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Abstract—In this paper, we consider robotic surveillance tasks
that involve visual perception. The robot has a limited access to
a remote operator to ask for help. However, humans may not be
able to accomplish the visual task in many scenarios, depending
on the sensory input. In this paper, we propose a machine
learning-based approach that allows the robot to probabilistically
predict human visual performance for any visual input. Based
on this prediction, we then present a methodology that allows the
robot to properly optimize its field decisions in terms of when to
ask for help, when to sense more, and when to rely on itself. The
proposed approach enables the robot to ask the right questions,
only querying the operator with the sensory inputs for which
humans have a high chance of success. Furthermore, it allows it to
autonomously locate the areas that need more sensing. We test the
proposed predictor on a large validation set and show Normalized
Mean Square Error of 0.0199, as well as a reduction of about an
order of magnitude in error as compared to the state-of-the-art.
We then run a number of robotic surveillance experiments on our
campus as well as a larger-scale evaluation with real data/human
feedback in a simulation environment. The results showcase the
efficacy of our approach, indicating a considerable increase in
the success rate of human queries (a few folds in several cases)
and the overall performance (30%-41% increase in success rate).

I. INTRODUCTION

Thanks to the advances in areas such as perception, navi-
gation, and robotic manipulation, robots are becoming more
capable of accomplishing complicated tasks. There, however,
still exist many tasks that robots cannot autonomously perform
to a satisfactory level. As such, robots can benefit tremen-
dously from seeking human’s help, as has been demonstrated
in recent work [16, 17, 27, 36]. In most existing work, it is
assumed that human performance is perfect. This, however,
is not true in many cases. For instance, consider a task that
involves visual perception. While the state-of-the-art in vision
has improved tremendously due to the advances in machine
learning, there can still be several sensory inputs for which the
robot cannot correctly perform a visual task. The robot may
have access to a remote human operator to ask for help with
the task. However, human visual performance may also be far
from perfect depending on the sensory input.

Fig. 1 demonstrates a real example of this for a robotic
surveillance task on our campus.1 An unmanned ground vehi-

1Readers are referred to the color pdf to see all the images of this paper
more similar to what was seen by the robot and humans during the operation.
Furthermore, we note that all the images used as part of this work are at the
size of 256×256, while we have to show a smaller version in the paper. We
note though that the visual difficulty of the real-size images is pretty consistent
with the visual difficulty of the smaller versions when viewed in color. We
have included all the images of the performance evaluation section at their real
size in the supplementary document (http://dx.doi.org/10.7919/F43X84K7).

cle is given a visual perception task that involves finding the
human at each of the 4 shown sites, based on onboard camera
inputs. The robot has a limited access to a remote human
operator to ask for help with this task. The figure shows the
images taken by the robot after its initial sensing of each site.
Equipped with a state-of-the-art vision algorithm, the robot
has no problem recognizing the humans at Sites 1 and 4 itself.
However, the robot’s vision fails for Sites 2 and 3. On the other
hand, the person at Site 3 can be easily detected by a human,
while it is also hard for humans to spot the person at Site 2
based on the current sensory input. Thus, if the robot assumes
that human is perfect and asks for help by sending image 2 to
the human operator, it is highly likely that the operator will
fail to find the human in the image.

Fig. 1: A robotic surveillance task on our campus that involves
finding the person in each of the 4 sites, based on imagery inputs.
The robot has a limited access to a remote operator to ask for help
and needs help with Sites 2 and 3. However, human performance is
not perfect and she cannot help with Site 2 if asked. If the robot
could predict human visual performance for a sensory input, it could
optimally ask for help with Site 3 and move to Site 2 to sense more.
Readers are referred to the color pdf for details.

This example highlights three key points at the core of
this paper. First, robot’s vision will fail for several realistic
scenarios that involve visual perception. Second, there will be
many cases where humans may not be able to help the robot
depending on the sensory input. Given that remote operators
typically have to manage several different tasks under fatigue
and time pressure, the robot should only ask for human’s help
when it is highly confident that humans can do the task. Third,
the robot needs to move closer to those sites where both robot
and human fail the task for further sensing.

In this paper, we consider robotic surveillance tasks that
involve visual perception. The robot has a limited access to
a remote operator to ask for help with its task. We propose



a methodology that allows the robot to properly optimize its
decisions in terms of which sites to ask for help, which sites
to visit and further sense, and which sites to rely on itself. At
the core of our approach, is a proposed probabilistic predictor
for human visual performance, which allows the robot to
probabilistically assess human performance for a given sensory
input. This enables the robot to ask the right questions,
only querying the operator with the sensory inputs for which
humans have a high chance of success. Then, the robot will
use the feedback from our predictor to optimize its human
collaboration and further sensing of the field.

