subjects in the ranking
test is 2, the system determines which one of the two video
samples belongs to the person in the queried WiFi sample.
This is different from the binary classification task, which
determines whether a video sample and a WiFi sample belong
to the same person or not.

7.2 Performance Evaluation
In this section, we evaluate our proposed system on our

extensive test set, which only has experimental areas and

subjects that are not seen during the training phase. We

further extensively test our system in through-wall scenarios

and with complex paths. See Sec. 6.4 for the details of the

test set. It is noteworthy to re-emphasize that our system

does not need to know the track of the subject, or the details

of the test area, as we discussed in Sec. 4.3. Furthermore, all

the test videos are from areas of Fig. 10 (b) (disjoint from the

WiFi areas), as discussed earlier. Table. 1 summarizes all the

results that we shall discuss in this section.

(a)

(b)

Video training area

Video test areas

Figure 10: Sample snapshots for videos in (a) the training
video location, and (b) the two test video locations.

Binary class. Ranking accuracyArea accuracy Top-1 Top-2 Top-3

Line-of-Sight Straight-Path setting
Area of Fig. 9 (c) 90% 87% 96% 98%

Area of Fig. 9 (d) 86% 70% 83% 95%

Average 88% 78% 90% 96%

Through-Wall Straight-Path setting
Area of Fig. 9 (e) 83% 74% 90% 97%

Area of Fig. 9 (f) 89% 82% 96% 100%

Average 86% 78% 93% 98%

Through-Wall Complex-Path setting
Area of Fig. 9 (g) 82% 69% 86% 96%

Overall average 85% 75% 90% 97%

Table 1: The binary classification accuracy and top-1 to top-
3 ranking accuracies of XModal-ID on the test set, in three
different settings. The last row shows the average perfor-
mance over all the areas/settings.

7.2.1 Evaluation of Line-of-Sight Scenarios: We first

evaluate XModal-ID in the Line-of-Sight Straight-Path (LOS-

SP) setting, consisting of 2 WiFi areas (Fig. 9 (c) and (d)). In

this case, XModal-ID achieves a binary classification accu-

racy of 90% in the area of Fig. 9 (c) and 86% in the area of

Fig. 9 (d), resulting in an overall average binary classifica-

tion accuracy of 88%. In other words, given a pair of WiFi

and video samples, both generated from subjects and envi-

ronments not seen during training, our system has an 88%

chance of correctly predicting whether these two samples

correspond to the same person or not, in these two areas.

Next, we look at the ranking performance. In the LOS-SP

setting, given a queried WiFi sample and 8 candidate video

samples of the 8 test subjects, XModal-ID has a success rate

of 78% of assigning the highest rank to the correct video

sample, in these two areas. Note that a random selection

would only result in a success rate of 12.5%. Moreover, in

this setting, XModal-ID has top-2 and top-3 accuracies of

90% and 96%, respectively. The ranking accuracy per area is

shown in Table 1.
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Figure 11: Top-1 to top-3 ranking accuracies when group size varies from 2 to 8, in (a) Line-of-Sight Straight-Path (LOS-SP)
areas, (b) Through-Wall Straight-Path (TW-SP) areas, and (c) Through-Wall Complex-Path (TW-CP) area.

7.2.2 Evaluation of Through-Wall Scenarios: Next, we

consider the Through-Wall Straight-Path (TW-SP)WiFi areas

(Fig. 9 (e) and (f)), where the WiFi link is placed behind a

wall and does not have any view of the subjects. XModal-

ID achieves a binary classification accuracy of 83% in the

area of Fig. 9 (e) and 89% in the area of Fig. 9 (f), amounting

to an overall average accuracy of 86%. In terms of ranking,

XModal-ID achieves top-1, top-2, and top-3 accuracies of 78%,

93%, and 98%, over both areas. In particular, when XModal-

ID is deployed in the area of Fig. 9 (f), it includes the correct

video sample among the top 3 all the time.

