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An Integrated Framework for Obstacle Mapping with
See-Through Capabilities using Laser and Wireless

Channel Measurements
Alejandro Gonzalez-Ruiz, Alireza Ghaffarkhah, Yasamin Mostofi

Abstract – In this paper we consider a team of mobile robots that
are tasked with building a map of the obstacles, including occluded
ones, in a given environment. We propose an integrated framework
for mapping with see-through capabilities using laser and wireless
channel measurements, which can provide mapping capabilities beyond
existing methods in the literature. Our approach leverages the laser
measurements to map the visible parts of the environment (the parts
that can be sensed directly by the laser scanners) using occupancy
grid mapping. The parts that can not be properly mapped by laser
scanners (e.g. the occluded parts) are then identified and mapped
based on wireless channel measurements. For the latter, we extend
our recently-proposed wireless-based obstacle mapping framework to
a probabilistic approach by utilizing Bayesian Compressive Sensing
(BCS). We further consider an integrated approach based on using
Total Variation (TV) minimization. We compare the performance of
our two integrated methods, using both simulated and real data, and
show the underlying tradeoffs. Finally, we propose an adaptive path
planning strategy that utilizes the current estimate of uncertainty to
collect wireless measurements that are more informative for obstacle
mapping. Overall, our framework enables mapping occluded structures
that can not be mapped with laser scanners alone or a small number
of wireless measurements. Our experimental robotic testbed further
confirms that the proposed integrated framework can map a more
complex real occluded structure that can not be mapped with existing
strategies in the literature.

I. INTRODUCTION

Mobile robotic networks can play a key role in areas such as
emergency response, surveillance and security, and battlefield
operations. In order for a mobile robotic network to operate au-
tonomously, accurate mapping of obstacles/objects is essential.
The obstacle/object map can be a 2D (or 3D) grid map of the
environment, where we have zeros at locations where there is
no obstacle and non-zero values at obstacle locations.

In the robotics community, the problem of mapping has been
widely explored [1]–[4]. Depending on whether the positions
and orientations of the robots are known, the mapping problem
can be tackled using different approaches. In mapping with
known poses, for instance, occupancy grid mapping approaches
[1], [5] have been proposed to build a grid map of the obstacles
by sequentially updating the posterior of having an obstacle in
each cell of the grid based on the new set of sensory (sonar or
laser) measurements. In most of the current work on occupancy
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grid mapping, the cells are assumed statistically independent.
Although this assumption is reasonable for high-quality sensory
data such as laser, it results in a poor performance when the
occupancy grid approach is applied to low-quality data such as
sonar. One of the few works that considers the correlation of
the cells to deal with low-quality sonar data is [6]. In this work,
the authors propose using polygonal random fields to model the
correlation of the cells.

For mapping with unknown poses, the simultaneous localiza-
tion and mapping (SLAM) approaches are used to incrementally
build a map of the environment, while estimating the location
of the robot within the map [3], [4], [7]–[9]. The SLAM prob-
lem is among the most challenging problems in autonomous
robotics. Several techniques based on using extended Kalman
filters (EKF) [10] and Rao-Blackwell particle filters [11]–[14]
have been proposed by the researchers to solve this problem.
Both occupancy grid maps and landmark-based maps (a set
of known landmarks in the environment) can be considered in
SLAM, depending on the utilized algorithm and the type of the
environment [3].

In the current mapping approaches using sonar/laser sensors,
only areas that are directly sensed by the sensors are mapped
[1]–[4]. In several scenarios, it may be necessary to further
have see-through capabilities and map the objects that can not
be directly sensed. For instance, the robots may need to build
an understanding of the objects inside a room, before entering
it. Having see-through capabilities can also reduce the overall
mapping time and energy in any networked robotic operation. In
general, devising see-through mapping strategies, i.e., mapping
without direct sensing, can be considerably challenging.

In our previous work [15]–[19], we proposed a framework
for see-through mapping based on using very few wireless
channel measurements. In order to extract the obstacle in-
formation, without making a prohibitive number of wireless
transmissions, we utilized the recent results in the area of
compressive sensing (CS) [20], [21]. In [15], [16], we showed
how an obstacle map can be reconstructed with very few
wireless samples by exploiting the sparse representation of
the map in a transform domain such as wavelet. In [17],
[18], we proposed two sampling strategies for compressive
obstacle mapping, namely wireless coordinated measurements
and wireless random measurements. We used the fact that
the gradient of an obstacle map is sparse and reconstructed
the map by minimizing its total variation (TV). In [18] we
showed the underlying tradeoffs of different sampling strategies,
reconstruction techniques, and sparsity domains for compressive
wireless-based obstacle mapping. Wireless measurements have
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also been utilized for detection and tracking of moving objects
[22], [23].

