
Energy Optimal Distributed Beamforming
using Unmanned Vehicles

Arjun Muralidharan and Yasamin Mostofi

Abstract—In this paper, we consider a team of unmanned
vehicles that are tasked with distributed transmit beamforming
(virtual antenna array placement and design), in order to
cooperatively transmit information to a remote station in realistic
communication environments. We are interested in the energy-
aware (both motion and communication energy) co-optimization
of robotic paths and transmission powers for cooperative transmit
beamforming under a reception quality requirement. We first
consider the case where the channel is known. For this case, we
propose an efficient approach for getting arbitrarily close to the
optimum solution, which involves solving a series of multiple-
choice knapsack problems. We then extend our analysis and
methodology to the case where the channel is not known. The
robots then probabilistically predict the channel at unvisited
locations and integrate it with path planning and decision making
for energy-aware distributed transmit beamforming. Finally,
we extensively confirm our proposed approach with several
simulation results with real channel parameters. Our results
highlight the underlying trends of the optimum strategy and
indicate a considerable energy saving.

I. INTRODUCTION

Networked robotic systems have been the focus of consid-
erable research in recent years. Such systems are envisioned
to carry out tasks such as search and rescue, surveillance,
exploration, and sensing of the environment. Maintaining
proper connectivity or transferring data to a remote station is a
key enabling factor in many of these tasks, and the mobility of
the unmanned nodes can play an important role in achieving
proper connectivity by actively moving to places better for
communication. Since unmanned vehicles typically have a
limited energy budget, energy efficiency is of prime impor-
tance in these systems. Thus, energy-aware co-optimization
of communication and motion strategies is needed to truly
realize the full potentials of these systems, which is the main
motivation for this paper.

Co-optimization of motion and communication strategies
in robotic systems has recently attracted attention of both
communication and robotics communities [2]–[10]. For in-
stance, in [2], a node co-optimizes its motion speed and
communication transmission rate, while a number of nodes
utilize their mobility to form a communication relay network
in [3]. In [6], robots act as collaborative relay beamformers,
without considering motion energy costs. In [5], robots utilize
mobility to maintain an optimal communication chain between
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a source and a destination node. In [11], the probability density
function (pdf) of the distance traveled before the robot gets
connected is derived.

On the communication side, distributed transmit beam-
forming is a cooperative communication strategy where a
number of fixed transmitters cooperate to emulate a virtual
centralized antenna array. For instance, consider the case
where a node needs to transmit information to a remote station.
If the corresponding link quality is not good, successful
communication may not be possible. Instead, a number of
transmitters can perform transmit beamforming, which means
co-phasing and properly weighing their transmitted signals
to communicate the same message while maintaining the
same total communication power. In this manner, transmit
beamforming creates an equivalent strong link to the receiving
node. Transmit beamforming was originally proposed in the
context of multiple co-located antennas for improving trans-
mission quality of communication systems. More recently, it
has been extensively studied in the context of fixed nodes
that are spatially distributed over a given area [12], [13].
Then, the nodes align their transmission phases such that the
wireless signals merge constructively at the remote station,
thus providing dramatic gains in the signal to noise ratio
(SNR). Using unmanned vehicles creates new possibilities for
distributed transmit beamforming by enabling the transmitters
to position themselves in better locations for beamforming,
thus improving the overall performance significantly. However,
several challenges for motion and communication co-planning
need to be addressed before realizing this vision, which is the
main motivation for this paper.

In this paper, we are interested in an energy-aware dis-
tributed transmit beamforming using unmanned vehicles. More
specifically, we consider the problem where a team of un-
manned vehicles are tasked with cooperatively transmitting
information, via distributed transmit beamforming, to a remote
station while minimizing the total energy consumption includ-
ing both motion and communication energy costs. We are then
interested in characterizing the optimal motion and communi-
cation strategies of the robots, including the optimization of
the transmit power and robot paths. Fig. 1 shows an illustration
of distributed robotic transmit beamforming.

As compared to the existing literature on distributed beam-
forming, most work are not concerned with unmanned vehicles
and the resulting challenges in terms of path planning and
motion energy. In [6], where robots act as collaborative relay
beamformers, motion energy-related issues are not considered,
resulting in a different problem formulation. Moreover, there is
no channel learning and prediction. Finally, the motion of the
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Fig. 1: Distributed robotic transmit beamforming. The robots can
cooperatively generate a strong communication link by optimizing
their locations.

relays is myopic, and they can get stuck in a local minimum. In
[14], the robots self organize to form a distributed pattern for
beamforming. However, an unrealistic path loss-only model
is considered and the operation is not energy-aware. Overall,
this paper is different from the existing work on cooperative
beamforming in that it deals with the co-optimization of motion
and communication strategies, while considering 1) the total
energy consumption, 2) channel learning and prediction in
realistic communication environments, and 3) the coupled
decision making that arises when dealing with multi-agent
systems. Fig. 2 shows an example of such a scenario.

In Section II, we introduce the motion and communication
energy cost models and briefly review distributed transmit
beamforming as well as wireless channel modeling and predic-
tion. In Section III, we consider the scenario where the robots
do not satisfy the reception quality requirement from their
initial positions when employing distributed transmit beam-
forming. We are then interested in determining the optimum
paths of the robots such that the reception requirement is met
with minimum motion energy cost. In Section IV, we then in-
corporate communication energy cost into our framework, i.e,
we minimize the total energy cost (both motion and communi-
cation) while satisfying the reception quality requirement. We
are then interested in the co-optimization of robotic paths and
transmission powers for cooperative transmit beamforming. In
Section V, we confirm our proposed approach with extensive
simulation results using channel parameters obtained from real
measurements [15]. Our results indicate a considerable energy
saving.
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Fig. 2: Distributed robotic beamforming – The robots move to
locations (marked by empty circles) better for satisfying the coop-
erative connectivity requirement, while minimizing the total energy
consumption (both motion and communication). Readers are referred
to the color pdf for better viewing of the superimposed channel.

II. PROBLEM SETUP
In this section we first introduce our energy consumption

models for both motion and communication. We then review
distributed transmit beamforming and the corresponding power
gains that it provides. Finally, we briefly summarize proba-
bilistic modeling and prediction of wireless channels.
A. Motion Energy Model

In this paper, we adopt a model where the motion energy
consumption is proportional to the distance traveled, similar
to the one adopted in [16], [17]. Thus, motion energy = κMd,
where d is the distance traveled by the robot and κM is
a constant that depends on the environment (e.g., friction
coefficient, terrain) and the mass of the vehicle. This model is
a good match for wheeled robots (see [16] for discussion).
B. Communication Energy Model

We consider a generic model of communication rate of
the form R = η1B log2

(
1 + η2

PR
N0

)
, where η1, η2 ≤ 1 are

constants, B is the available bandwidth, PR is the received
power and N0 is the noise power.1 For capacity approaching
codes (such as turbo codes and LDPC), the constants for a
binary symmetric channel correspond to η1 = 1−ε and η2 = 1
where ε is the multiplicative gap to capacity [18]. For an
uncoded MQAM modulation scheme with a target bit error
rate of BERth, we obtain η1 = 1 and η2 = 1.5/ ln(5BERth)
[19]. The communication energy incurred in transmitting l bits
of data can then be expressed as

Communication Energy =
l

η1B log2

(
1 + η2

PR
N0

)
︸ ︷︷ ︸

time to transmit l bits

P0, (1)

where P0 is the transmit power.

C. Distributed Transmit Beamforming
Distributed transmit beamforming is a form of cooperative

communication where several nodes that are distributed in a
given space emulate a centralized antenna array [12]. The
nodes simultaneously transmit the same message with phases
such that the signals combine constructively at the remote
station. Channel state information (CSI), i.e., information
about the channel, is required at the transmitters for the
implementation of distributed transmit beamforming.