A. Related Work

There is a great body of work on different aspects of human-
robot collaboration [18, 19, 21, 31, 33]. More related to this
work are those papers that focus on robots asking human for
help. For instance, [10] shows how robots can recover from
difficult states or failures by asking for help. In [25, 35, 36], a
robot learns from human demonstration and correction, while
a robot performs object detection and recognition with human
inputs in [23, 28, 32, 39]. In computer vision, a number of
work have focused on designing human-machine interfaces
that allow the vision algorithm to ask for human’s help when
it encounters difficulties [4, 9, 30, 40]. In most of these work
on asking for help, however, human is assumed perfect in
task accomplishment. As can be seen in Fig. 1, human visual
performance is not perfect depending on the sensory input. In
[34], robot asks for human help by generating unambiguous
sentences for a collaborative manipulation task, a subject
different from this paper.

A number of work have taken imperfect human performance
into account for non-robotic vision applications. In [4], for
instance, authors propose a collaborative vision task inspired
by the 20-question game. [30] proposes a collaborative annota-
tion system in which human and machine collaboratively label
the objects in images. In these work, however, it is assumed
that human performance is task dependent but invariant to the
sensory inputs. In other words, for a specific visual task, the
probability of human’s task accomplishment is constant (less
than 1), independent of the input image. While a good step
towards considering imperfect human performance, human
visual performance can largely vary for a given visual task,
depending on the sensory input, as shown in Fig. 1.

A few work have attempted to estimate human visual
performance based on a given input image. Johnson criteria is
one of the first attempts along this line, where human visual
performance is predicted based on the number of line pairs of
display resolution occupied by the target on the screen [26]. In
cognitive psychology, it is heavily acknowledged that human
visual system is not perfect [11, 12, 13], motivating work
that attempt to understand how different image features affect
human performance [7]. The goal of these work, however, is
not predicting human performance for a given image but un-
derstanding a certain feature’s impact on human performance.

In [14, 37], authors utilize machine learning to predict the
probability that a driver is able to detect a pedestrian at a

Fig. 2: High-level diagram of our approach for (top) predicting hu-
man performance using machine learning and (bottom) field operation
and robot decision optimization with human performance prediction.

glance based on hand-crafted image features, such as size
and position of the pedestrian in the image. In [5, 6], im-
perfect human visual performance is considered in the context
of a robotic field operation, emphasizing the importance of
properly optimizing human’s help. However, human visual
performance is predicted when noise with a known variance
is added to otherwise easy images. The known noise variance
is then used as a hand-crafted feature to predict human
performance. In general, a sensory input such as an image may
have several features that can make it hard or easy for humans
to perform a visual task, making identifying and hand-crafting
all of them very challenging. Thus, an automated method
that can predict human visual performance for any given
sensory input is needed and currently lacking, which is one
of the main motivations for this paper. More specifically, as
compared to the existing approaches, our proposed prediction
methodology is fundamentally different in that the relevant
image features are selected in an automated manner during
training, by properly utilizing convolutional neural networks,
and then used for predicting human visual performance.

Statement of contribution: The main contributions of this
paper are then as follows: 1) we propose a machine learning-
based approach that allows the robot to probabilistically
predict human visual performance for a given visual input,
without a need for hand-crafting any feature. Fig. 2 (top) shows
a high-level diagram. We train our neural network by gathering
several human data using Amazon Mechanical Turk (MTurk)
[2]. We then test the proposed predictor on a large validation
set and show a considerable reduction in prediction error as
compared to the state-of-the-art, 2) We propose how the robot
can optimize its field decisions in terms of relying on itself,
asking for help, and further sensing, based on the output of
the predictor as summarized in Fig. 2 (bottom), and 3) We run
a number of robotic surveillance experiments on our campus,
which showcase the effectiveness of our approach, indicating
a considerable increase in the success rate of human queries
and the overall task. We further run a larger-scale evaluation
in a simulation environment, based on images taken on our
campus and with MTurk users acting as human operators. To
the best of our knowledge, these are the first real experiments
where an unmanned vehicle optimizes its collaboration with a
human operator, based on predicting human performance for
each sensory input, and performs futher sensing of the field



based on this prediction.

II. PROBLEM FORMULATION & DECISION OPTIMIZATION

In this section, we formulate the human-robot collaborative
perception problem as a constrained optimization problem and
discuss the optimum decisions such that robot’s motion energy
usage is minimized while task performance is guaranteed
above a certain level. We then propose how to equip the robot
with a human performance predictor in order to successfully
execute the optimum decisions. In the rest of the paper,
we focus on surveillance tasks for finding humans based on
imagery inputs. We note that the proposed methodology is
applicable to any visual perception task with any sensory input.