In our past work, we showed the performance of our wireless-
based obstacle mapping in reconstructing simple occluded struc-
tures [16]–[19]. In general, however, obstacle mapping of more
complicated structures, solely based on wireless measurements,
is extremely challenging due to all the propagation phenomena.
Obstacle mapping based on laser scanner data, on the other
hand, can typically detect the visible objects with a good
accuracy but has no see-through capability.

The main goal of this paper is then to develop an integrated
framework that keeps the benefits of both laser-based (or sonar-
based) and wireless-based mapping approaches for the recon-
struction of more complex occluded structures. Our proposed
approach integrates occupancy grid mapping with compressive
sensing to fuse the laser and wireless channel measurements.
In order to do so, we utilize some of the recent results in
the area of probabilistic compressive sensing, i.e. Bayesian
Compressive Sensing (BCS) [24], [25]. The goal of Bayesian
Compressive Sensing (BCS) is to reconstruct the signal by
using a prior probability distribution that preserves the sparsity
[26]. A valuable property of the BCS approach is that it also
provides a posterior belief of the signal of interest (an estimated
variance). Therefore, it is possible to calculate a measure of
uncertainty for the estimation of each cell, which is not possible
using traditional CS methods. This property of BCS makes
it a potential candidate for probabilistic obstacle mapping, as
it is more informative in general or can specifically be used
for online adaptive data collection. However, the applicability
of BCS approach for see-through mapping of real obstacles,
based on wireless measurements, has not been studied before.
Therefore, we first develop an integrated grid mapping and
BCS-based approach for mapping of occluded structures.

We further show how the estimated variance of the BCS ap-
proach can be utilized to devise adaptive online data collection
strategies that guide the robots to make wireless measurements
at positions that minimize the uncertainty of the estimated map.
For the sake of completion, we also show how to integrate
occupancy grid mapping with the existing TV-based wireless
mapping approach of [18]. Along this line, we compare the
performance of our BCS-based and TV-based integrated ap-
proaches and shed light on the underlying tradeoffs. We shall
see that the BCS-based mapping approach relies on an initial
estimation of the underlying model parameters, which requires
some form of a priori measurements and can be prone to
error propagation. On the other hand, having an assessment
of uncertainty can be useful for several applications. Thus,
it is worth studying both BCS-based and TV-based integrated
approaches since a given scenario may favor one over the other.

We next briefly summarize the main contributions of this
paper:

1) We propose an integrated occupancy grid and wireless-
based CS approach for see-through obstacle mapping. We
show that our integrated framework can map occluded
structures that can not be mapped solely based on either
approaches. More specifically, we show how both BCS
and TV minimization can be integrated with occupancy
grid mapping and shed light on the underlying tradeoffs
using both simulated and real data that is collected with

our robotic platforms. Our results indicate that our inte-
grated TV-based approach works better when coordinated
wireless measurements can be gathered while BCS-based
approach has an advantage with random (unstructured)
measurements. Unstructured measurements may be the
only option in several scenarios due to environmental
constraints.

2) We devise an adaptive path planning and data collection
framework that uses the current estimate of uncertainty
to improve the see-through performance of our integrated
framework.

3) We implement the proposed approach on our robotic
platforms. The main experimental result of the paper (Fig.
13), for instance, shows how our proposed approach can
map structures that can not be mapped with any of the
existing approaches in the literature.

The rest of the paper is organized as follows. In Section II,
we introduce our system model. In Section III, we provide a
brief summary of the occupancy grid mapping. The occupancy
grid mapping is then integrated with BCS in Section IV and
with TV minimization in Section V. We discuss the underlying
tradeoffs of different sampling strategies using BCS and TV
minimization in Section VI. Our adaptive path planning and
data collection strategy is then introduced in Section VII. We
present our experimental results in Section VIII and conclude
in Section IX.