Consider N robots in an environment. Let hi = αie
jθi

denote the complex baseband channel from robot i to the
remote station with αi and θi denoting the channel amplitude
and phase respectively. Ideally, node i transmits wis(t) where
wi = ρie

−jθi is the complex beamforming weight and s(t) is
the complex baseband signal to be transmitted. As can be seen,
setting ∠wi = −∠hi = −θi is the crucial step in obtaining
a constructive interference and thus beamforming gains. The
received signal is then (

∑N
i=1 hiwi)s(t) =

∑N
i=1(αiρi)s(t)

resulting in the received SNR of P0(
∑N
i=1 αiρi)

2

N0
where the

transmit power of robot i is ρ2iP0. Constraining ρi ≤ 1
imposes a maximum power of P0 on each node. We stress
here the difference from the traditional centralized transmit
beamforming where a total transmit power is enforced, i.e.∑N
i=1 ρ

2
i ≤ 1. However, in distributed beamforming, the

1Note that the communication rate is adaptive as it is a function of the
received power.



nodes are separated and have their own power supply. We
thus impose individual power constraints instead. Note that
the position of node i affects αi, the corresponding channel
amplitude, and therefore the overall received SNR. Thus, by
properly designing robotic paths and transmit power (ρi),
using unmanned vehicles can significantly improve distributed
transmit beamforming, as we shall see in this paper.

D. Overview of Channel Modeling and Prediction

1) Probabilistic Channel Modeling [19]: A communication
channel is well modeled as a multi-scale random process with
three major dynamics: path loss, shadowing and multipath
fading [19]. Let Γ(q1) = |h(q1)|2 represent the received
channel power from a transmitter at location q1 ∈ W (W ⊆ R2

is the workspace) to the remote station located at qb. The
received channel power in dB, ΓdB(q1) = 10 log10 Γ(q1),
can be expressed as ΓdB(q1) = ΓPL,dB(q1) + ΓSH,dB(q1) +
ΓMP,dB(q1) where ΓPL,dB(q1) = KdB − 10nPL log10 ‖q1 − qb‖
is the distance-dependent path loss with nPL representing
the path loss exponent, and ΓSH,dB and ΓMP,dB are random
variables denoting the impact of shadowing and multipath
respectively. ΓSH,dB(q1) is best modeled as a Gaussian ran-
dom variable with an exponential spatial correlation, i.e.,
E {ΓSH,dB(q1)ΓSH,dB(q2)} = νSHe

−‖q1−q2‖/βSH where νSH is
the shadowing power and βSH is the decorrelation distance.

2) Realistic Channel Prediction [10], [20]: Let ϑ =
[KdB nPL]T denote the vector of path loss parameters. Let
Γq,dB represent the vector of m a priori-gathered received
channel power measurements (in dB) from the same en-
vironment, and q = [q1 · · · qm]T denote the vector of the
corresponding positions.

Lemma 1 (See [20] for proof): A Gaussian random vec-
tor, ΓdB(p) = [ΓdB(p1) · · ·ΓdB(pk)]

T ∼ N
(
ΓdB(p), CdB(p)

)
can best characterize the vector of channel power (in the
dB domain) when transmitting from unvisited locations
p = [p1 · · · pk]T, with the mean and covariance matrix
given by ΓdB(p) = E

{
ΓdB(p)

∣∣ Γq,dB, ϑ̂, β̂SH, ν̂SH, ν̂MP
}

=

Gpϑ̂ + Ψp,qΦ
−1
q

(
Γq,dB − Gqϑ̂

)
and CdB(p) = E

{(
ΓdB(p) −

ΓdB(p)
)(

ΓdB(p)−ΓdB(p)
)T ∣∣Γq,dB, ϑ̂, β̂SH, ν̂SH, ν̂MP

}
= Φp−

Ψp,qΦ
−1
q ΨT

p,q respectively, where Gp = [1k − Dp], Gq =
[1m − Dq], 1m (1k) represents the m-dimensional (k -
dimensional) vector of all ones, Dq =

[
10 log10(‖q1 −

qb‖) · · · 10 log10(‖qm − qb‖)
]T

, Dp =
[
10 log10(‖p1 −

qb‖) · · · 10 log10(‖pk − qb‖)
]T

and qb is the position of the
remote station. Furthermore, Φq , Φp and Ψp,q denote matri-
ces with entries

[
Φq
]
i1,i2

= ν̂SHe
−‖qi1−qi2‖/β̂SH + ν̂MP δi1i2 ,[

Φp
]
j1,j2

= ν̂SHe
−‖pj1−pj2‖/β̂SH + ν̂MPδj1,j2 and

[
Ψp,q

]
j1,i1

=

ν̂SH e−‖pj1−qi1‖/β̂SH , where i1, i2 ∈ {1, · · · ,m}, j1, j2 ∈
{1, · · · , k} and δi,j =

{
1, if i = j
0, else . Moreover, ϑ, βSH,

νSH and νMP denote the path loss parameters, the decorrelation
distance of shadowing, the power of shadowing (in dB) and
the power of multipath (in dB) respectively. The ˆ symbol
denotes the estimate of the corresponding parameter.
The underlying parameters can be estimated based on the a
priori measurements as well. See [20] for more details on the

estimation of the underlying parameters and the performance
of this framework with real data and in different environments.

III. MOTION ENERGY-AWARE COOPERATIVE ROBOTIC
BEAMFORMING

Consider the case where the robots are distributed over
the space such that the required cooperative received SNR is
not satisfied. The robots thus need to move to new positions
that satisfy the cooperative connectivity requirement while
minimizing the motion energy consumption. We start by
looking at the case of perfect channel knowledge (i.e., the
robots know the uplink channel quality for transmission from
any unvisited location), and show how this problem can be
optimally solved by posing it as a multiple-choice knapsack
problem. We then extend our analysis to the stochastic case
where the nodes predict the channel based on a small number
of a priori channel samples, as discussed in Section II-D2.
In this section we focus on motion energy minimization,
assuming a non-adaptive communication transmit power case.

A. Perfect Channel Knowledge
The perfect channel knowledge assumption would be a good

approximation for environments where path loss is dominant
and channel has a low variance around path loss. In our
case, this serves as a starting point for our analysis, which
will then be extended to the general case of an unknown
channel. Consider N robots in a workspace W ⊆ R2. Let
di(xi) = ||xi − x0i ||2 be the distance traveled by robot i with
x0i and xi denoting the initial and final position respectively.
Let h(xi) = α(xi)e

jθ(xi) be the uplink channel from position
xi to the remote station with α(xi) and θ(xi) denoting the
channel amplitude and phase respectively.

Since communication cost is not penalized in this setup,
the optimal thing for the nodes would be to maximize the
SNR at the remote station, subject to the individual power
constraints. We then set ρi = 1, which corresponds to each
node transmitting at the maximum allowed power, and the
complex beamforming weight as wi = e−jθ(xi), for the ith

node. The received signal power, after beamforming, is then

given by PR = P0

(∑N
i=1 α(xi)

)2
.

A Quality of Service (QoS) requirement, such as a target
bit error rate, would result in a minimum required received
power at the remote station, which we denote as PR,th. We

then need PR = P0

(∑N
i=1 α(xi)

)2
≥ PR,th or equivalently∑N

i=1 α(xi) ≥
√

PR,th
P0

, which results in the following opti-
mization problem,

minimize
x

κM
∑
i

di(xi)

subject to
∑
i

α(xi) ≥ αR,th

xi ∈ N (x0i ), i = 1, · · · , N,

(2)

where αR,th =
√

PR,th
P0

, N (x0i ) ⊆ W is the neighborhood
around x0i that the ith node is constrained to stay in, and x =
[x1 · · ·xN ]

T are the final positions of the robots.



