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In this paper, we propose a novel, generalizable, and scalable idea that eliminates the need for collecting Radio Frequency (RF)

measurements, when training RF sensing systems for human-motion-related activities. Existing learning-based RF sensing

systems require collecting massive RF training data, which depends heavily on the particular sensing setup/involved activities.

Thus, new data needs to be collected when the setup/activities change, significantly limiting the practical deployment of RF

sensing systems. On the other hand, recent years have seen a growing, massive number of online videos involving various

human activities/motions. In this paper, we propose to translate such already-available online videos to instant simulated

RF data for training any human-motion-based RF sensing system, in any given setup. To validate our proposed framework,

we conduct a case study of gym activity classification, where CSI magnitude measurements of three WiFi links are used to

classify a person’s activity from 10 different physical exercises. We utilize YouTube gym activity videos and translate them to

RF by simulating the WiFi signals that would have been measured if the person in the video was performing the activity near

the transceivers. We then train a classifier on the simulated data, and extensively test it with real WiFi data of 10 subjects

performing the activities in 3 areas. Our system achieves a classification accuracy of 86% on activity periods, each containing

an average of 5.1 exercise repetitions, and 81% on individual repetitions of the exercises. This demonstrates that our approach

can generate reliable RF training data from already-available videos, and can successfully train an RF sensing system without

any real RF measurements. The proposed pipeline can also be used beyond training and for analysis and design of RF sensing

systems, without the need for massive RF data collection.
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1 INTRODUCTION
Recent years have witnessed a rapidly-growing presence of connected wireless devices in our everyday life, such

as laptops, mobile phones, and smart speakers. Consequently, we are surrounded by the Radio Frequency (RF)

signals emitted by these devices. As people move around in these environments, the RF signals are perturbed

and thus implicitly capture information about the people. This has opened up new possibilities to passively,

and non-intrusively, learn various characteristics of the people and their behaviors in the environment, using

RF signals. Towards this end, researchers have been extensively exploring the various possibilities created by

RF sensing in recent years, including person identification, gesture recognition, activity classification, and fall

detection [17, 18, 24, 31, 32, 41].

In the RF sensing literature, most recent state-of-the-art systems utilize learning-based techniques, such

as neural network [17], support vector machine [30], and deep learning [12], to enable a variety of sensing

applications. Such methods, however, use a large number of RF measurements to train the system, which requires

a laborious prior RF data collection process. In spite of the large-scale training measurements, the performance

of these systems degrades considerably when operating with a new setup (e.g., new transceiver placement) or

in an area that differs from the setup/area of the training phase [9, 31]. While there are a few recent studies on

mitigating the environment dependency [12, 41], these methods still require extensive training measurements

and are constrained by the training-phase system setup. Furthermore, for classification-related tasks, existing

systems are not scalable, as they cannot be used for classes not seen during training, requiring additional RF

training measurements for the new classes.

In this paper, we propose a novel, generalizable and scalable framework that enables human-motion-related

RF sensing applications, without the need to collect any RF training measurements, thus allowing one to
efficiently develop RF sensing systems for several different applications and with various configurations. Here

is the underlying proposed idea. Recent years have seen a tremendous growth in the area of vision, resulting

in many publicly-available videos of people involved in a variety of activities. In this paper, we propose to

use such available videos for training RF sensing systems, thus eliminating the need to collect any RF training

measurement (or video training data). This allows us to tap into the massive publicly-available online videos

of people’s motions and activities to generate the required RF training data for any motion-based RF sensing

application. As such, our proposed framework makes it possible to train an RF sensing system with no RF training

measurements. Furthermore, our proposed framework is flexible to accommodate changes in the task and RF

sensing setup, e.g., new classes, different transceiver placements, and different frequencies of operation, since

the RF training data can simply be re-generated from the videos according to the new specifications of the task

and/or sensing setup. It can furthermore be used for analysis purposes, for instance to understand the amount

of resources needed for a particular application, to understand the differentiability of different activities, or to

understand the limitations of sensing with a certain setup configuration.

In order to validate our proposed methodology, we implement our pipeline for a realistic WiFi sensing

application of gym activity classification. In this case study, the system is trained with the WiFi data generated

from YouTube videos of people performing the gym activities. We then extensively test the trained system with

real WiFi data of people performing the gym activities in different areas, and show that it classifies the activities

with a high accuracy. To the best of our knowledge, this is the first time that a real-world RF sensing system is

enabled with only video-based training data, and without any real RF measurements for training purposes. Next,

we summarize the main contributions of this paper.

Statement of Contributions:
1. In this paper, we propose a novel idea: to train a human-motion-related RF sensing system without any training

data, through leveraging the vast amount of online available videos. More specifically, we propose to translate the

massive readily-available online videos of people’s motions and activities to instant RF data and use them to train
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RF sensing systems. This idea eliminates the labor-intensive process of collecting RF measurements for training,

is scalable and is applicable to any motion-based RF sensing system. It further allows for easy re-training

when new classes and/or a different RF sensing setup are given. Finally, it can enable new possibilities beyond

system design and towards system analysis, in order to understand the fundamental limitations of a particular RF

sensing system, as a function of the underlying activities, the amount of given resources, and the setup. Overall,

researchers can utilize this idea to train RF sensing systems with no RF data collection.

2. Our pipeline consists of the following steps. In order to build a classifier pertaining to a number of motion-

related activities, we first gather several online videos of different instances of the activities of interest. We then

utilize a state-of-the-art vision-based human shape reconstruction algorithm to build a 3D mesh of the person

in each video, as a function of time. Here we have to address a number of challenges. The person in an online

video, for instance, could have been captured from any viewpoint, resulting in an unknown coordinate system,

or could be doing a variety of different motion-related activities. Our proposed 3D mesh alignment technique via

eigen-analysis then enables proper mesh extraction and positioning. We then simulate the corresponding RF

signal that would have been measured if this person was in an RF-covered area, by modeling the interaction

between the extracted human mesh and the electromagnetic waves propagating in the environment. In doing

so, we take into account the needed sensing setup, e.g., the locations of the transceivers relative to the person

and the frequency of operation. Once we translate all the videos to the RF domain, we perform time-frequency

analysis on the generated RF data and extract key features from the corresponding RF spectrograms. We then use

the extracted features to train a neural network to classify the underlying activities. This RF sensing system that

is solely trained on available online videos is then ready for testing in any RF area/setting.

3. We demonstrate the efficacy of our proposed video-based training framework by implementing it for a realistic

WiFi sensing application of gym activity classification using only WiFi CSI magnitude measurements of a small

number of links. In this case study, we consider 10 different gym activities and generate a corresponding WiFi

training dataset only from YouTube videos of people performing these activities. We then use our pipeline to

train a WiFi-based gym activity classifier using only the video dataset. We extensively test the trained system in

3 real-world WiFi test areas, where 10 subjects are recruited to perform the activities. We achieve an accuracy of

86% in correctly classifying the gym activity when using a small period of the activity, which may contain a few

repetitions of the same exercise (5.1 on average), and an accuracy of 81% when only considering one repetition.

Overall, this demonstrates that our proposed idea can eliminate the labor-intensive collection of RF training

measurements and enable training RF sensing systems with only already-available video data. It further shows

the first demonstration of WiFi-based gym activity classification without any RF training data.

Remark 1. The proposed video to RF pipeline can, in particular, be useful for times such as during the current
COVID-19 pandemic, where it is hard to collect human-related RF measurements due to social distancing.