A. Problem Formulation
Consider a case where there is a total of N sites with a

human at each site. A field robot is tasked with finding the
human at each site.2 The robot has limited access to a human
operator to ask for help with the task, in the form of M
maximum questions. The robot can also spend motion energy
and time to move closer to a site for better sensing. The robot’s
goal is to successfully perform the task while minimizing its
total energy usage (or equivalently operation time).

During the operation, the robot first performs initial sensing
of the sites by taking a picture of each site. Based on these
sensory inputs, it then estimates its own probability of task
accomplishment, which is denoted by pr,i for the ith site, for
i ∈ {1, ...,N}. If the estimated probability is high enough for
a site, then the robot can rely on itself. If not, it has to decide
if it should ask for help from a remote operator for this site
or if it should move to the site for further sensing. In order to
properly make this decision, it needs to assess the chance that
the operator can perform the task successfully. Let ph,i denote
the probability that humans can successfully perform the task
for the ith site, for i ∈ {1, ...,N}. We then have the following
optimization problem:

min.
γ,η ,ω

E T
η

s.t. γ ◦ ph +ω ◦ pr +η � pTh1,
1T

γ ≤M, γ +η +ω = 1, γ,η ,ω ∈ {0,1}N ,

(1)

where E = [E1, ...,EN ]
T is the motion energy cost vector

to visit the sites, pTh is the minimum acceptable probabil-
ity of successful task accomplishment, ph = [ph,1, ..., ph,N ]

T ,
pr = [pr,1, ..., pr,N ]

T , γ = [γ1, ...,γN ]
T , η = [η1, ...,ηN ]

T and
ω = [ω1, ...,ωN ]

T . Moreover, γi = 1 if the robot seeks human’s
help for site i and γi = 0 otherwise. ηi = 1 if the robot visits
site i and ηi = 0 otherwise. Furthermore, ωi = 1 if the robot
relies on itself for site i and ωi = 0 otherwise. 1 is the vector
of all 1s, ◦ denotes the Hadamard product and � indicates
that the inequality is component-wise.

In order to mathematically characterize the optimum deci-
sions, we assume that if the robot moves to a site for further
sensing, its probability of successful task accomplishment is

2We emphasize that the considered task in the rest of the paper is to find
the human at each site, given there is a human at each site. In other words,
the robot or human operators/Mturk users know there should be a human at
each site and the task is to find the human at each site.

1 in Eq. 1.3 The optimum solution of Algorithm 1 can then
be easily confirmed for Eq. 1.
B. Proposed Decision Optimization

Algorithm 1 lays out the decision optimization of the robot
during the operation. If the robot has a high confidence in
finding the person at a site ( pr ≥ pTh), then it can simply rely
on itself, eliminating the need for further sensing or asking for
help. In Section IV, we discuss how robot’s vision algorithm
provides it with pr so it can assess its own performance.

Algorithm 1: Decision Making Algorithm
Initialization: ωi = 0, γi = 0, ηi = 0, ∀i ∈ {1, ...,N}.
Step 1: ∀i ∈ { j : pr, j ≥ pTh, j ∈ {1, ...,N}}, set ωi = 1;
Step 2: ∀i ∈ { j : ω j = 0, ph, j ≥ pTh, j ∈ {1, ...,N}}, set γi with
the M largest Ei to 1;
Step 3: ∀i ∈ { j : ω j = γ j = 0, j ∈ {1, ...,N}}, set ηi = 1.

For sites that pr < pTh, the robot has to decide on which
ones to visit and which ones to ask the operator. In order
to make this decision, the robot needs to predict the chance
that the operator can accomplish the given perception task
(ph). This motivates our proposed predictor for human visual
performance, which we extensively discuss in the next section.
Based on Algorithm 1, the robot then evaluates the images
of these sites with its human predictor. Let Nhard denote the
number of sites that the robot cannot rely on itself. Out of
these sites, let Nhuman denote the number of sites for which
the robot predicts that the human can accomplish the task
(ph ≥ pTh). If M ≥ Nhuman, then the robot will pass all those
sites to the operator. If M < Nhuman, then the robot will choose
the M sites that cost the most energy to visit and pass them
to the operator. It will then visit the remaining sites. Fig. 3
summarizes optimum decision making of the robot.