II. SYSTEM MODEL

Consider the case that a workspace W ⊂ R
2 needs to be

mapped by a team of m mobile robots.1 We discretize W into
n small non-overlapping cells. The map of the workspace then
refers to a binary vector x = [x1, · · · , xn]T, where xk = 1 if
there is an obstacle in the k th cell in the workspace, and xk = 0
otherwise. In this paper, we consider building a 2D map of the
obstacles. This means that for real 3D structures, we reconstruct
a horizontal cut of them.

Each mobile robot is equipped with a laser scanner, a wireless
communication device (e.g. a IEEE 802.11 WLAN card) and
a directional antenna. The robots collect two sets of measure-
ments: laser measurements and wireless channel measurements,
i.e. the received signal strength indicator (RSSI) between differ-
ent pairs of robots. For the purpose of making pair-wise channel
measurements, for each pair of TX-RX robots, the receiving
robot measures the received signal strength (RSSI value) from
the transmission of the transmitting robot. A schematic of the
mapping scenario considered in this paper is shown in Fig. 1.

Note that the trajectories of the robots when taking the laser
measurements may not be the same as their trajectories when
taking the wireless channel measurements. In other words, the
laser and wireless channel measurements could be available
from two different sets of trajectories for the robots.

1Although for our experiments we use only two mobile robots, the proposed
mapping framework of this paper is applicable to more than two robots. We,
therefore, introduce our framework for a team of m robots that cooperate to map
the workspace. However, we assume that measurement collection is coordinated
(or is done serially) such that different transmissions are not interfering with
each other.
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Fig. 1. Schematic of the proposed integrated mapping scenario using
laser and wireless channel measurements.

A. Laser Measurement Model

Let zi,t denote the laser measurement of the i th mobile robot
at time step t.2 Furthermore, let qi,t = (ξi,t, θi,t), for ξi,t ∈
W and θi,t ∈ (−π, π], represent the position and orientation
of the ith mobile robot at time step t when taking the laser
measurement. We show by zt and qt the stacked vectors of zi,t
and qi,t of all the robots at time t, respectively. The stacked
vectors of zt and qt from time step 1 to time step t are also
shown by z1:t and q1:t, respectively.

By the laser measurement model, we mean the probabilistic
model that relates zi,t and qi,t to the map x at any time t. In
the robotics literature, this model is generally found empirically
and is given in two different ways. The forward measurement
model for laser scanners gives p(zi,t|x, qi,t), i.e., the probability
density function (pdf) of zi,t conditioned on x and qi,t [1].
The reverse measurement model, on the other hand, gives
p(xk|zi,t, qi,t), i.e., the probability of the presence or absence
of an obstacle in the k th cell conditioned on zi,t and qi,t
[1]. The probability p(x|zi,t, qi,t) is then calculated assuming
independent xk: p(x|zi,t, qi,t) =

∏n
k=1 p(xk|zi,t, qi,t).

In Section III, we summarize how the forward or reverse
measurement models can be used to calculate the map posterior
probability, i.e., the posterior probability of having an obstacle
in each cell, at any time t. The map posterior can then be used
to find the cells that have not been scanned efficiently by the
onboard laser scanners of the robots up to time t. After using
all the collected laser measurements of the robots, xk for such
cells are estimated based on the wireless channel measurements
in our proposed integrated framework. In this framework, we
integrate occupancy grid mapping with Bayesian compressive
sensing (BCS) and TV minimization to map the parts of the map
that could not be seen by the laser scanners of the robots. These
two methods are explained in Sections IV and V, respectively.

B. Wireless Channel Measurement Model

In addition to the laser measurements, the robots also take
a set of wireless channel measurements. These measurements
can be collected while the robots take the laser measurements
or after taking the laser measurements along a different set of
trajectories. Let yi,j,t denote the RSSI measurement between the
ith robot as the transmitter (TX) and the j th one as the receiver

2For a typical laser scanner (e.g. SICK LMS laser range finders), zi,t is a
vector of a fixed number of scalar range measurements.