2 RELATED WORK
In recent years, there has been a large body of work that uses RF signals for sensing human motion, activity, and

behavior, in order to enable various useful applications, such as person identification, vital signs detection, fall

detection, and activity recognition [17, 22, 33, 34, 42]. In terms of activity recognition, great progress has recently

been made towards enabling device-free RF sensing. Several papers have utilized specialized hardware or radar

for activity recognition. For instance, [3, 21, 24] use USRPs and/or radars to classify daily human actions. [18] uses

an FMCW radar to capture the human pose. There has further been considerable interest in utilizing off-the-shelf

WiFi devices to perform human activity recognition. For instance, CARM [31] utilizes the relationship between

the WiFi signal variations and the speeds of human body parts for classifying a set of 8 activities. [35] achieves

activity recognition through-walls on a set of 7 daily activities. [12, 28] utilize deep learning to classify various

daily activities. In terms of classifying gym activities, such as push-up and jumping jack, there is a limited number
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Fig. 1. Various steps involved in our proposed framework for training RF sensing systems solely based on video data. LCS
stands for Local Coordinate System, while GCS stands for Global Coordinate System.

of work [9, 36, 39] that have used RF sensing systems to enable this application, for sets of 4, 9, and 10 physical

exercises, respectively, by relying on line-of-sight crossing (i.e., blocking the direct path between the Tx and Rx).

All of these state-of-the-art methods on different aspects of activity recognition, however, need to collect a

large amount of prior RF measurements for training purposes. Such data collection typically involves asking

several people to perform all the designated actions in different areas. Furthermore, the collected training data is

based on a specific experimental setup and a specific set of activities, which cannot be reused for other setups or

applications with different activities. [18] has further collected real video measurements of the scene, simultaneous

with RF training measurement collection, in order to annotate the collected RF data for the purpose of pose

estimation. [8] has recently released their collected RF training dataset for WiFi-based action recognition. While

releasing collected data could be useful for the research community, such a dataset is heavily dependent on

the activities involved and is not generalizable to other activities/behaviors. Furthermore, the released data is

heavily dependent on the sensing setup, such as the number of transceivers, their placement, and the frequency

of operation. Thus, this dataset cannot be used for a sensing system with a different configuration. XModal-

ID [17] considers the problem of WiFi-based person identification from a given video footage, thus providing

identification across modalities. More specifically, it takes as input a video and a WiFi measurement of a walking

person and determines if they belong to the same person by using gait as a unique identifier of a person. As such,

it is on a different idea than this paper. In one of its steps, XModal-ID extracts the human mesh from a video of

a walking person and simulates the corresponding RF signal. This successful translation is thus an inspiration

for our RF simulation part. However, we should note that the overall idea and methodology of this paper is

considerably different from XModal-ID. In addition, XModal-ID requires RF training data (and real video data)

to train its pipeline, and thus, it does not eliminate the laborious effort of RF training measurement collection.

Finally, its RF simulation step is specific to videos that are recorded from the side view of a person walking and

cannot be used for existing online videos that are captured from other views and/or involve other activities,

which are issues that we shall also address as part of our framework.

In summary, in this paper, we propose a general framework for training an RF sensing system, without the need

to collect any RF measurements. Our proposed idea leverages the massive available online video data, pertaining

to different human activities, motions, and behaviors, and shows how they can be translated to instant RF training

data. As such, our proposed framework eliminates the need for RF measurement collection for training an RF

sensing system. To the best of our knowledge, our proposed framework is the first to enable training an RF

sensing system only with already-available video data, and without the need to collect any RF training data. The

proposed idea is thus general and scalable. While we showcase its effectiveness in the context of gym activity

classification, researchers can utilize this approach to enable other RF sensing applications, as part of future work.

3 VIDEO-BASED TRAINING FOR RF SENSING SYSTEMS
In this section, we describe our proposed general framework for translating the already-available video content

to the RF domain, in order to generate RF data for training human-motion-based RF sensing systems. More

specifically, given the video footage of a person performing an action (e.g., walking, running, physical exercises),
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Fig. 2. (a) Sample reconstructed 3D human mesh from a snapshot of (left) a person doing jumping jacks and (right) a person
doing stiff-leg deadlifts. (b) The Local Coordinate System (LCS), defined with respect to the human body.

our framework allows one to simulate the RF signal that would have been measured if this person performed

the action in the vicinity of RF transceivers. As such, our proposed framework makes it possible to tap into the

virtually unlimited publicly-available online videos to generate wireless data and construct a massive simulated

RF dataset for training RF sensing systems for various applications.

Fig. 1 summarizes the key steps of our proposed framework. We first collect a massive video dataset pertaining

to the RF sensing task of interest, using available online videos. For each video of a person doing an activity,

our pipeline first extracts a 3D mesh of this person as a function of time. This extracted 3D human model is

then transformed into a Global Coordinate System (GCS) that is independent of the camera view using eigen

analysis. Then, given the desired RF sensing configuration (e.g., transceiver positions, frequency), our framework

simulates the RF signals that would have been measured if the extracted human mesh was in the given RF sensing

setup, via efficient wave propagation modeling. Through time-frequency analysis, we then extract key features

from this simulated RF dataset and train an RF sensing system, which will then be deployed in a real wireless

environment during operation. We next discuss each of these components in detail.

3.1 3D Reconstruction of Human Shape
The first step towards translating video content to the wireless domain is to build an accurate 3D shape of the

person in a video frame. In order to do so, we utilize the recent advances in computer vision [14, 23, 26, 27]. For

instance, [14] proposes a Human Mesh Recovery (HMR) algorithm that uses a convolutional encoder network and

a regression module to infer information about the pose and the shape of a person from a single 2D image. Then,

they utilize the Skinned Multi-Person Linear (SMPL) model [20] to translate the inferred body pose and shape

information into a human mesh. An SMPL human mesh is a set of triangulated points in 3D space describing the

body surface. More specifically, the extracted 3D human mesh is characterized by a dense set of mesh points (e.g.,

6890 points) that describe, in 3D, the outer surface of the human body in the video. Fig. 2 (a) shows examples of

our reconstructed 3D human mesh from a snapshot of a person doing jumping jacks and stiff-leg deadlifts, using

the algorithm of [14]. In the first step of our approach, we then extract the 3D human shape from the video, using

the state-of-the-art mesh reconstruction algorithms in computer vision. It is noteworthy that such a human mesh

recovery algorithm has recently been used in XModal-ID [17] for walking people, in order to provide cross-modal

identification.

3.2 3D Mesh Alignment via Eigen-analysis
The goal of our proposed framework is to simulate the RF signals that would have been measured by one or

more RF transceivers if the person in the video was in their vicinity, given any RF sensing setup. By sensing setup,
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we mean the relative location and orientation of the person with respect to the RF transceivers, as well as the

relative locations among the transceivers. We thus need to correctly place the transceivers with respect to the

extracted human mesh in the simulation environment, in order to generate a given sensing setup, which requires

translating the mesh to a global coordinate system.

In the reconstructed 3D human mesh from the output of a vision algorithm (e.g., [14]), the coordinates of the

3D points are calculated based on the camera view, which is estimated from the given video frame. In other words,

the reconstructed mesh may reside in different coordinate systems across different videos, when the videos are

shot from different views. Therefore, it is essential to transform the 3D mesh into a Global Coordinate System

(GCS) that is invariant to the camera view. Such a transformation allows us to arbitrarily choose the orientation

and the position of the human mesh in the target GCS, as well as place the RF transceivers in the GCS as needed

for the sensing setup. In order to enable this transformation, however, we need to know some information about

the orientation of the body parts. We next show how to achieve this through an eigen-analysis on the mesh

points of the torso.