Optimal Solution: We next show how to repose the op-
timization problem of (2) as a multiple-choice knapsack
problem, which is a well studied problem in the computer
science literature and can be solved optimally [21]. We
first discretize our workspace W into M cells with centers
rj ∈ W, for j ∈ {1, · · · ,M}. The motion cost is then
given by JMEMP({zij}) = κM

∑N
i=1

∑
j∈Ni di(rj)zij and the

optimization problem of (2) can be reformulated as
minimize
{zij}

JMEMP({zij})

subject to
∑
i

∑
j∈Ni

α(rj)zij ≥ αR,th∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3)

where di(rj) is the distance to cell j for robot i, α(rj) is
the channel amplitude from cell j to the remote station and
Ni ⊆ {1, · · · ,M} is the set of cells present in N (x0i ). A
value of zij = 1 implies that robot i chooses to move to cell
j. We refer to this problem as the Motion Energy Minimization
Problem (MEMP), with the optimal value of JOPT

MEMP.
Lemma 2: MEMP of (3) can be posed as a multiple-choice

knapsack problem (MCKP).
Proof: Define {πij} and {$j} as

πij = maxk∈Ni di(rk) − di(rj) and $j =

maxk α(rk) − α(rj). We have
∑N
i=1

∑
j∈Ni πijzij =∑N

i=1 maxk∈Ni di(rk)
∑
j∈Ni zij −

∑N
i=1

∑
j∈Ni di(rj)zij =∑N

i=1 maxk∈Ni di(rk) −
∑N
i=1

∑
j∈Ni di(rj)zij , where

the second equality follows for any feasible solution
since

∑M
j=1 zij = 1. Similarly,

∑N
i=1

∑
j∈Ni $jzij =

N maxk α(rk)−
∑
i

∑
j∈Ni α(rj)zij . MEMP of (3) can then

be posed as
maximize
{zij}

∑
i

∑
j∈Ni

πijzij

subject to
∑
i

∑
j∈Ni

$jzij ≤ c∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(4)

where c = N maxk α(rk)− αR,th.
Equation (4) is the standard form of the multiple-choice
knapsack problem (MCKP). Although MCKP is NP-hard, the
true solution can be efficiently found for several cases that
arise in practice [21]. In this paper, we thus utilize the minimal
algorithm developed by Pisinger [21] to optimally solve the
resulting MCKP.

Remark 1: Let JOPT
MCKP denote the optimal value of the

objective function of (4). The optimal values of the two
formulations (3) and (4) are then related as follows:

JOPT
MEMP = κM

(∑
i

max
k∈Ni

di(rk)− JOPT
MCKP

)
.

B. Probabilistic Channel Prediction
In realistic scenarios, the uplink channel values in trans-

mission from unvisited locations may not be known to the
robots a priori. We next consider this realistic case. The robots
then utilize the stochastic prediction approach of Section II-D2
to predict the channel strength when transmitting from an
unvisited location, using a small number of a priori channel

samples in the same environment.2 Optimization of path
planning for cooperative beamforming can then be posed as
follows in this case,

minimize
x

κM
∑
i

di(xi)

subject to Pr
(∑

i

α(xi) < αR,th
)
< Prout

xi ∈ N (x0i ), i = 1, · · · , N,

(5)

where Pr(.) denotes the probability of the argument, α(xi) =√
Γ(xi) is the random variable that represents the received

channel amplitude when the ith node transmits from xi, and
Prout is the maximum tolerable outage probability.

As discussed in Section II, the predicted channel power
(in dB) when transmitting from unvisited locations x =
[x1 · · ·xN ]

T ∈ WN can be represented as a Gaus-
sian random vector ΓdB(x) ∼ N (ΓdB(x), CdB(x)), where
ΓdB(x) and CdB(x) are the estimated mean and co-
variance matrix respectively. Thus, the channel ampli-
tude at locations x, α(x) = [α(x1) · · ·α(xN )]

T
=[√

Γ(x1) · · ·
√

Γ(xN )
]T

is a lognormal random vector, i.e.,

[20 log10 α(x1) · · · 20 log10 α(xN )]
T ∼ N (ΓdB(x), CdB(x)).∑N

i=1 α(xi) is then the sum of lognormal random variables.
As established in the literature, the lognormal distribution
is a good approximation for the distribution of the sum of
lognormal random variables [22]. Let αsum with distribution
20 log10 αsum ∼ N (µsum, σ

2
sum) denote the lognormal random

variable approximating
∑N
i=1 α(xi). µsum and σ2

sum can be
found, based on ΓdB(x) and CdB(x), by using the extended
Fenton-Wilkinson (F-W) method [22]. The details are given in
Appendix A. The outage probability inequality in (5) can then
be expressed as µsum +σsumQ

−1 (1− Prout) ≥ 20 log10(αR,th),
where Q(.) denotes the Q function. Equation (5) can then be
posed as

minimize
x

κM
∑
i

di(xi)

subject to µsum + σsumQ
−1 (1− Prout) ≥ 20 log10 αR,th

xi ∈ N (x0i ), i = 1, · · · , N.
(6)

We refer to this as the Motion Energy Stochastic Setting
(MESS) minimization problem. The optimization problem (6)
can then be solved by using existing optimization toolboxes.
We next propose an alternative approach for the case of
stochastic channel knowledge, based on our proposed MEMP
approach of (3) of Section III-A.

1) Approximation using analysis of MEMP of (3): In Sec-
tion III-A, we showed how the motion energy-aware optimiza-
tion problem can be solved for the case of perfect channel
knowledge. That analysis and the corresponding solution can
be used to find an approximate solution for the stochastic case,
as we show next. As introduced earlier, the channel power

2 To predict the channel in transmission from any unvisited location to
the remote station, the robots only need a small number of a priori channel
measurements, Γq,dB, from which they can estimate the channel parameters
(ϑ̂, β̂SH, ν̂SH, ν̂MP) [20]. If time division duplexing (TDD) is not utilized,
the remote station can broadcast Γq,dB to the unmanned vehicles during the
operation, using a feedback channel. Alternatively, if we have TDD, then the
robots can directly utilize a few a priori downlink channel samples to obtain
Γq,dB.



in dB, 20 log10 α(rj), has the distribution 20 log10 α(rj) ∼
N
(
µ(rj), σ

2(rj)
)
, where rj is the jth cell, as defined in

Section III-A, and µ(rj) = ΓdB(rj) and σ2(rj) = CdB(rj) are
obtained by evaluating Lemma 1 at p = rj (scalar). Consider
α̃(rj) such that 20 log10 α̃(rj) = µ(rj) − ζσ(rj) for some
constant ζ ≥ 0. α̃(rj) provides a conservative estimate of the
channel amplitude. We then approximate α(rj) by α̃(rj) in
(3), which results in the following optimization problem:

minimize
{zij}

JMEMP({zij})

subject to
∑
i

∑
j∈Ni

α̃(rj)zij ≥ αR,th∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i.

(7)

Equation (7) can then be efficiently solved using the proposed
approach of Section III-A for MEMP of (3). We next relate
the optimization problem of (7) to the original optimization
problem of (5) by finding a bound on the probability that the
obtained solution satisfies the inequality constraint of (3). We
first need the following lemma.

Lemma 3: 20 log10 α(rji)s are positively correlated as a
result of the exponential correlation, where ji is the cell chosen
by robot i. We then have Pr (20 log10 α(rji) ≥ ξi, ∀i) ≥∏N
i=1 Pr (20 log10 α(rji) ≥ ξi), for any ξi ∈ R.