(RX) at time t.3 In the wireless communication literature, it
is well established that yi,j,t can be characterized by a non-
stationary stochastic process with three dynamics: path loss,
shadowing and multipath fading. Path loss refers to the distance-
dependent power fall-off. Shadowing or shadow fading is due
to blockage of the transmitted signal by the obstacles and,
therefore, contains implicit information of the obstacles along
the communication path. Multipath fading is caused by multiple
replicas of the transmitted signal that reach the antenna of the
RX robot with different delays and phases [27]. We then have
the following for yi,j,t, in the dB domain [27], [28]:

yi,j,t =Ki,j − 10 ηi,j log10
(‖ξi,t − ξj,t‖

)

︸ ︷︷ ︸
path loss

−φT(ξi,t, ξj,t)α
︸ ︷︷ ︸

shadowing

+ ωi,j,t
︸︷︷︸

multipath fading

, (1)

where Ki,j and ηi,j are the path loss coefficients for the channel
between robots i and j. For the shadowing term, the vector α
contains the exponential decay coefficients of the wireless signal
at each cell. For each cell k, we have αk = 0 if xk = 0, and
αk > 0 otherwise. The k th element of vector φ(ξi,t, ξj,t) is
the distance that the line segment between ξi,t and ξj,t travels
across the kth cell multiplied by log10 e (see [18] for details). As
can be seen, shadowing characterizes wireless signal attenuation
as it goes through the obstacles along the transmission path
and therefore contains implicit information about the objects
along that line. Finally, the term ωi,j,t is a zero-mean random
variable which captures the effects of multipath fading and other
modeling errors.

In practice, the path loss parameters can be estimated through
a few line-of-sight (LOS) transmissions in the same environ-
ment, as we have shown in [28], [29]. By subtracting the
path loss terms from yi,j,t in (1), stacking up all the centered
(unbiased) wireless measurements with an arbitrary order, and
flipping the sign, we get the following:

ỹ = Φα+ ω, (2)

where ỹ is the stacked vector of the centered RSSI values, Φ
is a matrix with its rows given by φT(ξi,t, ξj,t), in the same
order as the elements of ỹ, and ω is the vector of zero-mean
random variables ωi,j,t. In order to use the BCS method for
estimating the decay coefficients in Section IV, we furthermore
assume that the elements of ω are uncorrelated Gaussian random
variables with the variance of σ2

0 . This implies that the pdf
of ỹ conditioned on α, i.e., p(ỹ|α), can be characterized by a
multi-variate zero-mean Gaussian pdf with covariance matrix
σ2
0Inw , for Inw denoting the nw-dimensional identity matrix

and nw representing the number of total wireless channel
measurements. Note that distributions such as Nakagami or
Rayleigh may better characterize ω in non-dB domain [27].
However, [30] shows that a Gaussian distribution (in the dB
domain) can also provide a good enough fit. We next assert this
with our channel measurements in Fig. 2. In this experiment,
we take the RSSI values of the wireless channel measurements
between two robots (in the setup of Fig. 1) and subtract the

3Note that the wireless channel measurements may not be available from
every pair (i, j). In other words, only a subset of robots may be used for
channel measurements.
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ideal measurements (in dB) to obtain the noise component as
follows: ω = ỹ−Φα. Fig. 2 then shows the distribution of this
noise, which confirms that a Gaussian distribution can provide
a good enough fit. The mean and standard deviation of this best
fit are μ̂ = 0.22 and σ̂0 = 10.25, respectively.
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Fig. 2. The distribution of the noise (ω) of Eq. 2 from our experimental
data and the corresponding best Gaussian fit (μ̂ = 0.22 and σ̂0 =
10.25).

Note that vector α is related to the binary vector x. It is,
however, a real vector as opposed to a binary one, as it shows the
decay coefficients of the cells that contain obstacles. In Sections
IV and V, we show how to estimate α, using BCS and TV
minimization methods. Since the final goal is to estimate the
binary vector x, the estimated α is then passed through a hard-
limiter, as we further elaborate in Sections IV and V.

III. A BRIEF OVERVIEW OF OCCUPANCY GRID MAPPING

USING LASER MEASUREMENTS

In the occupancy grid mapping, the goal is to calculate the
map posterior probability, i.e., the probability of having an
obstacle (or not) in any cell, conditioned on the laser and
pose/odometry measurements. Depending on whether q 1:t is
available, the map posterior is found using two approaches:
mapping with known poses and mapping with unknown poses
using SLAM. Next we briefly explain both approaches. More
detailed explanations can be found in [1], [3], [4].