Let the set of 3D points of the extracted human mesh at time 𝑡 beM ′(𝑡) = {p′
𝑚 (𝑡),𝑚 ∈ {1, . . . , 𝑀}}, where

p′
𝑚 (𝑡) ∈ IR3

is the 3D location of the𝑚-th point at time 𝑡 and𝑀 is the total number of points in the mesh. These

points are given in a coordinate system where the x-y plane is parallel to the camera plane. We define a Local

Coordinate System (LCS) with respect to the human body, where the x-axis points to the front of the person, the

y-axis points to the person’s left, and the z-axis points upward, as shown in Fig. 2 (b). The axes of the LCS are

denoted by x′, y′, and z′, respectively, and are determined based on the set of mesh pointsM ′
as follows. Let

H = [p′
𝑠1
, p′

𝑠2
, . . . , p′

𝑠𝑀𝑇
] be a 3 ×𝑀𝑇 matrix of the 3D locations of all the mesh points belonging to the torso

in the original coordinate system, where 𝑠1, . . . , 𝑠𝑀𝑇
are the indices of the torso points among the 𝑀 total mesh

points and𝑀𝑇 is the total number of torso points.
1
Since the anterior-posterior (i.e., front-back) is the smallest

dimension of the human torso, x′ is the eigenvector of HHᵀ that corresponds to the smallest eigenvalue, where
ᵀ

is the transpose operator. Similarly, z′ is the eigenvector of HHᵀ that corresponds to the largest eigenvalue, since
the inferior-superior (i.e., bottom-top) is the largest dimension of the human torso.

Once we have determined the axes x′, y′, and z′ of the LCS corresponding to the human mesh of a video frame,

the human mesh can be rotated such that the person faces any desired direction in the GCS. For instance, consider

the case where the person is required to face the positive x-axis in the GCS in the simulation, we multiply all the

original mesh points by the rotation matrix R = [x′, y′, z′], i.e., p𝑚 (𝑡) = Rᵀp′
𝑚 (𝑡). It is straightforward to show

that after this operation, the LCS of the rotated mesh points p𝑚 (𝑡) aligns with the x, y, and z axes of the GCS.
The mesh points can also be easily translated in the new GCS to any arbitrary location. For example, if the x-y
plane in the GCS is assumed to be the floor and the person is in a standing position, we can translate the mesh

points such that the feet points lie on the x-y plane.

In general, depending on the configuration of the RF sensing setup, such as the transceiver positions relative to

the person, the human mesh can be put into any desired orientation and location in the GCS. Concrete examples

will be provided in our case study of Sec. 4.

3.3 RF Signal Simulation
Let M(𝑡) = {p𝑚 (𝑡),𝑚 ∈ {1, . . . , 𝑀}}, where p𝑚 ∈ IR3

is the 3D location of the𝑚-th point of the human mesh

in the GCS, where the values of p𝑚 (𝑡) were calculated such that the human model has a specific location and

orientation in the GCS, as described previously. Let p𝑇 and p𝑅 denote the locations of the RF transmitter (Tx) and

receiver (Rx) in the GCS, respectively, in the sensing setup of interest. We then simulate the RF signal that would

have been measured from reflections off of the extracted human mesh in this setup.

1
The indices of the mesh points belonging to any specific body part are fixed and known for all meshes generated by a human mesh recovery

algorithm.
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In general, the received electric field at the Rx, 𝐸 (p𝑅), due to a transmission from the Tx, is the solution to the

volume integral equation [5]:

𝐸 (p𝑅) = g(p𝑅, p𝑇 ) +
∭
D

g(p𝑅, p)𝑂 (p)𝐸 (p)𝑑p, (1)

where D is the workspace where the transceivers and the person are located, g(p1, p2) =
exp( 𝑗 2𝜋

𝜆
∥p1−p2 ∥)

4𝜋 ∥p1−p2 ∥ is the

Green’s function from point p2 to point p1, where ∥ .∥ denotes the Euclidean distance and 𝜆 is the wavelength of

the wireless signal. 𝑂 (p) is a parameter that captures the electric/magnetic properties of what resides at position

p in the area. In the electromagnetics literature, several methods have been proposed for finding the solution to

Eq. 1, such as the Method of Moments (MoM) [7] and the Finite Element Method (FEM) [13]. However, they are

very computationally intensive. Thus, efficient linearizing approximations to Eq. 1 have been proposed, such as

the Born approximation [4]. Based on our extensive studies (reported in detail in Sec. 4.4.1), Born approximation

well approximates the details of the received signal with the accuracy needed for training based on the simulated

RF data, while being computationally very efficient. In Born approximation, we have the following for the received

signal:

𝐸 (p𝑅) =g(p𝑅, p𝑇 )+
∭
D

g(p𝑅, p)𝑂 (p)g(p, p𝑇 )𝑑p, (2)

where the total electric field at point p, 𝐸 (p), inside the integral of Eq. 1 is approximated by the Green’s function

from the Tx to point p. This means that the Born approximation treats each point in space as an independent

scatterer, and does not take into account the higher-order scattering effects.

In summary, given a video of a person engaged in some activity, we first extract a dense set of 3D mesh points

describing the outer human surface. We then transform the reconstructed 3D human mesh into a GCS, which

can be put into any arbitrary desired location and orientation in the GCS. Then, based on the given sensing setup,

we determine the Tx and Rx positions in the GCS, and simulate the RF signal that would have been measured

using the approximated Born wave model of Eq. 2. More advanced wave models (e.g., Eq. 1) can certainly be

used as part of the proposed pipeline if more details are needed for a particular application, at the cost of higher

computational complexity. Furthermore, given a different RF sensing setup, we can easily re-run the simulation

to obtain the corresponding RF signal, by changing the transceiver locations or the orientation and location of

the already-aligned human mesh in the GCS, according to the new setting. As we shall see in Sec. 4, the proposed

pipeline can generate realistic RF data for the purpose of training an RF sensing system.

3.4 Feature Extraction and Training
Once the RF signals are simulated based on the desired scenario, they can be used to train a machine learning

algorithm for a given RF sensing application. For traditional machine learning algorithms, such as support vector

machine and neural network, one can extract several features from the simulated RF signals for training the

system. Since our proposed framework enables the generation of massive RF training data, it is also possible to

utilize our framework to generate sufficient data for training deep learning algorithms.

Overall, our proposed scalable and general framework enables training RF sensing systems without the need

for collecting any real RF training data, and by translating the vast available video data to the RF domain. Given

the generated RF training data, one can then apply any machine learning algorithm to train the RF sensing

system. In the next section, we then showcase the possibilities created by the proposed framework, in the context

of RF sensing for gym activity recognition.
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Fig. 3. The sensing setup used for our case study of gym activity classification. The 3 WiFi links capture the velocity
components of different body parts along the 3 dimensions.

4 CASE STUDY: GYM ACTIVITY CLASSIFICATION
In this section, we demonstrate the efficacy of our proposed framework with a real-world application of WiFi-

based activity recognition. More specifically, we consider gym activity classification, the objective of which is

to identify the performed activity from a set of several different physical exercises, such as push-up and sit-up,

using only WiFi CSI magnitude measurements of a small number of links. RF-based gym activity classification

is a challenging problem due to the complex movements involving different parts of the body, which has only

been explored sparsely in the literature [9, 36, 39]. However, all such existing work on gym activity classification

require a significant effort in collecting massive wireless training measurements for the set of activities that they

want to classify, using the same RF-sensing setup that will be used during the operation phase.