III. A PREDICTOR FOR HUMAN VISUAL PERFORMANCE

In this part, we develop a predictor for human visual
performance in a task that involves finding a human in an
image. More specifically, given a visual input in the form of an
image, the robot wants to predict the probability that humans
can see the person in the image. In order to equip the robot
with this capability, we collect several images with different
levels of difficulty to train a Convolutional Neural Network
(CNN), as shown in Fig. 4. We next describe the details of
the training process, the machine learning algorithm, as well
as the resulting performance and underlying trends.
A. Training Dataset

We have built a dataset of 3000 total images, with each im-
age containing a human.4 We have included images with dif-
ferent degrees of visual difficulty for proper training. Sample
challenging cases include images in cluttered environments,
images where the human is far away, and dark images. The

3In our experiments, we take the true probability of task accomplishment
into account when a site is visited.

4Ideally each image should contain only one human to be consistent with
the defined task. However, due to the difficulty of finding images online that
capture challenging scenarios, a small percentage of the images contain more
than one person in the image. The MTurk users are instructed to answer “yes”
if they could spot a person in the image. In such cases, the task can be thought
of as finding the most obvious person in the image.



Fig. 3: Flow diagram of robot’s decision making process.

images are mainly selected from the following sources: NOAA
Natural Hazards Image Database [1], the SUN dataset [38],
and the PASCAL VOC dataset [15]. All the images are resized
to 256×256. For each acquired image, we have manually
darkened it to create a new data point that is also dark.

1) Human Data Collection: For each training image, we
need to evaluate human visual performance. We do so empiri-
cally by using MTurk. For each image, 50 MTurk workers are
asked if they could see a human in the image. The responses
are then averaged for each image to empirically assess the
probability that a person can accomplish the given visual task.

2) Statistical Characteristics of the Dataset: Ideally, our
dataset should be balanced in the number of difficult and
easy images to avoid biasing the learning process. However,
we find more easy images in online datasets than hard ones.
For instance, based on the collected data from MTurk, the
probability of task accomplishment is above 0.95 for about
70% of the images and below 0.9 for about 20% of the images.
To avoid biasing the prediction, we utilize the commonly
used technique of oversampling [8] in machine learning to
create a more balanced dataset. As our extensive experimental
results of Section V indicate, the number of hard images
in the initial set is still sufficient as our trained predictor
can well differentiate between the images that are easy and
difficult for humans. We note that the design of the constrained
optimization problem of Algorithm 1 is general and not af-
fected by dataset imbalance. Building a more balanced dataset
can improve the prediction performance, and the overall task
success rate, when implementing this approach.
B. Using CNN to Predict Human Performance

We train a convolutional neural network to predict human
performance. The high-level structure of the network is shown
in Fig. 4. Our proposed network architecture is a modified
version of Alexnet [22], which is among the best existing
classification networks. The original Alexnet consists of 5
convolutional layers and 2 fully connected layers, followed
by the output layer. Alexnet is originally designed for object
classification. In this paper, however, we are interested in a dif-
ferent task of probabilistically predicting human performance
in finding a person in an image, which is a regression task.
We thus replace the output layer of Alexnet with a regression
layer, which then outputs the human performance based on

Fig. 4: Flow diagram of training a convolutional neural network to
predict human performance probabilistically.

Image Categories Normalized MSE
All 0.0199

Non-dark 0.0067
Dark 0.0330
Hard 0.0479

Hard Non-dark 0.0493
Hard Dark 0.0474

TABLE I: Performance of our human predictor – NMSEs over
different subsets of images in the validation set.

the output of the 7th layer of Alexnet.
By using the dataset of Section III-A as input images and

the corresponding MTurk responses as ground-truth labels,
we train the resulting network as follows. The parameters
of the first 7 layers are initialized with the weights of the
corresponding layers of an Alexnet trained for human detec-
tion (classification from a set of {Human,No Human}). The
parameters of the output layer are initialized randomly. Mean
Squared Error (MSE) is used as the loss function that computes
the update for network weights. The underlying motivation for
this design is as follows. The parameters of the first 7 layers of
the Alexnet trained for human detection capture features useful
for detecting human presence, which are also informative
for predicting human performance in finding a person in the
image. But since our task is different, all the weights need to
be updated during the training based on the input from human
performance. The training is performed for 50K iterations with
an initial base learning rate of 10−5, which is reduced by a
factor of 10 after every 10K iterations. Stochastic gradient
descent is used to update the network weights and the training
batch size is 128. We employ the machine learning library
Caffe [20] to train and test our models.