Assume that xk, for k = 1, · · · , n, are probabilistically
independent. Also, assume no prior knowledge on the existence
of an obstacle in each cell, i.e., p(xk = 1) = p(xk = 0) = 1

2 .
In mapping with known poses, the map posterior of interest is
p(xk|z1:t, q1:t), which can be written as follows:

p(xk|z1:t, q1:t) = p(zt|xk, qt)p(xk|z1:t−1, q1:t−1)

p(zt|z1:t−1, q1:t)
,

p(zt|xk, qt) =
m∏

i=1

p(xk|zi,t, qi,t)p(zi,t|qi,t)
p(xk)

, (3)

which results in

p(xk|z1:t, q1:t) =
∏m

i=1 p(xk|zi,t, qi,t)
∏m

i=1 p(zi,t|qi,t)
p(zt|z1:t−1, q1:t)

∏m
i=1 p(xk)

× p(xk|z1:t−1, q1:t−1). (4)

In mapping with unknown poses the positions and orientation of
the mobile robots are not given and the map posterior is found
using the SLAM algorithm. Given only the laser measurements
and the odometry inputs of the robots, the map posterior of
interest is p(x|z1:t, u1:t−1) in this case, where u1:t−1 is the
stacked vector of the odometry inputs of the robots up to time
t− 1. We next briefly summarize how p(x|z1:t, u1:t−1) can be

estimated using the well-known Rao-Blackwell particle filter
(RBPF) for SLAM [3]. The RBPF for SLAM works based on
the following factorization:

p(x|z1:t, u1:t−1)

=

∫

p(x|z1:t, q1:t)
︸ ︷︷ ︸

mapping with known poses

p(q1:t|z1:t, u1:t−1)
︸ ︷︷ ︸

localization

dq1:t. (5)

This integral is then approximated by the weighted sum of
p(x|z1:t, q1:t) for a number of potential trajectories of the robots.
Based on the Markovian property for the dynamical model of
the robots, the pdf p(q1:t|z1:t, u1:t−1) can be written as follows:

p(q1:t|z1:t, u1:t−1)

= p(qt|q1:t−1, z1:t, ut−1)p(q1:t−1|z1:t−1, u1:t−2)

=
p(zt|q1:t, z1:t−1)p(qt|qt−1, ut−1)

p(zt|z1:t−1, u1:t−1)
p(q1:t−1|z1:t−1, u1:t−2).

(6)

In RBPF for SLAM, the potential trajectories of the robots
are represented by a number of particles. For each particle,
an individual map posterior is built sequentially based on the
new observations and the pose posterior estimates from the
localization part. Assume L particles are used. Let q [�]t denote
the potential position and orientation of the robots at time t
generated by the 
th particle. The general form of the RBPF for
SLAM is described by the following four steps [14]:

1) A proposal distribution π(qt|q[�]1:t−1, z1:t, ut−1) is cal-
culated for each particle 
. Then q

[�]
t is found by

sampling from this proposal distribution: q
[�]
t ∼

π(qt|q[�]1:t−1, z1:t, ut−1).
2) The weights of the particles are calculated as follows:

w
[�]
t =

p(q
[�]
1:t|z1:t,u1:t−1)

π(q
[�]
1:t|z1:t,u1:t−1)

, which results in the following

recursion for updating the weights based on (6):

w
[�]
t ∝ p(zt|q[�]1:t, z1:t−1)p(q

[�]
t |q[�]t−1, ut−1)

π(qt|q[�]1:t−1, z1:t, ut−1)
w

[�]
t−1, (7)

for p(zt|q[�]1:t, z1:t−1) given as follows: p(zt|q[�]1:t, z1:t−1) =∑
x p(zt|x, q[�]t )p(x|z1:t−1, q

[�]
1:t−1). The updated weights

are normalized such that
∑L

�=1 w
[�]
t = 1.

3) The effective number of particles is calculated as L eff,t =[∑L
�=1

(
w

[�]
t

)2
]−1

. If Leff,t < Lth, for a given threshold
Lth, then resampling is performed. This is done by se-
lecting L particles, with replacement, from the set of all
the particles up to time t, with probability of selection
proportional to w

[�]
t . The selected particles are given

uniform weights of 1
L .

4) For each particle, p(x|z1:t, q[�]1:t) is found using map-
ping with known pose methods of the previous sec-
tion. The final map posterior that is reported is then
∑L

i=1 w
[�]
t p(x|z1:t, q[�]1:t).