In contrast to these existing papers, we show how to train a WiFi-based gym activity classifier without the

need for collecting any wireless training measurements. As discussed in Sec. 3, our proposed framework enables

the translation of the video content of a human activity into the wireless domain, which allows us to utilize the

available online videos to create an instant RF training dataset. In this section, we then discuss our WiFi sensing

setup for gym activity classification, as well as how we implement the different steps of our proposed framework

for this real-world application.

4.1 Sensing Setup
In this case study, the WiFi sensing system is tasked with capturing the characteristics of different gym activities

to perform classification. As such, we consider a sensing setup that is capable of measuring the motion profile of

each activity, which can then serve as the signature for classification.

Consider the setup of Fig. 3, with the coordinate system as marked, where the person is located at the origin,

facing the positive x direction, and the positive z-axis is pointing upward. Our WiFi sensing system consists of 3

links, each with a pair of transmitter (Tx) and receiver (Rx). Link 1 is placed in front of the person and parallel

to the y-axis, Link 2 is placed to the left of the person and parallel to the x-axis, while Link 3 is placed above

the person and parallel to the y-axis, as shown in Fig. 3. Links 1 and 2 share the same Tx, which we denote by

Tx1/2. As the person performs the activity, the WiFi signal emitted by the Tx bounces off of the person’s body, as

well as the static objects in the environment, and is received by the Rx, for each link. The baseband WiFi signal

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 120. Publication date: December 2020.



Teaching RF to Sense without RF Training Measurements • 120:9

received by the Rx of the 𝑖-th link can be approximated as follows:

𝑟𝑖 (𝑡) ≈ 𝑟 ◦𝑖 +
∑
𝑠

𝑟 s𝑖 +
∑
𝑛

𝛼𝑛𝑒
𝑗 4𝜋

𝜆
⟨®v𝑛 (𝑡 ) · ®ℓ𝑖 ⟩𝑡︸             ︷︷             ︸

reflected signal off

the n-th body part

, (3)

where 𝑟 ◦𝑖 is the direct signal from the Tx to the Rx of the 𝑖-th link, 𝑟 s𝑖 is the signal of 𝑠-th static path (path reflected

off of a static object in the environment), 𝛼𝑛 is the amplitude of the reflected path off of the 𝑛-th body part, ®v𝑛 (𝑡)
is the 3D velocity vector of the 𝑛-th body part at time 𝑡 , ®ℓ𝑖 is a unit vector bisecting the angle between the two

lines connecting the 𝑛-th body part to the Tx and Rx of the 𝑖-th link, ⟨∗ · ∗⟩ is the inner product of the vector
arguments, and 𝜆 is the wavelength of the RF signal. We are interested in gym activity recognition using only

WiFi CSI magnitude measurements. In practice, the direct path from the Tx to the Rx is stronger than all reflected

paths (i.e. |𝑟 ◦𝑖 | ≫ |𝑟𝑠𝑖 |, |𝑟 ◦𝑖 | ≫ 𝛼𝑛) due to their longer lengths and the reflection losses. Hence, the squared signal

magnitude can be written as [15],

|𝑟𝑖 (𝑡) |2 = 𝑃 +
∑
𝑛

2|𝑟 ◦𝑖 |𝛼𝑛 cos
(
4𝜋

𝜆
⟨®v𝑛 (𝑡) · ®ℓ𝑖⟩𝑡 − ∠𝑟 ◦𝑖

)
+
∑
𝑛

∑
𝑠

2𝛼𝑛 |𝑟 s𝑖 | cos
(
4𝜋

𝜆
⟨®v𝑛 (𝑡) · ®ℓ𝑖⟩𝑡 − ∠𝑟 s𝑖

)
+
∑
𝑛

∑
𝑛′>𝑛

2𝛼𝑛𝛼𝑛′ cos

(
4𝜋

𝜆
⟨(®v𝑛 (𝑡) − ®v𝑛′ (𝑡)) · ®ℓ𝑖⟩𝑡

)
≈ 𝑃 +

∑
𝑛

2|𝑟 ◦𝑖 |𝛼𝑛 cos
(
4𝜋

𝜆
⟨®v𝑛 (𝑡) · ®ℓ𝑖⟩𝑡 − ∠𝑟 ◦𝑖

)
, (4)

where 𝑃 = |𝑟 ◦𝑖 |2 +
∑

𝑠

∑
𝑠′ |𝑟 s𝑖 | |𝑟 s’𝑖 |𝑒 𝑗 (∠𝑟

s

𝑖
−∠𝑟 s’

𝑖 ) +∑
𝑠 2|𝑟 s𝑖 | |𝑟 ◦𝑖 | cos

(
∠𝑟 s𝑖 − ∠𝑟 ◦𝑖

)
+∑

𝑛 𝛼
2
𝑛 is the DC component of |𝑟𝑖 (𝑡) |2,

∠ denotes the phase of the signal, and the approximation in the last line of Eq. 4 is due to the fact that the direct

path is stronger than the reflected ones. It can be seen from Eq. 4 that the static multipath in the environment

affects the DC component of the received signal, which does not carry any motion information (i.e., information

on ®v𝑛 (𝑡)), and can be easily subtracted in practice.

Given the sensing setup of Fig. 3, we can see that ®ℓ1, ®ℓ2, and ®ℓ3 can be approximated by [1, 0, 0]ᵀ , [0, 1, 0]ᵀ , and
[0, 0, 1]ᵀ , respectively. For instance, Fig. 3 shows ®ℓ2 in our setup, which, as can be seen, is approximately a unit

vector along y. ⟨®v𝑛 · ®ℓ𝑖⟩, ∀𝑖 = 1, 2, 3, are then the 3 components of the velocity vector ®v𝑛 in the 3D space along the

three directions of the Cartesian coordinate axes. Then, based on Eq. 4, the frequency content of the received

signals at the 3 links will directly capture the velocity components of different body parts along the x, y, and z
directions, respectively. As such, the received signals at the 3 links contain key information on the person’s 3D

motion profile, which will be very useful for the classification task.
2

We next demonstrate how to translate relevant online video data to WiFi training data using our proposed

framework, for the gym activity classification task. We start by describing our implementation of the various

steps shown in Fig. 1, tailored for the gym activity recognition and for the sensing setup of Sec. 4.1.

4.2 Training with Zero RF Training Data
In this case study, the gym activity classification includes 10 different physical exercises, such as jumping jack and

push-up, as shown in Fig. 4. They are representative of a variety of typical workouts that involve the movements

of different body parts.

2
Other configurations of the links can be translated to the setup of Fig. 3 by projecting their measured motion information along the 3 axes in

Fig. 3, as we shall discuss in Sec. 5.
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Fig. 4. The set of 10 activities considered in our gym activity classification case study. In our study, the activities are performed
with only body weight, i.e., without any equipment (e.g., resistance band, dumbbell). These images show the movements
involved in each activity, as indicated by the red arrows. See the color pdf for optimal viewing.