C. Evaluation of the Proposed Human Performance Predictor
We next evaluate the performance of our trained human

predictor over the validation set. The validation set is randomly
selected out of the original image pool and thus has a similar
ratio of hard to easy images as the training pool. We first
look at the Normalized Mean Squared Error (NMSE) to
evaluate the prediction quality, which is calculated as follows:
1
V ∑

V
i=1(ph,i,val− p̂h,i,val)

2/p2
h,i,val, where ph,i,val and p̂h,i,val are

the ground-truth and predicted human performance of the
ith validation image and V is the number of image in the
validation set.5 Table I shows a summary of NMSE over
different subsets of the validation set. The NMSE over all
validation images is 0.0199. The NMSE over all non-dark and
dark6 validation images are 0.0067 and 0.033 respectively. It
is also of great importance to our robotic task to be able to
predict images hard for humans. Define hard images such that
the empirical probability of a person finding the human in
the image, i.e., the ground-truth probability, is less than 0.9.
The NMSEs over all such hard images, hard non-dark images
and hard dark images are also summarized in Table I. As can
be seen, the NMSE values are fairly small, indicating a good

5Although NMSE values are higher than the corresponding MSE ones since
we are predicting a positive value bounded by 1, we find NMSE a more
truthful metric of the performance as it is normalized by the true value.

6Non-dark images refer to those directly taken from the aforementioned
datasets and dark images refer to those that are manually darkened.



training performance. Fig. 5 shows four sample images with
the true and predicted human performance annotated (bottom-
right) on each image. As can be seen, our predictor can predict
the performance well for these images. Fig. 6 further shows the
empirical Cumulative Distribution Function (CDF) of NMSE
over the validation set. It can been seen that the NMSEs of
most images (more than 90%) are upper bounded by 0.05. We
note that the NMSE of the validation set and the training set
is 0.0199 and 0.0112 respectively, indicating that the network
did not over-fit the training data.

True prob.: 1

Pred. prob.: 1

True prob.: 1

Pred. prob.: 1

True prob.: 0.87

Pred. prob.: 0.88

True prob.: 0.76

Pred. prob.: 0.79

Fig. 5: Comparison of the true and predicted probability of successful
human performance for (top-left) an easy non-dark image, (top-right)
a hard non-dark image, (bottom-left) an easy dark image and (bottom-
right) a hard dark image. Readers are referred to the color pdf for
better viewing.

NMSE in Predicting Human Performance
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Fig. 6: The CDF of NMSEs of validation images.

To the best of authors’ knowledge, there are two papers
that have looked into the problem of predicting the probability
with which a person is able to see a human in an image. The
reported prediction Mean Absolute Error (MAE) is at least
0.22 in [37], while the prediction Mean Squared Error (MSE)
is 0.04 in [14]. The comparison between our predictor and
those reported in [14, 37] is summarized in Table II. As can
be seen, our approach can achieve a much better performance.
This is mainly because our approach is fundamentally different
from the past work in that [14, 37] choose a few hand-crafted
image features for prediction. In general, however, there exist
many underlying features that contribute to what makes an
image difficult or easy for human visual system, which are
challenging to hand-craft. Thus, in our approach, the important

Human Predictors MSE MAE
Our Predictor 0.0067 0.0459

Predictor of [14] 0.04 N/A
Predictor of [37] N/A 0.22

TABLE II: Comparison of the performance of our predictor with two
existing predictors. N/A indicates that the evaluation is not available.
The performance of our predictor is evaluated over all non-dark
validation images, which best match the characteristics of the images
used in [14, 37].

features of an image are automatically captured by the CNN
in Fig. 4, and utilized for performance prediction.

Remark 1: Table II shows what [14, 37] reported for their
prediction performance. Although we evaluate the perfor-
mance of our predictor over our non-dark validation images,
which best resemble the images used in [14, 37], we note
that our dataset is not the same as that of [14] or [37].
The performances of the three predictors are thus not fully
comparable since they are evaluated over different datasets.

Remark 2: As can be seen, the NMSE values in Table I are
slightly larger over the set of hard images. While we expect
hard images to be more challenging for the predictor, this
can also be partly due to the dataset imbalance (discussed in
Section III-A2). It can, however, be seen that the NMSE values
are still very small, indicating a good training performance.
Building a more balanced dataset by including more hard
images, as part of future work, can improve the prediction
performance in more challenging settings.

D. Variability Among Human Operators and pTh

In general, we should choose pTh high such that the robot
only asks the human about those images for which almost
all the probed people have correctly done the task. This is in
particular important as we consider cases where the human
operator can only look at the image at a glance and does not
have time to investigate the details due to work overload. Thus,
the robot wants to only ask for help if it is fairly confident
that the human can be of help.