Several proposal distributions have been utilized in
the literature. For instance, the landmark-based FastSLAM
1.0 algorithm uses the motion model as the proposal:
π(qt|q[�]1:t−1, z1:t, ut−1) = p(qt|q[�]t−1, ut−1) [11]. The more up-

dated FastSLAM 2.0 algorithm uses π(qt|q[�]1:t−1, z1:t, ut−1) =

p(qt|q[�]1:t−1, z1:t, ut−1) [12]. An improved RBPF algorithm for
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grids called gmapping uses a Gaussian approximation of the
observation likelihood as the proposal distribution [14].

Let us define the quantity ψk,t as follows: ψk,t �
log

(
p(xk=1|z1:t,u1:t−1)
p(xk=0|z1:t,u1:t−1)

)
. This way, ψk,t represents a measure

of certainty for any cell k at time t, independent of how the
map posterior is calculated.

IV. INTEGRATION OF OCCUPANCY GRID MAPPING AND

BAYESIAN COMPRESSIVE SENSING (BCS) FOR MAPPING

WITH SEE-THROUGH CAPABILITIES

In this section, we show the implication of BCS [24], [25],
[31] for the mapping of occluded structures and how it can be
used to map the portion of the workspace that cannot be seen
by the onboard laser scanners of the robots. BCS uses the fact
that the vector α is sparse in the spatial domain. By applying
Bayesian filtering methods and using a prior distribution for
α that preserves its sparsity, BCS can effectively estimate α
in places that cannot be seen by the laser scanners. Next we
explain this method in more details.

Consider the partial map found using the laser measurements
up to time t (in the middle or at the end of laser mapping
operation). Define the following sets of indices: If �

{
1 ≤

k ≤ n
∣
∣ ψk,t ≤ −ψth

}
, Io �

{
1 ≤ k ≤ n

∣
∣ ψk,t ≥ ψth

}
and

Iu �
{
1 ≤ k ≤ n

∣
∣ |ψk,t| < ψth

}
, where ψth > 0 denotes

a threshold. The sets If and Io correspond to the indices of
the cells that are estimated to be free-of-obstacle or occupied-
by-obstacle, respectively. In other words, we have x̂k = 0 for
k ∈ If , and x̂k = 1 for k ∈ Io, where x̂k denotes the estimate
of xk. The cells whose indices are in Iu are the unknown cells
which could not be seen by the laser scanners. Note that laser
scanners can typically provide a good mapping quality and,
therefore, every cell k that has been seen by the laser scanner
of one of the robots belongs to either If or Io with a high
probability.

Let us rearrange the elements of x as follows: x =[
xTf xTo xTu

]T
, where xf , xo and xu denote the stacked

vectors of the elements of x whose indices are in If , Io and Iu,
respectively. Also let x̂f , x̂o and x̂u denote the vectors with the
estimates of the elements of x corresponding to If , Io and Iu,
respectively. Since xf and xo are already estimated well using
laser scanners, i.e., all the elements of x̂f are set to zero and
all the elements of x̂o set to one, the goal is then to estimate
xu using wireless channel measurements. Our strategy consists
of two steps:

1) We first estimate the corresponding decay coefficients of
the cells in Io and Iu jointly, based on wireless channel
measurements and assuming that decay coefficients of the
cells in If are zero.

2) Using the estimated decay coefficients of the cells in Iu,
we set x̂k = 1, for k ∈ Iu, if the estimated decay
coefficient of the k th cell is larger than a threshold αth,
and x̂k = 0 otherwise.

Note that based on only laser measurements, the decay
coefficients of the cells in Io are not known beforehand. We,
therefore, need to estimate their decay coefficients together
with the decay coefficients of the cells in Iu in the first step.
However, since these cells are already estimated to be occupied,
we do not use their decay coefficients to detect their occupancy

in the second step, i.e. we impose the decision generated by the
laser scanner for these cells.