We download the training videos for these activities from YouTube.
3
For each video, we manually identify and

extract the overall chunk in which the person is actually performing the corresponding activity (to remove chunks

where, for instance, the person is just talking). Although this is done manually in the current study, it is possible

to use recent computer vision techniques to temporally localize such activity periods automatically [1, 38]. In

order to best facilitate the 3D mesh extraction, we do not use videos in which there is blockage of the exercising

person by the surrounding objects. This is not a restrictive requirement since most online videos of gym activities

provide unobstructed views of the person.
4
Our training video dataset contains a total of 61 videos of gym

activities, each of which containing an average of 8.39 sec of relevant activity content.

4.2.1 Activity Repetition Segmentation. In our WiFi-based gym activity classification system, a repetition is

taken as the atomic unit to describe the gym activities. More specifically, a repetition is defined as one complete

movement cycle of a gym activity, such as one push-up or one jumping jack.

Given a video of a person performing a gym activity for multiple repetitions (e.g., doing 10 jumping jacks), we

want to segment the time duration for each individual repetition. In order to do so, we first use Mask R-CNN [11]

to extract the bounding box of the person for each frame. As the person performs an activity for multiple

repetitions, the shape of the bounding box as a function of time captures this periodicity and can be used to

calculate the time duration for each repetition. For instance, in a video of a person doing jumping jacks, the

height and width of the bounding box varies periodically due to the arm and leg movements. We then segment

the individual jumping jacks based on the autocorrelation function of the aspect ratio of the bounding box, which

is changing with time.

4.2.2 3D Human Mesh Extraction and Alignment. For each video frame of the activity, we use the HMR algorithm

of [14] to extract the 3D mesh of the person, which consists of a large number of 3D points describing the outer

surface of the person in the image. We then use the alignment framework proposed in Sec. 3.2 to align the

extracted 3D mesh of the person to the 3D Global Coordinate System (GCS) of the setup described in Sec. 4.1.

3
Here are the links to a few sample training videos for interested readers: https://youtu.be/96zJo3nlmHI (broad jump), https://youtu.be/

UpyDdQjBTa0 (forward lunge), https://youtu.be/33UV3Jl8wEk (jumping jack), and https://youtu.be/FvJS_MSN4Lo (lateral lunge).

4
While it is ideal to use videos without any occlusion, the vision algorithms are still able to reconstruct the 3D human mesh if the occluded

part is small, e.g., [14, 40].
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While we can, in principle, align any given frame using the method of Sec. 3.2, some frames are easier to align as

they would require the extraction of the least amount of information from the image, pertaining to the positions

of different body parts. We next show our approach to find such a frame for each activity video, in the context of

the stiff-leg deadlift exercise.

Consider the stiff-leg deadlift exercise, in which a person slowly lowers their upper body from the standing

position to a bend-forward position, and then quickly rises back to the standing position, while keeping their legs

straight (see Fig. 4). Given any random frame, the angle between the person’s torso and legs needs to be estimated

from the frame, in order to determine the correct corresponding orientation in the GCS, and consequently

calculate the rotation matrix. While this knowledge can be estimated from each frame, if we use the frame where

the person is fully standing, we do not need to extract any additional knowledge in order to build the rotation

matrix, which can then be applied to all the frames of the video. In order to find a frame where the person is in a

fully standing position during the stiff-leg deadlift exercise, we utilize the Mask-RCNN algorithm [11] to estimate

a bounding box around the person in each frame, which can then automatically identify the frame of the person

fully standing as the one with the tallest bounding box. According to our sensing setup of Fig. 3, the LCS axes

x′, y′, z′ of the person in the frame with fully standing position should align with the major x, y, z of the GCS. We

can then easily calculate the rotation matrix R from the LCS of this frame as R = [x′, y′, z′], and use this matrix

to align the meshes of all the frames of this video into the correct orientation in the GCS. Since the feet are static

in this activity, the mesh should be translated in the GCS such that the average of the mesh points of the feet is at

the origin.

As an additional example, consider the sit-up exercise. The fully recumbent position is the easiest to use for

alignment. More specifically, given the sensing setup of Sec. 4.1, when the person is in the full recumbent position,

x′, y′, and z′ of the LCS should align with +z, +y, and −x axes of the GCS, respectively. Hence, the rotation matrix

R can be estimated from the LCS of the video frame in which the person is fully lying down as: R = [−z′, y′, x′].
As such, we then use the common-sense knowledge of each activity to provide a label for a key frame that our

automated algorithm needs to look for, in order to efficiently align the meshes of all the video frames of that

activity to the GCS.

4.2.3 WiFi Signal Simulation. After themesh alignment, the 3Dmesh of the person doing the activity is placed and

oriented in the GCS of Fig. 3 in a simulation environment. We further place the WiFi transceivers in the locations

described in Sec. 4.1 in our simulation environment, where the Tx-Rx separation distances for Links 1 and 2 are

4 m each, and the Tx-Rx distance for Link 3 is 0.6 m. The antennas of Links 1 and 2 are placed at 0.75 m above the

floor, and the antennas for Link 3 are placed at 2.75 m above the floor (which is a typical height of room ceilings).

As the human mesh moves over time, we simulate the received WiFi signals for all the links as a function of time,

by utilizing the Born electromagnetic approximation (Eq. 2). More specifically, given the locations of the𝑀 3D

mesh points in the GCS at any time instant (any video frame), we simulate the received WiFi signal as follows,

𝑟sim (p𝑅; 𝑡) =
�����g(p𝑅, p𝑇 ) + 𝑀∑

𝑚=1

𝐴𝑚𝐺𝑚 g
(
p𝑅, p𝑚 (𝑡)

)
g
(
p𝑚 (𝑡), p𝑇

)�����2 , (5)

where p𝑅 and p𝑇 are the locations of the Rx and Tx, respectively, p𝑚 (𝑡) is the location of the𝑚-th mesh point at

time 𝑡 , 𝐴𝑚 is the reflection coefficient of the𝑚-th mesh point, and 𝐺𝑚 is a scaling parameter that captures the

quasi-specular reflection nature of the human body and depends on the normal direction to the body at the𝑚-th

mesh point. Since the clothing has a negligible impact on the reflection coefficient, we model human body as a

homogeneous reflector (constant 𝐴𝑚). Furthermore, since we are only interested in the motion-related part of the

received signal (see Eq. 4), we do not need to calculate the exact value of the received signal and a scaled version

will suffice to model human motion. As such, we use a uniform constant reflection coefficient of 1 over the whole

body.
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Remark 2. The reflected signals off of the static objects in a real environment, e.g. walls and furniture, contribute
to the DC term of Eq. 4, which carries no information about the human motion, and can be easily removed in
the operation phase, as we shall see in Sec. 4.3.1. Hence, there is no need to consider the static multipath in the
simulation environment and we only need to consider the mesh points of the moving human body in the received
signal calculation in Eq. 5.

When using the HMR algorithm of [14], particularly for video frames where one of the person’s arms is

occluded from camera view, we have observed some artifacts in the estimation of the arm poses, which may

result in abnormal arm movements that the person in the video did not perform. We also noticed that due to its

small surface area, as compared to the other body parts, the arms have little contribution to the received WiFi

signal [6]. For these reasons, we do not consider the mesh points of the arms in the simulation platform, and only

model the interaction between the electromagnetic waves and the rest of the human body.

Remark 3. At higher frequencies (e.g., 60 GHz) or for some other applications, the impact of arms on the received
signal could be higher. In such a case, one can then include the mesh points of the arms in the simulation to capture
the impact of the arms on the received signal. If one needs to include the arms in the modeling, other more recent
vision algorithms that better estimate the arms can be used [40]. Alternatively, instead of YouTube videos, one can
use existing online motion capture data which directly provide high-quality 3D human models.