Proof: See [23].
Lemma 4: Let {zij} be the solution of (7), and let ji

be such that ziji = 1. Then the probability that this so-
lution results in an outage in (3) is bounded as follows:
Pr
(∑N

i=1 α(rji) < αR,th

)
< 1− [Q (−ζ)]

N .
Proof: The probability of successful

transmission is Pr
(∑N

i=1 α(rji) ≥ αR,th
)

≥

Pr
(∑N

i=1 α(rji) ≥
∑N
i=1 α̃(rji)

)
since

∑N
i=1 α̃(rji) ≥

αR,th for a feasible solution of (7). Fur-
ther, Pr

(∑N
i=1 α(rji) ≥

∑N
i=1 α̃(rji)

)
≥

Pr (20 log10 α(rji) ≥ 20 log10 α̃(rji), ∀i) ≥∏N
i=1 Pr

(
20 log10 α(rji )−µ(rji )

σ(rji )
≥ −ζ

)
= [Q (−ζ)]

N where
the second inequality follows from Lemma 3.

IV. ENERGY-AWARE COOPERATIVE ROBOTIC
BEAMFORMING

In this section, we extend our results of Section III to
include the communication energy cost as well, i.e., we are
interested in finding the most energy efficient way (considering
both motion and communication) for the robots to coopera-
tively transmit the data to a remote station. The robots need
to determine new locations for transmission as well as the
transmission powers such that they minimize the total energy
consumption while satisfying the cooperative connectivity
requirement. As in Section III, we start with the scenario
of perfect channel knowledge, for which we obtain an ε-
suboptimal solution by showing that solving our problem is
equivalent to solving a series of multiple-choice knapsack
problems. We then extend our analysis to the stochastic setting
with probabilistic channel prediction and incorporate channel
uncertainty into our formulation.

A. Perfect Channel Knowledge
In this case, the robots perform distributed transmit beam-

forming with complex weights wi = ρie
−θ(xi), if node i

moves to xi, where 0 ≤ ρi ≤ 1 and θ(xi) is as de-
scribed in Section II-C. The received power is then given as

PR = P0

(∑N
i=1 α(xi)ρi

)2
. As can be seen from Section

II-B, imposing a minimum transmission rate requirement
results in a minimum required received power which we
denote by PR,th for a given η1, η2 ≤ 1. For instance, in
the case of uncoded MQAM, a bit error rate requirement of
BERth, results in η1 = 1 and η2 = 1.5/ ln(5BERth), and a
minimum spectral efficiency requirement would translate to
a minimum required received power PR,th . Imposing this

results in PR = P0

(∑N
i=1 α(xi)ρi

)2
≥ PR,th or equivalently∑N

i=1 α(xi)ρi ≥
√

PR,th
P0

= αR,th, with ρ2iP0 denoting the
transmit power of robot i.

The total energy cost is then given as JTE(x) =

κM
∑N
i=1 di(xi) +

lP0

∑N
i=1 ρ

2
i

η1B log2

(
1+η2P0

(
∑N
i=1

α(xi)ρi)
2

N0

) and the re-

sulting optimization problem can be expressed as
minimize

x,ρ
JTE(x)

subject to
∑
i

α(xi)ρi ≥ αR,th

0 ≤ ρi ≤ 1, xi ∈ N (x0i ), i = 1, · · · , N,

(8)

where ρ = [ρ1 · · · ρN ]
T, l is the number of bits to be

transmitted to the remote station and N (x0i ) ⊆ W is the
neighborhood around x0i that robot i is constrained to be in.

As before, we first discretize the workspaceW into M cells
with centers rj ∈ W, for j ∈ {1, · · · ,M}. The optimization
problem (8) can then be reformulated as

minimize
{zij},ρ

JTEMP({zij}, ρ)

subject to
∑
i

∑
j∈Ni

α(rj)ρizij ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(9)

where JTEMP({zij}, ρ) = κM
∑N
i=1

∑
j∈Ni di(rj)zij +

lP0

∑N
i=1 ρ

2
i

η1B log2

(
1+η2P0

(∑i∑j α(rj)ρizij)
2

N0

) , di(rj) is the distance to

cell j for robot i, α(rj) is the channel amplitude when
transmitting from cell j to the remote station, and Ni ⊆
{1, · · · ,M} is the set of cells present in N (x0i ). A value of
zij = 1 implies that robot i moves to cell j. We refer to this
problem as the Total Energy Minimization Problem (TEMP),
with the optimal value of JOPT

TEMP.
We begin by characterizing properties of the optimal com-

munication strategy as well as of the optimal solution ({zij},ρ)
of TEMP of (9). This is one of the key intermediate steps that
allows us to pose our problem as a series of multiple choice
knapsack problems.

In the following lemma, we show that the inequality for
the cooperative connectivity requirement in TEMP of (9) is
satisfied with equality in the optimal solution.



Lemma 5: Let ({zOPT
ij }, ρOPT) be an optimal solution of

TEMP of (9). Let jOPT
i be such that zOPT

ijOPT
i

= 1. Then the

solution satisfies
∑N
i=1 α(rjOPT

i
)ρOPT
i = αR,th.

Proof: See Appendix B for the proof.
Next, consider the case where the positions of the robots

are fixed and the only objective is to minimize the total
transmit power (not energy) while satisfying the cooperative
connectivity requirement. Lemma 6 characterizes the optimal
solution of this case, as follows.

Lemma 6: Consider the following optimization problem:

minimize
ρ

∑
i

ρ2i

subject to
∑
i

αiρi ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N.

(10)

The optimal solution for (10) is ρi = min{λαi, 1} where λ >
0 is such that

∑
i min{λαi, 1}αi = αR,th.3

Proof: See Appendix C for the proof.
Using Lemma 5 and 6 as building blocks, we next char-

acterize the optimal communication strategy of TEMP of (9)
given the final optimal positions of the robots.

Lemma 7: Let ({zOPT
ij }, ρOPT) be an optimal solution of

TEMP of (9). Let jOPT
i be such that zOPT

ijOPT
i

= 1. Then
ρOPT
i = min{λα(rjOPT

i
), 1} where λ > 0 is such that∑N

i=1 min{λα(rjOPT
i

), 1}α(rjOPT
i

) = αR,th.
Proof: We prove this by contradiction. Assume that

ρOPT
i 6= ρ∗i where ρ∗i = min{λα(rjOPT

i
), 1}, for λ >

0, such that
∑N
i=1 min{λα(rjOPT

i
), 1}α(rjOPT

i
) = αR,th.

Then, ({zOPT
ij }, ρ∗) is a feasible solution of (9) since∑N

i=1 α(rjOPT
i

)ρ∗i = αR,th. The cost of the optimal solution
then becomes JTEMP({zOPT

ij }, ρOPT) = κM
∑N
i=1 di(rjOPT

i
) +

κC
∑N
i=1(ρOPT

i )2 > κM
∑N
i=1 di(rjOPT

i
) + κC

∑N
i=1(ρ∗i )

2 =

JTEMP({zOPT
ij }, ρ∗), following from Lemma 5 and Lemma 6,

where κC = lP0

η1B log2

(
1+η2

PR,th
N0

) . Thus, we have a contradic-

tion, as we found a feasible solution with a lower cost.
We next pose an optimization problem motivated by Lemma

7, the solution to which will help us obtain the solution to
TEMP of (9). Let κC = lP0

η1B log2

(
1+η2

PR,th
N0

) , as was defined

in Lemma 7. Consider the following optimization problem,

minimize
{zij},λ

Jλ({zij}, λ)

subject to
∑
i

∑
j∈Ni

min {λα(rj), 1}α(rj)zij ≥ αR,th∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(11)
where Jλ({zij}, λ) = κM

∑
i

∑
j∈Ni di(rj)zij +

κC
∑
i

∑
j∈Ni [min{λα(rj), 1}]2 zij . We next show how to

obtain an optimal solution for TEMP of (9) from an optimal
solution for (11).