Similar to vector x, let us also rearrange the elements of the
decay coefficient vector α as α =

[
αT
f αT

o αT
u

]T
. We next

show how to estimate αo,u =
[
αT
o αT

u

]T
using wireless chan-

nel measurements and Bayesian Compressive Sensing (BCS).
Consider the stacked vector of the centered RSSI values ỹ in
Section II-B. Using the rearranged vector α, we get

ỹ =
[
Φf Φo,u

]
[
αf

αo,u

]

+ ω ≈ Φo,uαo,u + ω, (8)

where Φf and Φo,u are the parts of Φ corresponding to the
elements of αf and αo,u. Note that we set αf ≈ 0 in (8). BCS
works based on the assumption that αo,u is sparse, which is the
case for our obstacle mapping. The vector αo,u is then estimated
using a maximum a posteriori (MAP) estimator and by using
a prior distribution that preserves the sparsity of αo,u. Several
prior distributions have been proposed in the literature [24],
[25], [31]. In this paper, we assume a zero-mean Gaussian prior
for αo,u. Such a prior is very simple to use and has been shown
to achieve a sparse MAP estimate [25]. Conditioned on the
channel measurements ỹ and assuming uncorrelated Gaussian
ω in (8), we have

p(αo,u|ỹ) = p(ỹ|αo,u)p(αo,u)∫
p(ỹ|αo,u)p(αo,u)dαo,u

, (9)

where p(ỹ|αo,u) = 1

(2π)
nw
2 σnw

0

exp
(
− ‖ỹ−Φo,uαo,u‖2

2σ2
0

)
,

p(αo,u) = 1

(2π)
no,u

2 |Ro,u|
1
2

exp
(− 1

2α
T
o,uR

−1
o,uαo,u

)
, no,u is the

number of elements of αo,u and Ro,u is its covariance matrix.
It can be easily shown that the posterior distribution p(αo,u|ỹ)
is also Gaussian in this case, i.e.,

p(αo,u|ỹ) = 1

(2π)
no,u

2 |Σo,u| 12
exp

(

−1

2
(αo,u − α̂o,u)

TΣ−1
o,u(αo,u − α̂o,u)

)

,

(10)

where

α̂o,u =
1

σ2
0

Σo,uΦ
T
o,uỹ, Σo,u =

(
1

σ2
0

ΦT
o,uΦo,u +R−1

o,u

)−1

.

(11)

The vector α̂o,u is the MAP estimate of αo,u, which can be
similarly partitioned as α̂o,u =

[
α̂T
o α̂T

u

]T
. Here, α̂o and α̂u

are the estimated decay coefficients of the cells in Io and Iu,
respectively. Then, for every k ∈ Iu we have x̂k = 1 if α̂k >
αth, and x̂k = 0 otherwise.

Note that estimates of σ0 and Ro,u are needed to find the
MAP estimate of αo,u in (11). Next, we show how to estimate
σ0 and Ro,u based on our channel measurements. The estima-
tion of σ0 is based on Expectation Maximization as is utilized
in the BCS literature. As for Ro,u, an uncorrelated vector is
assumed in the BCS literature. In our case of wireless-based
obstacle mapping, if the spatial correlation is not considered,
the sparsest map may not be the right one. In other words, it is
important to consider the spatial correlation of the map when
reconstructing based on sparse wireless measurements. We thus
next show how we can have an estimate of the spatial correlation
of the map.
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A. Estimation of the Hyperparameters

Without loss of generality, we assume that indices of the
elements of αo,u are 1, · · · , no,u. To account for the correlation
of the cells, we assume the following form for Ro,u: Ro,u =(
σo,uσ

T
o,u

)⊗ So,u, where σo,u = [σ1, · · · , σno,u ]
T is the vector

of the standard deviations of the elements of αo,u and So,u

is their correlation matrix. In general, finding a good model
for the spatial correlation of the map is challenging due to its
sparse structure. Based on our experience with several maps, an
exponential correlation matrix results in a good reconstruction
quality. Thus, we consider the following function in this paper:
[So,u]k1,k2 = exp

(
− ‖ξcm,k1

−ξcm,k2
‖

ζ

)
, for 1 ≤ k1, k2 ≤ no,u.

Here, ξcm,k denotes the position of the center of the mass of the
kth cell. The correlation parameter ζ determines how correlated
the elements of αo,u are.

Note that due to the high quality of laser measurements, the
uncorrelated assumption in laser mapping approach of Section
III does not degrade the map reconstruction performance. How-
ever, considering the correlation of the cells is important when
mapping the see-through parts of the workspace using the BCS
method, as we indicated before.