Choosing a high threshold also makes the prediction more
immune to the variability among operators. As expected, there
will be variability among different humans in accomplishing
a visual task. Furthermore, performance of the same person
can vary depending on factors such as fatigue and attention
overload. The variability of performance, however, is much
less for easy images, as compared to hard images. This makes
sense as humans can typically perform an easy task even under
fatigue and stress while performing harder tasks requires more
focus and energy. We thus choose pTh = 0.9 in the next section
on performance evaluation.

IV. ROBOT VISION

The robot uses the state-of-the-art Alexnet vision algorithm
[22] for task accomplishment, which also provides it with a
confidence metric to assess pr. We train Alexnet to classify
images into two classes of {Human,Non-Human}, i.e., images
that contain at least one human and images that do not contain
any. We fine-tune the Alexnet on our dataset (MS COCO [24]
plus manually darkened images) with 230K training images



Initial sensing

Exp. 1   Site 1

Initial sensing

Exp. 1   Site 2

Initial sensing

Exp. 1   Site 3

Initial sensing

Exp. 1   Site 3

After further sensing

Exp. 1   Site 1

Fig. 7: Initial sensing images of 3 sites at crossroad 1 and the image taken after moving to Site 1 for further sensing based on our approach.
Readers are referred to the color pdf for all the experimental results. The visual difficulty of the real-size images is pretty consistent with
that of the smaller versions when viewed in color. The supplementary document contains all experimental images in their real size.

from a model pre-trained on the Imagenet data [29]. The
accuracy of our model over the validation set (80K images) is
0.85. The network gives its confidence in terms of a probability
for each class. We then take pr = prob{Human}.

V. PERFORMANCE EVALUATION

In this section, we start by evaluating the performance of
the proposed approach with 4 experiments on our campus.
Additionally, we evaluate the performance at a larger scale by
simulating a case with 15 sites, based on real sensing data
from our campus and real human performance using MTurk.
We further compare our approach with the best possible
without human prediction, to which we refer as “benchmark”.
The benchmark optimizes the decisions without knowledge of
human performance, as is summarized below:

Initialization: γi = 0, ηi = 0 and ωi = 0, ∀i ∈ {1, ...,N};
Step 1: ∀i ∈ { j : pr, j ≥ pTh, j ∈ {1, ...,N}}, set ωi = 1;
Step 2: ∀i ∈ { j : ω j = 0, j ∈ {1, ...,N}}, set γi with the M

highest pr,i to 1;
Step 3: ∀i ∈ { j : ω j = γ j = 0, j ∈ {1, ...,N}}, set ηi = 1.
In summary, the robot orders the sites based on its own

confidence (pr) from highest to lowest. If the robot’s confi-
dence is high enough, it will rely on itself. It then selects
the next M sites to query human operators, and visits the
remaining sites. We note that in several literature on human-
robot collaboration, the human is assumed perfect. We can also
compare our approach to the case of perfect human. In this
case, the robot should choose M most expensive sites to query
the operator from the sites that are difficult for itself. However,
this approach does worse than the aforementioned benchmark.
We thus compare our approach with the described benchmark
in this section. When comparing to any other approach, we
note that the sites that the robot relies on itself will naturally
be the same, as expected, since this paper is about how to
optimize the decisions when the robot cannot rely on itself.

A. Robotic Experiments
We perform a number of robotic experiments at different

locations on our campus to validate the proposed approach. In
each experiment, the robot starts at the center of a crossroad.
Each crossroad direction is a site of interest, and there is
a person at each site. The robot is tasked with finding the
person in each direction based on camera inputs, and is given
maximum of M = 1 question to ask remote operators for help
with finding the person in that experiment. The robot can
choose to move to a site for further sensing. The goal of the

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark
1 0 0 Visit Ask
2 1 1 Self Self
3 1 1 Self Self

Ave. Prob. Success 0.96 0.69
Ave. Prob. Human Success N/A 0.07
TABLE III: Performance summary at campus crossroad 1.

robot is to find the person in each direction with a very high
probability, while minimizing its total energy usage.

The robot does an initial sensing of each direction by
rotating, facing each direction, and taking a color picture.
The robot then inputs the pictures to its onboard human
predictor and decision making algorithm (Eq. 1). Based on
the resulting optimum decisions, the robot may select a site
to ask for operator’s help and a number of sites for further
sensing according to the strategy described in Section II-B.
The robot is a Pioneer 3-AT ground vehicle [3], equipped with
a webcam for sensing and a laptop for processing. Camera
images are resized to 256×256 to be compatible with Alexnet.
For all the images, the readers are referred to the color pdf.
The supplementary document also contains the experimental
images in their real size. We further note that we have blurred
the faces in the images for submission anonymity.