4.2.4 Feature Extraction and Classification. For each gym activity, the body parts of the person would produce

a different velocity profile, in terms of the speed and the motion direction. Such a velocity profile, i.e., the

information about the speed and motion direction of different body parts, can be used as a signature for each

gym activity. For instance, when doing push-ups, the up-down motion of the person’s body parts (e.g., head,

torso) results in moderate speeds in the ±z direction of the GCS. Meanwhile, push-up produces nearly no speeds

in the x and y directions. As another example, consider the broad jump, in which the person jumps forward

towards Link 1. The motion of the body parts produces very high speeds in the +x direction, moderate speeds in

the ±z direction, and negligible speeds in the y direction.

As discussed in Sec. 4.1, the instantaneous frequencies of the baseband received signal carry the information

on the velocity components of different body parts. Thus, we utilize the frequency content of the received signals

at the 3 links to construct informative features that can describe the person’s motion characteristics during the

gym activity. Towards this goal, we carry out time-frequency analysis of the simulated wireless signals, in order

to extract features and train a classifier, as we discuss in the following part.

Time-Frequency Analysis: We estimate the frequency content of the signal via performing time-frequency

analysis, a common method in harmonic analysis, which has also been used in RF sensing [17, 30, 31]. More

specifically, given a received signal in the time domain, we utilize Short-Time Fourier Transform (STFT) with

windows of size 0.4 sec and a window overlap of 0.35 sec to generate a spectrogram, which contains the frequency

content of the signal (in the range of [1, 100] Hz) as a function of time. In order to enhance the quality of the

spectrogram, we carry out a denoising process, as follows. We first zero out all the spectrogram values that

are below a noise floor of 0.01. Then, we binarize the spectrogram with a threshold of 0.01 and extract all the

connected components from the 2D binary plot. Regions that correspond to very small components are zeroed

out, since they are less likely to be the result of continuous human movements.

Fig. 5 (b) shows a sample spectrogram of the simulated signal at Link 3, for one repetition of stiff-leg deadlift

extracted from the video of Fig. 5 (a). For instance, when the person moves into a bend-forward position as well as

when she moves back to the initial position, the vertical speed of her body is clearly captured by the spectrogram

of Link 3, in the first half (from 0 to 1 sec) and the second half (from 1 to 2 sec) of the repetition, respectively. In

particular, in the video, the motion of going back to the standing position is faster than that of bending down. This

is captured by the spectrogram where the frequency components are higher in the second half of the repetition,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 120. Publication date: December 2020.



Teaching RF to Sense without RF Training Measurements • 120:13

0

Time (sec)

F
re

q
u
en

cy
 (

H
z)

0.5 quantile

Time (sec)

210 21

(a) (b) (c)

20

40

60

80

100

20

40

60

80

100

F
re

q
u
en

cy
 (

H
z)

Fig. 5. (a) Snapshots from a video of a person performing a repetition of the stiff-leg deadlift exercise, (b) the corresponding
spectrogram of the simulated WiFi signal of Link 3 capturing the motion pattern of the person, and (c) the 0.5 quantile curve
of the spectrogram in (b). See the color pdf to best view this figure.

as compared to the first half. Note that the spectrogram (non-DC part) captures the frequency components of the

motion and does not depend on the actual received signal strength as long as it is above the noise floor.

Features: Given the simulated signals of one repetition from a gym activity video, we first generate the cor-

responding spectrograms for the 3 links. We then extract several informative features from the spectrogram

of a repetition in order to train a classifier.
5
Our proposed features are mainly based on the quantiles of the

spectrograms as a function of time. More specifically, the 𝑞 quantile of a spectrogram 𝑆 (𝑓 , 𝑡) is given as follows,

as a function of time:

𝑄 (𝑡 ;𝑞) = min

{
𝑓𝑞 :

∑𝑓𝑞

𝑖=1
𝑆 (𝑖, 𝑡)∑𝑓max

𝑖=1
𝑆 (𝑖, 𝑡)

≥ 𝑞

}
, (6)

where 𝑄 (𝑡 ;𝑞) is the 𝑞 quantile of the spectrogram as a function of time and 𝑓max is the upper bound of the

frequency in the spectrogram (i.e., 100 Hz in our case).

The quantiles as a function of time capture the temporal variations of the spectrogram which capture the

time-varying speeds of the body parts, while staying robust to noise. In this study, we use the 0.5 and 0.7 quantiles

for each spectrogram, which capture the median speed and the higher-speed components of the motion over

time, respectively. Fig. 5 (c) shows the 0.5 quantile for the sample spectrogram of Fig. 5 (b).

Consider one repetition of an activity. We then calculate the histograms of the 0.5 quantile and the 0.7 quantile,

respectively, within the repetition, for each spectrogram of each link. Each histogram is a 5-dimensional vector that

contains the respective numbers of points with quantile value in the following intervals: [1, 10] Hz, (10, 20] Hz,
(20, 30] Hz, (30, 40] Hz, and (40, 100] Hz. These histograms efficiently capture the distributions of the quantile

values in each spectrogram of the repetition. In order to capture any possible temporal asymmetry within one

repetition of an activity, we calculate the difference between the maximum value of the quantile values in the first

and the second halves of the repetition, and use a binary number to indicate whether the difference is larger than

10 Hz, for each quantile curves of Link 3. Finally, the time duration of the repetition is used as the last feature.

This amounts to a total of 33 features for each repetition of an activity. Overall, these features capture various

time and frequency attributes of the motion, which are useful for classifying the activities.

5
For a video that contains multiple repetitions of the same gym activity, we first temporally segment the video to extract each repetition (see

Sec. 4.2.1) and treat each repetition as an individual training data point.
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Fig. 6. Our experimental setup in 3 different areas to test our gym activity classification system. Link 1 consists of Tx1/2
and Rx1, Link 2 consists of Tx1/2 and Rx2, and Link 3 consists of Tx3 and Rx3. Area 1 is in a lab, Area 2 is in the back of a
classroom, and Area 3 is in a conference room. As can be seen, the areas are cluttered with a variety of objects. For instance,
all metallic objects, which can be strong reflectors, are highlighted in green. See the color pdf to best view this figure.

Since in the operation phase, the person may not exactly stand at the center (see Fig. 3), we further perturb

the extracted meshes as follows, in order to augment the simulated dataset. More specifically, to generate a

perturbed dataset, we draw two numbers uniformly distributed in [−0.1, 0.1] m, which we then use to shift the x

and y positions of the 3D human mesh, respectively, in the GCS. We perturb each mesh 10 times in this manner.

Overall, we have a total of 1878 simulated feature vectors to be used for training the classifier. As the number of

repetitions differs for each activity class, we apply oversampling [2] to balance the training data.

Training a Classifier:We then train a linear classifier using the feature vectors of our simulated gym activity RF

dataset. In the operation phase, the trained classifier then takes as input the features of one individual repetition

from a measured RF signal and outputs a predicted probability distribution over the 10 activity classes via the

softmax operation. The class that corresponds to the highest predicted probability is taken as the classification

decision for the input data sample. Given an activity period that possibly contains more than one repetition

of the same activity, we can also fuse the predictions of the individual repetitions, in order to achieve a more

accurate overall classification. More specifically, we can average the predicted probability distributions of all the

repetitions within the same activity period. The activity class corresponding to the highest predicted probability

in the aggregated distribution then serves as the classification decision for the activity period.