In the Through-Wall Complex-Path (TW-CP) area, shown

in Fig. 9 (g), the WiFi link is placed behind a wall and each

test subject walks on two sample complex paths (each path

treated as a separate experiment). These two paths represent

how people would typically walk in this lounge area. In this

setting, XModal-ID achieves a binary classification accuracy

of 82%. For the case of ranking, our system obtains top-1, top-

2, and top-3 accuracies of 69%, 86%, and 96%, respectively, in

this area. It is noteworthy that in this TW-CP setting, which

showcases challenging real-world application scenarios, the

system has a very high probability (0.96) of including the

correct video sample within the top 3 ranks.

Overall, XModal-ID achieves a binary classification accu-

racy of 85%, and top-1, top-2, and top-3 ranking accuracies of

75%, 90%, and 97%, over all 5 areas/scenarios. These results

demonstrate that XModal-ID has a robust performance, even

when the transceivers are placed behind a wall, without any

prior knowledge or view of the person/area, and when the

subjects walk on unknown and complex paths.

7.3 Evaluation with Different Group Sizes
In the previous part, we showed the performance of our

proposed system on the full test set consisting of 8 subjects.

While the binary classification accuracy is independent of

the number of subjects, ranking accuracy is a function of the

number of subjects. In this section, we then study the per-

formance of XModal-ID by varying the number of subjects

in the test set, to which we refer as the group size.

Fig. 11 (a) shows the top-1, top-2, and top-3 ranking ac-

curacies when the group size is varied from 2 to 8, in the

LOS-SP setting. For each group size that is smaller than 8,

the accuracies are averaged over all the possible subsets of

subjects for that group size. As can be seen, as we reduce

the group size, the ranking accuracies increase, since, with a

smaller group size, it is less likely to have two subjects with

similar gaits. When the group size is less than 8, the top-1

ranking accuracy is always greater than 80%.

Fig. 11 (b) and (c) further show the ranking accuracies in

the through-wall straight-path and complex-path settings,

respectively, as a function of the group size. As can be seen,

the accuracies increase as the group size decreases. Notably,

when the group size is less than 8, the top-3 accuracy in these

two through-wall settings is very close to 100%.

Overall, these evaluation results show that XModal-ID

can successfully perform cross-modal person identification

even when the test subjects and areas have never been seen

before. The test set areas represent a wide variety of real-life

scenarios, including through-wall scenarios and cases where

the person walks on a complex path (rather than a straight

one). Our system does not even need to know the track of

the subjects. Overall, our results demonstrate the efficacy of

XModal-ID in various real-world scenarios.

8 DISCUSSION
In this section, we discuss a few key aspects of XModal-ID,

as well as its limitations and future extensions.

Environment-DependentAverage Speeds: Environmen-

tal factors can sometimes affect people’s average walking

speed [6]. For instance, we noticed that people tend to walk

slightly faster in outdoor/open areas, as compared to in-

door/closed areas. All existing works on WiFi-based gait

identification train and test in the same area, where the sub-

jects mostly maintain the same walking speeds. On the other

hand, in XModal-ID, in addition to the overall average speed,

we also utilize spectrogram features that are independent of

the average speed and only depend on the distribution of



the relative speeds of body parts (see Sec. 5). Hence, XModal-

ID can tolerate small changes in the average speeds of the

subjects.

Tracks with Varyingψ : XModal-ID does not assume any

knowledge of the track of the person. Instead, it uses the

spectrogram segmentation algorithm in Sec. 4.3 to extract the

part of the person’s track whereψ is approximately constant.

The constant-ψ parts correspond to parts of track where

the subject walks on a straight path towards/away from the

midpoint of the Tx-Rx line, for the case where Tx and Rx are

close enough to each other (see Sec. 4.3). Since this is a very

general condition, most natural tracks will at least have small

parts that would satisfy this condition. In fact, XModal-ID

only needs a very small part of the track, e.g., 3 sec, to satisfy

this condition, as discussed earlier. In the rare case that no

part of the track satisfies this condition, the varyingψ can be

estimated by existing WiFi-based tracking approaches and

XModal-ID can be extended to accommodate the varyingψ .