1) Campus Robotic Experiment 1: In this experiment, the
robot starts at crossroad 1 with three sites in three different
directions. Fig. 7 shows the images that the robot takes during
its initial sensing. Table III shows robot’s performance (pr) as
well as predicted human performance (p̂h), as compared to the
required threshold (0.9) for the three sites, with “1” indicating
that the threshold is satisfied and “0” denoting otherwise.7

As can be seen, the robot can confidently rely on itself for
Sites 2 and 3. However, it has a low confidence for Site
1, which is also hard for humans, as can be seen. Without
our predictor, however, the robot has no methodical way of
making the right decision for this site. The table shows robot’s
decisions for both our approach and the benchmark. As can
be seen, our human predictor accurately predicts that Site 1 is
too difficult for humans and thus does not send this image to
the operators. Instead, it chooses to move to this site to take
the 4th image, which is now easy for itself. The benchmark,
on the other hand, would inquire the operator on the first
image, for which MTurkers had 0.07 chance of spotting the
human. The table also shows the overall average probability

7The threshold pTh = 0.9 is used throughout this section.
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Fig. 8: Initial sensing images of 3 sites at crossroad 2 and the image taken after moving to Site 1 for further sensing based on our approach.

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark
1 0 0 Visit Ask
2 0 1 Ask Visit
3 1 1 Self Self

Ave. Prob. Success 1 0.71
Ave. Prob. Human Success 1 0.27
TABLE IV: Performance summary at campus crossroad 2.

of task accomplishment, which is 0.69 for the benchmark and
0.96 for our approach (39% higher than benchmark). Average
probability of success is averaged over all the sites, including
the ones that the robot relies on itself.

2) Campus Robotic Experiment 2: In this experiment, the
robot starts at crossroad 2 with three sites in three different
directions. Fig. 8 shows the images taken by the robot during
its initial sensing. Table IV shows robot’s performance and
predicted human performance. As can be seen, the robot can
confidently rely on itself for Site 3. However, it has a low
confidence for Sites 1 and 2 in this case. Site 1, however, is
also hard for humans, while Site 2 is easy for humans, as
can be seen.8 The table shows robot’s decisions for both our
approach and the benchmark. Our human predictor accurately
predicts that Site 2 is easy for humans while Site 1 is hard.
The robot then chooses to move to Site 1 and send image of
Site 2 to operators for help, while relying on itself for Site 3.

The benchmark instead queries the operator with Site 1 and
moves to Site 2 for further sensing, which results in wasting
one question, not spotting the person in Site 1, and moving to
the wrong site for further sensing. This is due to the fact that pr
of Site 1 is higher than Site 2. In other words, robot’s vision
algorithm cannot properly predict human’s performance. As
a result, the average probability of human success is 0.27
in the benchmark case while it is 1 in our case (3.7 times
higher). The overall average probability of success is 0.71
for the benchmark and 1 for our approach (41% higher than
benchmark) in this case.

3) Campus Robotic Experiment 3: In this experiment, the
robot starts at crossroad 3 with four sites in four different
directions. Fig. 9 shows the initial images. As can be seen, it
is hard to spot the person in Site 1, while the person in the
three other sites can be easily detected. Table V shows robot’s
performance and predicted human performance. The predictor
flags the first site as hard for humans. Then, our approach
results in the robot asking about Site 4, visiting Site 1, and
relying on itself for the remaining two sites. The benchmark
moves to Site 4 instead and inquires operators on Site 1. The

8It is easy to spot the person in this image in the color pdf.

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark
1 0 0 Visit Ask
2 1 1 Self Self
3 1 1 Self Self
4 0 1 Ask Visit

Ave. Prob. Success 1 0.77
Ave. Prob. Human Success 1 0.12

TABLE V: Performance summary at campus crossroad 3.

average probability of human success is 0.12 in the benchmark
case while it is 1 (8.3 times higher) in our case. The overall
average task accomplishment probability is 1 for our approach,
30% higher than the benchmark (0.77) in this case.

4) Campus Robotic Experiment 4: Next, we show a case
where the benchmark gets lucky and has the same decisions as
our approach. In this experiment, the robot starts at crossroad
4 with three sites, as shown in Fig. 10. Robot’s vision fails
for Sites 1 and 3. As can be seen, it is hard to see the person
in the first image and easy to spot the person in the other two.
Our approach correctly predicts this and visits Site 1 while
asking operators about Site 3. The benchmark coincides with
our approach in this case. However, in general, it will be hard
for the robot to ask for help without a proper human predictor.