4.3 Test Experiments with Real WiFi
We have conducted a number of test experiments to collect real WiFi measurements and evaluate the performance

of our gym activity classification system that is trained only with online video data. In this section, we then

discuss our WiFi experimental setup, and the test data collection and processing.

4.3.1 Experimental Setup and Data Processing. The test experiments are conducted in a total of 3 test areas,

which are shown in Fig. 6. These test areas represent several real-world environments with a variety of area sizes,

geometry, and clutter. More specifically, Area 1 is located in a lab, Area 2 is located in the back of a classroom,

while Area 3 is located in a conference room. Moreover, each test area contains several metallic objects of various

sizes (marked with green), e.g., white board, desks, and chairs, which makes the test areas similar to the metal-rich

environment in a gym. Clutter, however, does not impact the performance of our approach as the impact of static

objects appear in the DC term and is removed, as discussed earlier.

Each Tx/Rx in the test area consists of 𝑁𝑇 = 2 and 𝑁𝑅 = 2 antennas connected to a laptop with Intel 5300

Network Interface Card. The shared transmitter for Link 1 and 2 transmits 400 WiFi packets per second on WiFi

channel 36 (𝑓𝑐 = 5.18 GHz), while that of Link 3 transmits WiFi packets with the same rate on WiFi channel

44 (𝑓𝑐 = 5.22 GHz). We use CSItool [10] on each of the receivers to log the squared magnitude of the Channel

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 120. Publication date: December 2020.



Teaching RF to Sense without RF Training Measurements • 120:15

Fig. 7. Comparison between the real and simulated WiFi spectrograms on two links for four exercises: (a) Stiff-leg deadlift,
(b) Forward Lunge, (c) Lateral lunge, and (d) Broad jump. For each exercise, left figure is the real WiFi spectrogram, middle
figure is simulated WiFi spectrogram, and right figure is the extracted 0.5-quantiles from the two spectrograms. It can be
seen that the real and simulated spectrograms are visually similar, and the 0.5-quantiles confirm their similarity. Note that
for each exercise, we show the two links that have the best (top) and the worst (bottom) matches between the real and
simulated WiFi spectrograms.

State Information (CSI) of the received packets. Each receiver logs a total of 𝑁𝑇 × 𝑁𝑅 × 30 subcarriers = 120 data

streams, which we first denoise using Principal Component Analysis as described in [31]. More specifically, we

use the first 10 principal components of the data streams and generate the received signal’s spectrogram using the

method of [17], where both STFT and Hermite functions are used to generate high-quality spectrograms. Note

that the static multipath from the static objects in the environment appears at DC in the spectrogram, and can

easily be removed by subtracting the mean of the signal before generating the spectrogram. We then denoise the

spectrograms using the same denoising scheme as described in Sec. 4.2.4. However, here we adaptively estimate

the noise floor of the spectrogram as the 99th percentile of the spectrogram values above 70 Hz. We assume that

the frequency range above 70 Hz has no informative reflections from the human body, since it corresponds to

speeds above 2 m/s.

4.3.2 WiFi Test Data Collection. For the WiFi test experiments, we have recruited a total of 10 subjects to

participate in our test experiments, including 8 males and 2 females. In each area, each subject is asked to perform

the 10 gym activities. For each activity, we collect the WiFi measurements of each subject for 45 seconds, to

which we refer as an activity period. During each activity period, the subject performs multiple repetitions of this

activity. We then temporally segment the WiFi measurement of each activity period to extract the time intervals

of the individual repetitions, based on the brief resting periods between two consecutive repetitions.
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Overall, we have a total of 1543 repetitions for the 10 gym activities, or equivalently, a total of 300 activity

periods (100 activity periods per area), from the 10 subjects in the 3 areas. The activity periods each contain an

average of 5.1 repetitions. More specifically, we have 523 individual repetitions in area 1, 517 in area 2, and 503 in

area 3.

4.4 Performance Evaluation
In this section, we evaluate the performance of our proposed approach for training the WiFi gym activity classifier

using only video data and no RF data. We first analyze the similarity between the simulated and real WiFi signals,

in order to validate our generated training data. Then, we extensively evaluate the classification performance of

our trained WiFi sensing system with real WiFi test data.

4.4.1 Similarity between Simulated and Real Data. In order to present a proper assessment of the similarity

between the simulated WiFi signal and the real one, we collect the WiFi measurements of a person performing

two activities (stiff-leg deadlift and forward lunge), while recording a video of the scene at the same time. We then

analyze the similarity of the simulated WiFi signal and the real one via spectrogram analysis, since a spectrogram

can effectively capture the motion of different gym activities, as discussed in Sec. 4.2.4. Note that the video

recording andWiFi measurements of this experiment are collected solely for the purpose of showing the similarity

between the simulated data and the real one, and neither of them was used in the training set or in the test set of

our system.

Fig. 7 shows the comparison between the real and simulated WiFi spectrograms for four sample exercises.

For each activity, we show the two links that have the best (top) and the worst (bottom) matches between the

real and simulated WiFi spectrograms. Fig. 7 (a) shows the spectrograms of the measured WiFi data on Link 2

and Link 3 for one repetition of the stiff-leg deadlift exercise (left column), as well as the video-based simulated

WiFi data on these 2 links for the same exercise (middle column). It can be seen that the spectrograms based on

simulating from the video properly capture the motion patterns, and match the WiFi spectrograms well. The

figure also shows the 0.5 quantile curves (one of the features we shall use) of both the real WiFi spectrogram and

the simulated one (right column), showing a good match between the two. Similarly, a good match can be seen

between the real WiFi spectrograms and the simulated ones of the forward lunge, lateral lunge, and broad jump

activities. The average cosine similarity between the 0.5 quantile curves of the simulated and real spectrograms

of all four activities is 0.88, while two identical curves have a cosine similarity of 1. Finally, the spectrograms of

these exercises reveal the unique patterns of each exercise in terms of the frequency content of the spectrograms,

or, equivalently, the speed profile of the person’s body.

Overall, Fig. 7 shows the power of our proposed approach in generating simulated RF data that closely resemble

the real one, and highlights its potential in eliminating the need for the collection of real RF measurements when

training RF sensing systems.

4.4.2 Classification Performance. In this part, we evaluate the performance of our WiFi-based gym activity

classifier, which is trained with only video data. We first present the results for the case where the classifier is

tested with individual activity repetitions. In other words, multiple repetitions of the same activity by the same

person are treated as independent test cases in this setting. We then evaluate the classifier for the case where it

jointly uses all the repetitions done by the same person during an activity period to classify his/her activity (by

fusing their corresponding decisions). As expected, the second case would perform better since the data of a few

repetitions is used for classification. The first case, however, is important as it establishes a lower bound on the

performance for the case when the person only does one repetition of an exercise. As we shall see, we can still

classify the activities well, even with only one repetition.
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Classification on Individual Repetitions: In this setting, our classifier achieves an average classification

accuracy of 81%, over all the test areas (a random selection would have resulted in 10% accuracy). Fig. 8 shows

the confusion matrix that corresponds to the classification performance of our trained system on individual

repetitions. The diagonal entries indicate the classification accuracy for each activity (in %) and the off-diagonal

entries indicate the percentages of misclassifications to that corresponding class. Overall, it can be seen that our

system can classify all the activities pretty well. In particular, activities such as forward lunge, lateral lunge, and

side stepping are recognized very well, with classification accuracies above 90%. On the other hand, some other

activities, such as lateral squat jump, are classified with a lower accuracy due to the inherent similarity with

another activity. For instance, lateral squat jump is very similar to lateral lunge, as they both require lateral and

vertical motion of the body.