Applicability to Intruder Detection: XModal-ID can also

determine whether a WiFi sample belongs to a new user

whose video is not available. It can compare this WiFi sample

with each of the available video samples, using the binary

classification criterion, and declare an unseen user if the

WiFi sample does not match any of the videos. This setting

can be relevant in applications such as intruder detection.

Processing Time: A typical duration of a WiFi data sample

in our experiments is 25 sec. On a 3.40 GHz Intel Core i7 PC,
XModal-ID takes an average of ∼19.8 sec to fully process

such WiFi data. For videos, XModal-ID takes ∼132.5 sec to
fully process a video clip of 4.7 sec (average duration) in order
to generate a final feature vector. In particular, ∼112.8 sec are
dedicated to generating the human mesh model, using the

publicly available codes of [11, 13] on an NVidia GTX 1070

GPU, while the remaining steps (e.g., WiFi signal simulation)

take ∼19.7 sec on a 3.40 GHz Intel Core i7 PC.

Limitations and Future Extensions: 1) Number of People:
Currently, XModal-ID can determine if a pair of WiFi and

video samples belong to the same person or not. In addition,

it can reliably identify a person from 8 video footage candi-

dates, which enables several real-world applications, such as

suspect search and smart-home personalized services, where

the number of subjects is typically less than 8. As part of

future work, one can scale up XModal-ID to a larger number

of people, which can enable other useful applications.

2) Multi-Person Identification: XModal-ID assumes that

there is only one person walking in the WiFi area. As dis-

cussed in Sec. 1, the current system can support several

applications (e.g., personalized service provisioning), where

there is typically a single user in the WiFi area. When there

are multiple users, the spectrogramwould contain the impact

of all users’ motions, thus making it challenging to identify

each individual. As part of future work, one can isolate the

impact of each person for the purpose of identification.

3) Stationary People: XModal-ID identifies people based

on their gait. Thus, it requires that the person walks (even

briefly) to be identified. If a person remains completely sta-

tionary, XModal-ID would not be able to identify him/her.

Extensions to include other features more relevant to sta-

tionary people/actions is a possible future direction.

4) Reflection-Based Video-to-Wifi Modeling:We utilize Born

approximation and quasi-specular reflections to model the

wireless signals in video-to-WiFi modeling, as discussed in

Sec. 4.1. This model is not valid when the person is crossing

the link. However, XModal-ID can still robustly work if a

person crosses the link occasionally, since the segmentation

algorithm will not choose such segments of the spectrogram.

However, if a person is mainly blocking the link, or generally,

has a motion pattern that does not have any constant-ψ
segment, then XModal-ID needs to be extended, as discussed.

9 CONCLUSIONS
In this paper, we proposed XModal-ID, a WiFi-video cross-

modal person identification system, which can determine

if an unknown person walking in a WiFi-covered area is

the same as the person in a video footage. To achieve this,

XModal-ID utilizes WiFi CSI magnitude measurements of a

pair of WiFi transceivers to identify a person, by matching

the gait features captured by the WiFi measurements to

those from a video of a walking person. XModal-ID does

not need any prior wireless or video data of the person to be

identified, or the identification area. It can further identify

people through walls and does not need the knowledge of

the track of the person. In order to evaluate our proposed

system, we constructed a large test set with 8 subjects, 5

WiFi areas, and 2 video areas, all of which were unseen in

the training phase. Furthermore, the test set includes 3 areas

where the transceivers were placed behind a wall, as well

as scenarios with complex paths. XModal-ID achieves an

overall binary classification accuracy of 85% in predicting

whether a WiFi-video pair belong to the same person or not,

and top-1, top-2, and top-3 ranking accuracy of 75%, 90%,

and 97%, respectively. This demonstrates that our proposed

XModal-ID system can robustly identify unknown people in

new environments and through walls.
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