3In this case, αi can be interpreted as the fixed channel amplitude from
robot i to the remote station.

Lemma 8: Let ({z∗ij}, λ∗) be an optimal solution of (11).
Let j∗i be such that z∗ij∗i = 1 and let ρ∗i = min{λ∗α(rj∗i ), 1}.
Then ({z∗ij}, ρ∗) is an optimal solution of TEMP of (9).

Proof: Without loss of generality, let λ∗ be such that
λ∗α(rj∗i ) ≤ 1 for some i. We first show that the connectivity
requirement inequality in (11) is satisfied with equality for the
optimal solution, i.e.,

∑N
i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) = αR,th.

We show this by contradiction. Assume otherwise,
i.e.,

∑N
i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) > αR,th. Consider

λ such that
∑N
i=1 min{λα(rj∗i ), 1}α(rj∗i ) = αR,th.

Clearly we have λ < λ∗, which implies[
min{λα(rj∗i ), 1}

]2
<

[
min{λ∗α(rj∗i ), 1}

]2
for some

i. Hence Jλ({z∗ij}, λ) < Jλ({z∗ij}, λ∗), resulting in a
contradiction. Thus

∑N
i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) = αR,th.

Next, we show via contradiction that ({z∗ij}, ρ∗), ob-
tained from an optimal solution of (11), is an opti-
mal solution of TEMP of (9). Assume ({z∗ij}, ρ∗) is
not an optimal solution of (9) and let (zOPT

ij , ρOPT) be
an optimal solution instead. From Lemma 7, we have
that ρOPT

i = min{λOPTα(rjOPT
i

), 1}, where λOPT > 0 is
such that

∑N
i=1 min{λα(rjOPT

i
), 1}α(rjOPT

i
) = αR,th. Then,

we have JTEMP({zOPT
ij }, ρOPT) = κM

∑N
i=1 di(rjOPT

i
) +

κC
∑N
i=1

[
min{λOPTα(rjOPT

i
), 1}

]2
= Jλ({zOPT

ij }, λOPT), and
similarly JTEMP({z∗ij}, ρ∗) = Jλ({z∗ij}, λ∗). As a re-
sult, JTEMP({z∗ij}, ρ∗) > JTEMP({zOPT

ij }, ρOPT) implies that
Jλ({z∗ij}, λ∗) > Jλ({zOPT

ij }, λOPT). Thus, ({zOPT
ij }, λOPT) is a

feasible solution for (11) with a lower cost than ({z∗ij}, λ∗),
resulting in a contradiction.

ε-Suboptimal Solution: In this subsection we pose a se-
ries of multiple-choice knapsack problems and relate their
solution to TEMP of (9) to obtain an ε-suboptimal solu-
tion. In this context, ε is a positive variable that deter-
mines how close to the optimal solution we can get. Ba-
sically, for each fixed value of λ, we have a multiple-
choice knapsack problem, as can be seen from (11), which
we can solve optimally. We then discretize λ uniformly
with ε determining the corresponding resolution. Let λk =
kε1/αmax for k ∈ {T1 − 1, · · · , T2 − 1} and λT2

= 1/α0
min,

where ε1 = ε

2N(αmax/α0
min)

, αmax = maxj∈{1,··· ,M} α(rj)

and α0
min = min{α(x0i ) : i = 1, · · · , N} denotes the

minimum channel amplitude among the initial positions of
the robots. Furthermore, T1 =

⌈
1
ε1

αR,th
Nαmax

⌉
=
⌈
2
ε
αR,th
α0

min

⌉
and

T2 = d 1
ε1
αmax
α0

min
e =

⌈
2N
ε

(
αmax

α0
min

)2⌉
determine the range of

λ, as explained next. Since
∑N
i=1 min{λα(rji), 1}α(rji) ≤∑N

i=1(λT1−1αmax)αmax =
(⌈

1
ε1

αR,th
Nαmax

⌉
− 1
)
ε1Nαmax <

αR,th, λ ≤ λT1−1 could not be a feasible solution of (11).
Moreover, an optimal solution ({z∗ij}, λ∗) would not involve
a robot incurring motion energy to get to a location with
a worse channel amplitude, resulting in α(rj∗i ) ≥ α0

min ∀i.
Since λT2α

0
min = 1, we have that if λ∗ > λT2 is an optimal

solution, then λT2 is also an optimal solution. Thus, we need
to only consider λ ∈ (λT1−1, λT2

] in (11), which results in the



following optimization problem for each k ∈ {T1, · · · , T2}:

minimize
{zij}

Jλ,k({zij})

subject to
∑
i

∑
j∈Ni

[min{λkα(rj), 1}]α(rj)zij ≥ αR,th∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(12)
where Jλ,k({zij}) =

∑
i

∑
j∈Ni(κMdi(rj) +

κC [min{λkα(rj), 1}]2)zij , with the optimum value of
JOPT
λ,k . This optimization problem can be solved similar to

(3) by posing it as a knapsack problem through a change of
variable as shown in Section III.

Let Jλ,min = mink∈{T1,··· ,T2}{JOPT
λ,k }. In order to

find Jλ,min, we need to solve T2 − T1 + 1 ≤⌈
2N
ε
αmax

α0
min

(
αmax

α0
min
− αR,th

Nαmax

)⌉
+ 1 multiple choice knapsack

problems. As can be seen, the number of knapsack problems
to be solved grows linearly with N and 1

ε . In the following
theorem, we show how we can get arbitrarily close to the
optimal solution by solving this set of knapsack problems.

Theorem 1: Let m = arg mink∈{T1,··· ,T2}{J
OPT
λ,k }. Let

{z∗ij} be a solution of (12) when k = m, and j∗i be such
that z∗ij∗i = 1. Consider a λ∗ such that λ∗ ≤ λm and∑N
i=1

[
min{λ∗α(rj∗i ), 1}

]
α(rj∗i ) = αR,th. Further, set ρ∗i =

min{λ∗α(rj∗i ), 1}. Then, ({z∗ij}, ρ∗) is a feasible solution of
TEMP of (9) and

JTEMP({z∗ij}, ρ∗) ≤ JOPT
TEMP + εκC . (13)

Proof: It is straightforward to see that ({z∗ij}, ρ∗) is a fea-
sible solution of TEMP of (9). Moreover, JTEMP({z∗ij}, ρ∗) =
Jλ({z∗ij}, λ*) ≤ Jλ({z∗ij}, λm) = JOPT

λ,m = Jλ,min since Jλ(.)
is a non-decreasing function of λ.

Let ({zOPT
ij }, λOPT) be an optimal solution of (11). From

Lemma 8 we have that JOPT
TEMP = Jλ({zOPT

ij }, λOPT). Let λOPT ∈
(λT1−1, λT2

], as we established earlier. Thus, there exists a
k ∈ {T1, · · · , T2} such that λOPT ∈ (λk−1, λk]. We then
have JTEMP({z∗ij}, ρ∗) ≤ Jλ,min ≤ JOPT

λ,k ≤ Jλ({zOPT
ij }, λk) =

Jλ({zOPT
ij }, λOPT) +

(
Jλ({zOPT

ij }, λk)− Jλ({zOPT
ij }, λOPT)

)
≤

JOPT
TEMP + κC

∑N
i=1

(
λ2k − (λOPT)2

) (
α(rjOPT

i
)
)2
≤ JOPT

TEMP +

κC
∑N
i=1 (λk − λk−1) (λk + λk)

(
α(rjOPT

i
)
)2

≤ JOPT
TEMP +

2 ε1
αmax

λT2
κC
∑N
i=1

(
α(rjOPT

i
)
)2
≤ JOPT

TEMP + 2Nε1
αmax
α0

min
κC =

JOPT
TEMP + εκC .
Remark 2: κC is the communication energy cost of a single

robot when it transmits at maximum power and the robots
satisfy the cooperative connectivity requirement with equality.