Next, we show the classification accuracy as a function of the areas in Fig. 9. It can be seen that the respective

accuracies in the three areas are very similar to each other. This indicates that our video-trained WiFi sensing

system is not sensitive to the multipath effects from static objects in real WiFi environments, due to the fact that

we utilize motion-driven features that capture only the person’s speed profile, as discussed in Sec. 4.2.4.

Classification on Activity Periods: We next show the performance when a small number of repetitions of

an activity period are used to classify that activity. During the test, each person performs each activity for 45

seconds in each area. Thus, depending on the speed of the person, there may be more than one repetition in

an activity period (the average is 5.1 repetitions per activity period). For such a case, our classifier fuses the

predictions of the individual repetitions in order to improve the classification quality, as discussed in Sec. 4.2.4.

Fig. 10 shows the confusion matrix for this case. The overall average classification accuracy improves to 86%, as

compared to the accuracy of 81% on individual repetitions. In particular, jumping jack and side stepping are now

classified correctly 100% of the time, as compared to 81% and 97% in the repetition-based setting. This case also

has a similar performance across the 3 areas.

Classification Error Analysis: In this part, we perform an in-depth analysis on the classification errors. Fig. 11

shows the spectrograms for a sample activity pair that is confusing for the classifier (push-up and side stepping),

as indicated in the confusion matrices in Figs. 8 and 10. More specifically, push-ups are classified as side stepping

23% of the time according to Fig. 10. It can be seen that the frequency distribution in each link is very similar for

the two activities, due to the inherent motion similarity between the two, which is the main source of classification

error. For instance, since neither of them involve highly-dynamic motion, the corresponding frequencies captured

in all the links are low for both activities, with similar spectrogram patterns.
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Fig. 11. WiFi spectrograms of two activities: push up and side stepping, which are the very confusing for the classifier
(push-ups are classified as side stepping 23% of the time as can be seen in Fig. 10). Two repetitions of the exercise are
shown in each spectrogram. It can be seen that the frequency distribution is similar for both activities, which makes it more
challenging for the classifier to differentiate them.

4.4.3 Robustness to Metallic Objects in the Environment. Our test areas of Fig. 6 contain various metallic objects

(comparable to human heights) around the person to resemble the gym environment. In our proposed system, we

utilize non-DC parts of the spectrograms to capture the motion information, which are insensitive to the static

scatterers in the environment which appear at DC, even if they are highly reflective. In order to further test the

robustness of our pipeline to highly reflective clutter, we have created an even more metal-rich environment by

including additional large highly-reflective objects (e.g., multiple metallic drawer cabinets and highly-reflective

shielding material sheets) in one of our test areas, as shown in Fig. 12. One subject then performs different

exercises in both the original setting of this area (top row) and the new metal-heavy setting (bottom row). Fig. 12

also shows the spectrograms of the received WiFi signals in both settings, for four sample exercises. It can be

seen that the spectrograms of the received signals are almost identical, with or without the large metallic objects

in the area. This result validates our signal model of Eq. 4 and indicates that our proposed pipeline is not affected

by the static objects in the environment, even if they are highly reflective.

Overall, our results show that we have, for the first time, successfully trained an RF sensing system, without

collecting any prior RF training measurements. Moreover, in terms of RF-based gym activity classification, our
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proposed approach has not only enabled it with no prior RF training measurements, but has also enabled the first

reflection-based system, whereas all the existing methods rely on the person to cross/block the line-of-sight path

(i.e., the direct path between the Tx and Rx) while performing the exercises.

5 DISCUSSION AND FUTURE WORK
In this section, we discuss a few more aspects related to our proposed framework and the case study.

Generalization of the Video-Based Training Approach to Other Applications: In this paper, we proposed

a general approach that can train RF sensing systems without any RF training data, and by using the vast available

online videos. While we showcased the performance of this approach in the context of gym activity recognition,

showing how we can achieve a high accuracy with zero RF training data, the proposed methodology is applicable

to many other RF sensing applications, scenarios, and setups. As part of the future work, we envision that this

approach can be used to train other RF sensing systems to recognize other activities, gestures, and in general

other situations that involve motion of body parts. It can further be used for analysis purposes, for instance to

understand the optimal RF setup/amount of needed resources for a particular application, to understand the

differentiability of different activities, or to understand the limitations of sensing with a certain setup or at a

particular frequency, all without the need to collect any RF data. Overall, the proposed approach is scalable and

general, and can thus enable new work in the area of RF sensing.

Further Discussions on the Sensing Setup: In the considered sensing setup for our gym activity classification

study (Fig. 3), we assumed that the person is at the center of the coordinate system and facing the positive x
direction. In order to set the coordinate system of the sensing setup in that manner, the location and orientation

of the person are assumed to be known. This is a realistic assumption since there is a great body of work on

localization and tracking with RF signals, e.g., [19, 25, 29], that can be utilized to first estimate the location and

orientation of the person.

Furthermore, we assumed that the 3 WiFi links are placed such that ℓ1 is parallel to the x-axis, ℓ2 is parallel to
the y-axis, and ℓ3 is parallel to the z-axis (see Fig. 3). As such, in this configuration, each link directly captures the

information about one of the three-dimensional components of the velocity vectors of different body parts (as

discussed in Sec. 4.1). For any general transceiver locations that are not similar to Fig. 3, the motion information

across the three dimensions can become coupled in the measurements. Then, a simple linear system equation can
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be solved to directly extract the motion components across the three dimensions, similar to what is done in [41].

Once these are extracted, our trained pipeline based on the configuration of Fig. 3 can be used for classification.

In summary, the configuration of Fig. 3 can be used as a base since it directly measures the motion across the

three dimensions while other configurations can be translated to it.

Sensing Multiple People: In the gym activity classification study, we assumed that there is only one person

doing the exercise, with little movements from other people nearby (other people were present but not moving

much). In the case where there are other people simultaneously moving nearby (e.g., performing exercises), the

received signal will contain the motion information of the person of interest as well as those nearby. In such

scenarios, one can then use multiple antennas at each transceiver to create a small antenna array and separate the

impact of multiple people on the received signal by beamforming towards each person [16]. The reflected signals

off of different people can also be separated in other domains, e.g., Time-of-flight, Angle-of-Departure [37].

6 CONCLUSIONS
In this paper, we proposed a new and generalizable framework that allows for successfully training RF sensing

systems only with already-available video data, and without any real RF data, thus eliminating the traditional

labor-intensive phase of collecting real RF training measurements. More specifically, our proposed approach

taps into the vast number of available online videos of different human activities/motions, translates them into

instant simulated RF data, extracts relevant time-frequency features, and trains a neural network pipeline. Our

approach is general and scalable to any motion-based human activity and any given setup. In order to validate

our proposed framework, we carried out a case study of gym activity classification using WiFi transceivers. We

utilize YouTube videos of the corresponding gym activities, construct a simulated RF dataset, extract key features

via time-frequency analysis, and train a classifier, thus using no real RF training measurement. After training,

the classifier was then extensively tested with real WiFi measurements of 10 subjects performing the 10 gym

activities in 3 different test areas. Overall, our system achieved a classification accuracy of 86% when tested on a

small activity period that contains an average of 5.1 repetitions, and 81% when tested on individual repetitions

of activities. This demonstrates that the proposed approach can successfully train an RF sensing system with

already-available video data, and without any real RF measurements.
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