Overall, our experimental campus results confirmed that the
human predictor can properly help the robot identify which
images are hard/easy for humans, allowing for the optimization
of further sensing and human query. Unless all the sites are
easy for the robot or for the human, the robot cannot methodi-
cally optimize its decisions without properly predicting human
performance. In practice, there will be several hard cases
where the robot cannot rely on itself and the sensory input
is still too hard for humans, as we have shown. The proposed
predictor and decision optimization approach can then be a
valuable tool for the robot to achieve its best performance
with minimum resources.

B. Further Evaluation over 15 Sites
In order to demonstrate the performance at a larger scale,

we next show simulation results where a robot is tasked with
finding humans in 15 sites with limited help from an operator.
More specifically, it is given a maximum of 5 queries to
operators and can also choose to visit a site after its initial
sensing. All the sites have the same cost to visit. The images
taken by the robot after its initial sensing are real data taken
around our campus and have different levels of difficulty. The
final evaluation of the performance is done by passing the
chosen images to MTurk users. Table VI summarizes task
difficulty of the sites for both robot and human. Without loss
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Fig. 9: Initial sensing images of 4 sites at crossroad 3 and the image taken after moving to Site 1 for further sensing based on our approach.

Sites 1-5 Sites 6-10 Sites 11-15
Robot Perf. pr < pTh pr < pTh pr ≥ pTh

Human Perf. ph < pTh ph ≥ pTh ph ≥ pTh
Predicted Human Perf. p̂h < pTh p̂h ≥ pTh p̂h ≥ pTh

TABLE VI: Case of 15 sites and 5 allowed queries - The table
shows robot and human performance for each site, as well as the
prediction of human performance.

of generality, we numerate the sites from hard to easy based
on true human performance from 50 MTurk users (ph). It
can be seen that sites 1-5 are hard for both the robot and
the human, sites 6-10 are hard for the robot but easy for
human, and sites 11-15 are easy for both. The table further
shows that our predictor correctly identifies the sites that are
hard/easy for humans. Table VII then compares the decisions
of our approach with the benchmark. As can be seen, the two
methods result in very different decisions in terms of which
sites to visit or query the human operator. The last column
shows the average (averaged over queried sites) probability
that human operators accomplish the task when asked, based
on passing each image to 50 MTurk users. This probability is
0.98 for our approach and 0.58 for the benchmark.

It can be seen that by using our approach, the images
selected to query the operator are those that the human
operator can indeed be of help with. Without a proper pre-
diction, however, the robot can send several hard images to
the operator, instead of further sensing, thus wasting questions
and incurring large performance loss.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Despite great advances in vision, robot’s visual perception
can still fail in many cases. The robot can ask humans for help
in collaborative tasks. However, human visual performance is
also not perfect, depending on the sensory input.

In this paper, we proposed a machine-learning based ap-
proach that allows the robot to probabilistically predict human
visual performance for any sensory input. Equipped with this
tool, we then showed how the robot can optimize its field deci-
sions, in terms of asking for help, further sensing, and relying

Visit Ask Self Ave. Prob.
Human Success

Our Method 1-5 6-10 11-15 0.98
Benchmark 1,3,6-8 2,4,5,9,10 11-15 0.58

TABLE VII: Summary of the decisions and final performance for
the case of 15 sites and 5 questions. The table shows robot’s decision
for each site, as well as the overall performance of the MTurk
operators when asked.

on itself. We tested the proposed approach on our campus with
a number of robotic surveillance experiments and showed a
considerable improvement in the performance. Moreover, we
ran a larger-scale evaluation, with real data/human feedback, in
a simulation environment to further showcase the effectiveness
of the approach.

While we focused on robotic surveillance tasks based on
imagery inputs, the methodology can be extended to other
collaborative tasks/sensory inputs. It can also be extended to a
more extensive sequential optimization framework that allows
for asking more questions after further sensing. The predictor
can also be fine-tuned to the performance of a particular
operator for a longer-term partnership, or to the time of the
day, among other factors. As part of future work, building a
larger training dataset that includes more hard images relevant
to the task can further reduce dataset imbalance and improve
the overall performance. For instance, the normalized MSE of
prediction for the hard images on our campus has typically
been higher than those of the validation set. This is due to the
fact that the training set does not have as many hard images
that capture the challenges presented by campus images.
Increasing the size of the training dataset by including more
hard images, as part of future work, can thus improve the
overall performance in more general settings. It is also possible
to use the classification time as a metric instead of human
probability of correct classification.
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Fig. 10: Initial sensing images of 3 sites at crossroad 4 and the image taken after moving to Site 1 for further sensing based on our approach.
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