Remark 3: Solving TEMP of (9) through a brute-force
search of space is infeasible even for moderately small values
of the number of robots (N ). For instance, if M is the number
of points in the discretized workspace and if we represent
each ρi by k bits, then the computational complexity of an
exhaustive search is MN2kN . On the other hand, with our
proposed ε-suboptimal solution, the number of multiple-choice
knapsack problems to solve grows linearly with N and 1

ε . We
note that while we can solve (8) with an existing solver, there
is no guarantee that the solver will find the global optimum

since the objective function is non-convex. Theorem 1 then
allows us to get arbitrarily close to the optimal solution with
a low computational complexity.

B. Probabilistic Channel Prediction
As discussed earlier, in realistic scenarios, the unmanned

vehicles do not know the uplink channel when transmitting
from unvisited locations. As such, they will probabilistically
predict the channel based on a small number of a priori mea-
surements in the same environment, as summarized in Section
II-D2. The energy-aware (both motion and communication)
cooperative beamforming problem (8), can then be extended
to the following in this stochastic setting:

minimize
x,ρ

JTE,ST(x, ρ)

subject to Pr
(∑

i

α(xi)ρi < αR,th
)
< Prout

0 ≤ ρi ≤ 1, xi ∈ N (x0i ), i = 1, · · · , N,

(14)

where JTE,ST(x, ρ) = κM
∑N
i=1 di(xi) +

E
[

lP0

∑
i ρ

2
i

η1B log2

(
1+η2

P0(
∑
i α(xi)ρi)

2

N0

)], with x = [x1 · · ·xN ]
T

and ρ = [ρ1 · · · ρN ]
T as optimization variables and

E(.) representing the average of the argument. In this
case, the average is taken over α(xi), ∀i. The vector
[α(x1)ρ1 · · ·α(xN )ρN ]

T is a lognormal random vector with
distribution [20 log10(α(x1)ρ1) · · · 20 log10(α(xN )ρN )]

T ∼
N
(
ρdB + ΓdB(x), CdB(x)

)
where ΓdB(x) and CdB(x) are

the estimated mean and covariance matrix of the predicted
channel power respectively, and [ρdB]i = 20 log10 ρi. Let
αsum,ρ with distribution 20 log10 αsum,ρ ∼ N (µsum,ρ, σ

2
sum,ρ)

denote the lognormal random variable approximating∑N
i=1 α(xi)ρi. µsum,ρ and σ2

sum,ρ can be found,
based on ρdB, ΓdB(x) and CdB(x), by using the
extended Fenton-Wilkinson method [22]. Similar to
Section III, the objective then becomes JTESS(x, ρ) =

κM
∑
i di(xi) + E

[
lP0

η1B log2

(
1+η2

P0α
2
sum,ρ
N0

)∑
i ρ

2
i

]
, and our

optimization problem can be rewritten as
minimize

x,ρ
JTESS(x, ρ)

subject to µsum,ρ + σsum,ρQ
−1 (1− Prout) ≥ 20 log10 αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N
xi ∈ N (x0i ), i = 1, · · · , N,

(15)
which can then be solved by using existing optimization
toolboxes. We refer to this as the Total Energy Stochastic
Setting (TESS) minimization problem.

1) Approximation using analysis of TEMP of (9): Similar
to Lemma 4, the stochastic optimization problem of (14) can
be approximately but efficiently solved using the solution to
TEMP of (9), which is for the perfect channel knowledge case.
As introduced earlier, the channel power in dB, 20 log10 α(rj),
has the distribution 20 log10 α(rj) ∼ N

(
µ(rj), σ

2(rj)
)
,

where rj is the jth cell, as defined in Section III-A, and
µ(rj) = ΓdB(rj) and σ2(rj) = CdB(rj) are obtained by
evaluating Lemma 1 at p = rj (scalar). Consider α̃(rj)
such that 20 log10 α̃(rj) = µ(rj) − ζσ(rj) for some constant
ζ ≥ 0. α̃(rj) provides a conservative estimate of the channel



amplitude with a high probability. We then approximate α(rj)
by α̃(rj) in (9), which results in the following optimization:

minimize
{zij},ρ

J̃TESS({zij}, ρ)

subject to
∑
i

∑
j∈Ni

α̃(rj)ρizij ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i.

(16)
where J̃TESS({zij}, ρ) = κM

∑
i

∑
j∈Ni di(rj)zij +

lP0
∑
i ρ

2
i

η1B log2

(
1+η2P0

(
∑
i
∑
j∈Ni α̃(rj)ρizij)

2

N0

) . Equation (16) can

then be efficiently solved using the proposed approach of
Section IV-A for TEMP. We next relate the optimization
problem of (16) to the original optimization problem of
(14) by finding a bound on the probability that the obtained
solution satisfies the inequality constraint of (9).

Lemma 9: Let ({zij}, ρ) be the solution obtained when
solving (16) using the proposed approach of Section IV-A,
and let ji be such that ziji = 1. The probability that this
solution results in an outage in (9) is bounded as follows:
Pr (
∑
i α(rji)ρi < αR,th) < 1− [Q (−ζ)]

N .
The proof is similar to the proof of Lemma 4.

V. SIMULATION RESULTS
Consider a scenario where 6 robots are located in a 50 m

× 50 m workspace with the remote station at the origin and
initial positions as shown in Fig. 5. The channel is generated
using the probabilistic channel model described in Section
II-D1, with the following parameters that were obtained from
real channel measurements in downtown San Francisco [15]
: nPL = 4.4, νSH = 6.76 and βSH = 22.6 m. Moreover, the
multipath fading is taken to be uncorrelated Rician fading with
the parameter Kric = 3.9. We consider a bandwidth of B = 10
MHz and the received noise power is taken to be a realistic
value of −100 dBmW [24]. We consider uncoded MQAM
modulation with a BER tolerance of 10−5 and a minimum
spectral efficiency requirement (transmission rate divided by
bandwidth) of4 4. This corresponds to η2 = 0.1515 and a min-
imum received SNR requirement of 20 dB which, for the given
noise power, corresponds to a received power requirement of
PR,th,dBm = −80 dBmW. We take the maximum transmission
power of a node to be P0,dBm = 27 dBmW [25], which
results in αR,th,dB = −53.5 dB. The amount of data to be
transferred is 800 bits/Hz. The robots are situated far enough
from the remote station that they do not satisfy the received
power requirement at their initial positions (see Fig. 5). The
neighborhood Ni, within which the final position of robot i is
constrained to lie in, is taken to be the entire workspace. The
optimization problems of MEMP, MESS, TEMP and TESS,
can be solved centrally by either one of the robots or by the
remote station.
A. Perfect Channel Knowledge

We first analyze the trends of the motion energy-aware
(MEMP) and the total energy-aware (TEMP) approaches as

4Note that the BER requirement is always satisfied, even if the minimum
transmission rate requirement is not satisfied.

the communication load (l/B) varies in Figures 3, 4 and 5.
TEMP of (9) is solved via the set of multiple-choice knapsack
problems of Theorem 1 with ε = 0.05. As shown in Theorem
1, the optimal value lies at most 0.05κC below the value
obtained by solving the family of knapsack problems. This
confidence bound is also shown in Fig. 3. It can be seen that
the confidence bound is very close to the solution obtained
by using Theorem 1 for solving TEMP, which confirms that
Theorem 1 can get arbitrarily close to the optimal solution
with a considerably low computational complexity. Each data
point on the plots is obtained by averaging over 100 channels
generated for the given set of channel parameters.
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Fig. 3: Total energy (sum of motion and communication) consump-
tion of MEMP and TEMP for different communication loads for the
case of perfect channel knowledge. TEMP provides a considerable
energy saving, as expected. MEMP refers to the case where only
motion energy is minimized while communication energy is also
adapted and co-optimized in TEMP.

Fig. 3 shows the average total energy consumption of
MEMP and TEMP. The figure also shows the corresponding
error bars, representing the standard deviation of the total en-
ergy consumption for each data point. As can be seen, TEMP
provides a significant energy saving as the communication
load l/B increases. In TEMP, with increasing l/B, the time
for transmission increases as well, as a direct consequence
of Lemma 5. Transmission power is thus penalized more and
the robots travel larger distances to get to the locations with a
better channel quality, allowing them to utilize a lower transmit
power for communication. More specifically, Fig. 4 shows the
total distance traveled as l/B varies. We can see that TEMP
travels larger distances as l/B increases. Fig. 4 also shows
how the total communication transmission power of TEMP
decreases with increasing l/B. This is due to the fact that
in TEMP, by incurring more motion energy, the nodes can
find spots with a better channel quality, resulting in a lower
communication energy and a lower total energy consumption.
Fig. 5 shows the behavior of the solution of MEMP and
TEMP for communication loads of l/B = 100 bits/Hz and
l/B = 1500 bits/Hz. The background color encodes the
channel power to the remote station. The lighter (darker) areas
correspond to regions with better (worse) channel quality. As
expected, the TEMP solution moves larger distances in the
high communication load case to get to locations with a better
channel quality.

B. Probabilistic Channel Prediction
We next consider the case where the channel is not known

in the transmission from unvisited locations. We consider
the workspace of Fig. 8. The robots are assumed to have
5% a priori channel measurements in this workspace. The
robots then utilize the channel prediction framework of Section
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Fig. 4: Total (left) distance traveled and (right) transmission power
utilized by MEMP and TEMP as a function of communication load
and for the case of perfect channel knowledge.
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Fig. 5: Solution of MEMP and TEMP for (left) low (l/B = 100
bits/Hz) and (right) high (l/B = 1500 bits/Hz) communication loads
for the case of perfect channel knowledge. The background represents
the uplink channel power with lighter (darker) regions corresponding
to a better (worse) channel quality. Readers are referred to the color
pdf for a better viewing.

II-D2 for probabilistically predicting the channel at unvisited
locations.5 Channel and system parameters are as summarized
earlier in this section, with Prout = 0.2. Fig. 6 shows the
average total energy consumption as a function of l/B for both
MESS and TESS. The figure also shows the corresponding
error bars which represents the standard deviation of the total
energy consumption for each data point. MESS refers to the
case where only motion energy is minimized, for the case of
probabilistic channel prediction, while communication energy
is also adapted and co-optimized in TESS. Curves marked
by TESS and MESS denote the total energy consumption
when the nodes move to the final locations and experience
the true channel values. The label ‘TESS predicted’ in Fig.
6, on the other hand, is obtained from (15) using predicted
channel values and the lognormal approximation. In other
words, the predicted curve is what the nodes predict to
consume while the TESS curve is the true consumption. As
expected, we see a significant performance improvement when
using the total energy-aware approach (TESS), as compared to
the motion energy-aware approach (MESS), especially as the
communication load increases. Fig. 7 shows the total distance
traveled by the robots for both MESS and TESS. Similar to the
behavior of the perfect channel knowledge case, an increase in
the communication load results in a larger penalization of the
transmit power, and as a result TESS travels larger distances to
get to locations with a better channel quality. Then TESS can
use lower transmission powers, as can be seen in Fig. 7. Fig.
8 shows the behavior of MESS and TESS for communication

5MESS and TESS are solved using MATLAB’s fmincon solver. fmincon
requires the objective and the constraints to be twice differentiable and is thus
unable to handle uncorrelated multipath. We then assume an exponentially
correlated multipath in the channel predictor with a very small decorrelation
distance of βMP = 0.033 m, which has a negligible impact on the prediction
performance. It should be noted that this is only for prediction purposes and
that the real channel has an uncorrelated multipath.

loads of l/B = 100 bits/Hz and l/B = 1500 bits/Hz. The
background color encodes the estimated channel power to the
remote station. The lighter (darker) areas correspond to a better
(worse) channel quality.
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Fig. 6: Energy consumption of MESS and TESS for different
communication loads for the case of probabilistic channel prediction.
TESS provides a considerable energy saving, as expected. MESS
refers to the case where only motion energy is minimized for the
case of probabilistic channel prediction while communication energy
is also adapted and co-optimized in TESS.
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Fig. 7: Total (left) distance traveled and (right) transmission power
utilized by MESS and TESS for different communication loads for
the case of probabilistic channel prediction.
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Fig. 8: Solution of MESS and TESS for (left) low (l/B = 100
bits/Hz) and (right) high (l/B = 1500 bits/Hz) communication loads
for the case of probabilistic channel prediction. The background
represents the estimated channel power with lighter (darker) regions
corresponding to a better (worse) channel quality. Readers are re-
ferred to the color pdf for a better viewing.

Scenario

TESS
of (15)
with target
Prout = 0.2

MESS of
(6) with
target
Prout = 0.2

Approx. of
(16) with
ζ = 0.1

Approx. of
(7) with
ζ = 0.1

Prob.
of
outage

0.108 0.178 0.028 0.020

TABLE I: Probability of outage for TESS and MESS as well as for
the approximations of (16) and (7) of Sections IV-B1 and III-B1. We
can see that the target Prout is satisfied for TESS and MESS.

Remark 4 (Computational complexity): In our simulations,
the implementation is done in MATLAB except for the MCKP
solver, which is in C, and is adapted from David Pisinger’s
implementation [21]. The simulations were run on a 3.4 GHz



i7-3770 CPU. For the case of Fig. 5, solving MEMP took
0.01 s, and solving TEMP took 25.2 s and 25.3 s for the case
of low (l/B = 100 bits/Hz) and high (l/B = 1500 bits/Hz)
communication loads respectively. For the case of Fig. 8 of
probabilistic channel knowledge, solving MESS took 63.8 s
and 53.2 s for the case of low (l/B = 100 bits/Hz) and
high (l/B = 1500 bits/Hz) communication loads respectively.
Furthermore, solving TESS took 122.7 s and 129.3 s for the
case of low and high communication loads respectively.

Since the targeted outage probability was 0.2, some of the
cases shown in Fig. 6 and 7 will result in outage, which means
that the constraints of (9) and (3) will not be satisfied for TESS
and MESS respectively. The first two columns of Table I show
this outage probability, averaged over different communication
loads, which is close to 0.2. In Sections III-B1 and IV-B1,
we proposed an alternative way for solving the probabilistic
cases by choosing 20 log10 α̃(rj) = µ(rj)− ζσ(rj) in (7) and
(16) with ζ ≥ 0, and utilizing the corresponding deterministic
solutions. Table I also shows the probability of outage for
such a case with ζ = 0.1, for both the total energy-aware
and motion energy-aware cases. We can see that this approach
provides a good performance, with a low outage probability, in
this case. The total energy consumption is also similar to TESS
and MESS in these results. The computational complexity
of this approach is also low, as it takes advantage of our
proposed theories of Sections III-A and IV-A. Choosing ζ of
20 log10 α̃(rj) = µ(rj)−ζσ(rj) in a methodical way, in order
to satisfy a target probability of outage, is a subject of future
work.

VI. CONCLUSIONS
In this paper, we considered a motion and communication

co-optimization problem where a team of unmanned vehi-
cles were tasked with cooperatively beamforming common
information to a remote station in a realistic communication
environment, while minimizing the total energy consumption
(both motion and communication energy). For the case where
the channel is known, we found an ε-suboptimal solution
by proving that the original optimization problem can be
posed as a series of multiple-choice knapsack problems. This
solution provided the robots with the locations for distributed
beamforming as well as the optimum transmission powers. We
then extended our analysis and methodology to the case where
the robots probabilistically predict the channel at unvisited lo-
cations. Finally, our simulation results showed the performance
of the motion energy-aware and total energy-aware approaches
for both perfect channel knowledge cases (MEMP and TEMP)
as well as the stochastic cases (MESS and TESS). Overall,
our results highlighted the underlying trends of the optimum
strategy and indicated a considerable energy saving.

APPENDIX
A. Extended Fenton-Wilkinson Method

Consider a lognormal random vector α = [α1 · · ·αN ]
T with

distribution [20 log10 α1 · · · 20 log10 αN ]
T ∼ N (ΓdB, CdB).

The distribution can alternatively be expressed as
[lnα1 · · · lnαN ]

T ∼ N (µ,Σ), where µ = ξΓdB,
Σ = ξ2CdB, and ξ = 0.05 ln 10. Let αsum with
distribution 20 log10 αsum ∼ N (µsum, σ

2
sum) denote

the lognormal random variable approximating
∑
i αi.

The first and second moments of
∑
i αi are given by

u1 = E
[∑

i αi
]

=
∑
i e
µi+Σii/2 and u2 = E

[(∑
i αi
)2]

=∑
i e

2µi+2Σii + 2
∑N−1
i=1

∑N
j=i+1 e

µi+µj e
1
2 (Σii+Σjj+2Σij)),

where µi is the ith entry of µ and Σij is the ijth entry
of Σ. In the extended Fenton-Wilkinson method [22],
the first and second moments of αsum and

∑
i αi are

equated to obtain µsum = 1
ξ (2 ln(u1) − 1

2 ln(u2)) and
σ2

sum = 1
ξ2 (ln(u2)− 2 ln(u1)).

B. Proof of Lemma 5
We first prove the following lemma, which we shall use in

proving Lemma 5.
Lemma 10: Let f : Rn+ → R+ with f(ρ) =∑n

i=1 ρ
2
i

ln
(
1+ξ(

∑n
i=1 αiρi)

2
) where ξ, αi > 0. Given ρ, let I = {i :

ρi
αi
≥ ρj

αj
∀j} and let v ∈ Rn be such that its ith element is

v(i) =

{
−αi, ∀i ∈ I
0, else . Then f(ρ) is strictly decreasing in

direction v, i.e. (∇f)T v < 0.
Proof:
∂

∂ρk
f(ρ) =

2ρk

ln
(
1 + ξ

(∑n
i=1 αiρi

)2)
−

(∑n
i=1 ρ

2
i

)
2ξ
(∑n

i=1 αiρi
)
αk(

1 + ξ
(∑n

i=1 αiρi
)2) [

ln
(
1 + ξ

(∑n
i=1 αiρi

)2)]2 . (17)

Let y = ξ (
∑n
i=1 αiρi)

2. Also, αk
(∑n

i=1 ρ
2
i

)
=

ρk (
∑n
i=1 αiρi) +

∑n
i=1 (αkρi − αiρk) ρi. In-

serting this in (17) and rearranging result in
(∇f(ρ))T v = 2

ln(1+y)

{(∑
k∈I −αkρk

) [
1− y

(1+y) ln(1+y)

]
+

ξ(
∑n
i=1 αiρi)(

∑n
i=1[(

∑
k∈I α

2
k)ρi−αi(

∑
k∈I αkρk)]ρi)

(1+y) ln(1+y)

}
. We

have d
dy ((1 + y) ln(1 + y)− y) = ln(1 + y) > 0 for

y > 0. Also, (1 + y) ln(1 + y) − y|y=0 = 0. Thus
(1 + y) ln(1 + y)− y > 0, which results in y

(1+y) ln(1+y) < 1

for y > 0. Since ρk
αk

=
ρj
αj
,∀j, k ∈ I, we have∑

k∈I αkρk∑
k∈I α

2
k

=
αjρj+

∑
k∈I,k 6=j α

2
k
ρk
αk∑

k∈I α
2
k

=
ρj
αj
≥ ρi

αi
, ∀i for j ∈ I.

Thus, we have
(∑

k∈I α
2
k

)
ρi − αi

(∑
k∈I αkρk

)
≤ 0, ∀i,

resulting in (∇f(ρ))T v < 0.
Proof of Lemma 5: We prove this by contradiction.

Assume that
∑N
i=1 α(rjOPT

i
)ρOPT
i > αR,th. Let I = {i :

ρi
α(r

jOPT
i

) ≥
ρk

α(r
jOPT
k

)∀k} and let v ∈ RN be such that

v(i) =

{
−α(rjOPT

i
), ∀i ∈ I

0, else
. We decrease ρ in the direction

of v until either ρi
α(r

jOPT
i

) = ρk
α(r

jOPT
k

) for some i /∈ I (k ∈ I), or∑
i α(rjOPT

i
)ρi = αR,th. If ρi

α(r
jOPT
i

) = ρk
α(r

jOPT
k

) for some i /∈ I
(k ∈ I), we add i to I, update our v, and continue decreasing
ρ. If

∑
i α(rjOPT

i
)ρi = αR,th, we terminate our update.

Let ∇ρJTEMP = [ ∂
∂ρ1

JTEMP · · · ∂
∂ρN

JTEMP]T. From Lemma
10, we have (∇ρJTEMP)T v < 0 and hence JTEMP({zOPT

ij }, ρ) <
JTEMP({zOPT

ij }, ρOPT). Also, ρ is a feasible solution since∑
i α(rjOPT

i
)ρi = αR,th. We thus have a contradiction.

C. Proof of Lemma 6
Proof: We introduce Lagrange multipliers ξ, γ ∈ RN for

the inequality constraints ρi ≤ 1 and ρi ≥ 0 respectively, and
λ0 ∈ R for the constraint

∑
i αiρi ≥ αR,th. The Lagrangian is



given as L(ρ, λ0, ξ, γ) =
∑
i ρ

2
i+
∑
i ξi(ρi−1)+

∑
i γi(−ρi)+

λ0 (αR,th −
∑
i αiρi). We have the following KKT conditions:

2ρ∗i − λ∗0αi + ξ∗i − γ∗i = 0, ξ∗i (ρ
∗
i − 1) = 0,

γ∗i ρ
∗
i = 0, λ∗0

(
αR,th −

∑
i

αiρ
∗
i

)
= 0,

ξ∗ � 0, γ∗ � 0, λ∗0 > 0, 0 ≤ ρ∗i ≤ 1,
∑
i

αiρ
∗
i ≥ αR,th.

Assume γ∗i > 0 for some i. Then ρ∗i = 0 and thus ξ∗i = 0.
But ρ∗i =

λ∗0
2 αi −

ξ∗i
2 +

γ∗i
2 =

λ∗0
2 αi +

γ∗i
2 > 0, resulting in a

contradiction. Therefore, γ∗i = 0,∀i. Assume λ∗0 = 0. Then
ρ∗i = − ξ

∗
i

2 = 0, and hence
∑
i αiρ

∗
i = 0 < αR,th, resulting

in a contradiction. Thus
∑
i αiρ

∗
i = αR,th. If λ∗0

2 αi > 1 then
ξ∗i > 0 which in turn implies that ρ∗i = 1. If λ∗0

2 αi < 1, then
ξ∗i = 0 and hence ρ∗i =

λ∗0
2 αi. Thus, ρ∗i = min{λαi, 1}, where

λ =
λ∗0
2 > 0 is such that

∑
i min{λαi, 1}αi = αR,th.
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