Based on the proposed model, the hyperparameters to es-
timate are σ0, · · · , σno,u and ζ. Our proposed approach for
estimating these hyperparameters is summarized into two steps:

1) Estimate the ζ a priori using a number of sample maps.
2) Estimate σ0, · · · , σno,u using expectation maximization

(EM) and based on the estimated ζ from the previous
step.

Next, we explain these two steps in more details.
1) Estimation of the Correlation Parameter ζ: In general,

coming up with an estimate of the spatial correlation of an
obstacle map is a challenging task. In this paper, we use a set
of available obstacle maps to estimate ζ a priori. This estimate
is then utilized in our obstacle mapping with real measurements.
Consider a set X which contains a number of binary maps. For
every x ∈ X , define the set B(x, d) �

{
(k1, k2)

∣
∣
∣
∣
∣‖ξcm,k1 −

ξcm,k2‖ − d
∣
∣ ≤ ε

}
, for a small ε. The estimation of correlation

at distance d is then given as follows:

γ(d) =

∑
x∈X

∑
(k1,k2)∈B(x,d) ¬(xk1 ⊕ xk2 )
∑

x∈X |B(x, d)| , (12)

where ⊕ and ¬ denote bitwise exclusive-or and negation. The
estimate ζ̂ of ζ is then calculated by finding the best exponential
fit to γ(d) for a given vector of distances D = [d1, · · · , dM ]T.
It can be easily confirmed that ζ̂ = − DTΓ

DTD , where Γ =
[
log(γ(d1)), · · · , log(γ(dM ))

]T
.

2) Estimation of σ0, · · · , σno,u using Expectation Maximiza-
tion (EM): The EM approach provides an iterative method
for estimating σ0, · · · , σno,u and has been used in the BCS
literature. Let us define ρ � (σ0, · · · , σno,u). Also, let ρ̂τ =
(σ̂τ

0 , · · · , σ̂τ
no,u

) represent the estimates of ρ at iteration τ . We
then have,

E step: Θ(ρ|ρ̂τ ) = Eαo,u|ỹ,ρ̂τ

{
log

[
p(ỹ|αo,u)p(αo,u)

]}
,

M step: ρ̂τ+1 = argmaxρΘ(ρ|ρ̂τ ). (13)

Let α̂τ
o,u and Σ̂τ

o,u denote α̂o,u and Σo,u in (11) when
σ0, · · · , σno,u are replaced with σ̂τ

0 , · · · , σ̂τ
no,u

. After some

straightforward calculations, we then have the following: 4

Θ(ρ|ρ̂τ ) =− nw log(σ0)− 1

2
log

(|Ro,u|
)

− 1

2σ2
0

‖ỹ − Φo,uα̂
τ
o,u‖2 −

1

2
(α̂τ

o,u)
TR−1

o,uα̂
τ
o,u

− 1

2σ2
0

tr
(
ΦT

o,uΦo,uΣ̂
τ
o,u

)− 1

2
tr
(
R−1

o,uΣ̂
τ
o,u

)
+ const.

(14)

Maximizing Θ(ρ|ρ̂τ ) as a function of ρ is not straightforward
for ζ > 0. At this step, we sub-optimally assume that ζ is
small.5 We can show that for ζ → 0, Ro,u will be diagonal
which results in the following update rules for ρ [25]:

στ+1
0 =

[
1

nw

(
tr
(
ΦT

o,uΦo,uΣ̂
τ
o,u

)
+ ‖ỹ − Φo,uα̂

τ
o,u‖2

)]1/2
,

στ+1
k =

[[
Σ̂τ

o,u

]
k,k

+
[
α̂τ
o,u

]2
k

]1/2
, k = 1, · · · , no,u.

(15)

Note that although (15) is the true EM update rule, some
authors suggested suboptimal update rules that have a faster
convergence rate in the general context of BCS [25]. Algorithm
1 shows the steps involved in estimating the map using our
integrated occupancy grid and BCS method.

Algorithm 1: Integrated Occupancy Grid Mapping and BCS for
See-Through Mapping

Input: z1:t,u1:t−1, ỹ, Φ, αth, ψth, τmax, σinit,comm, σinit,cell,
tol, X , ε

Output: Estimate of the binary map x̂ =
[
x̂T
f x̂T

o x̂T
u

]T

Using z1:t and u1:t−1, calculate ψk,t, for all k, using the
occupancy grid approach of Section III;
Calculate the set of indices If , Io and Iu and rearrange the
elements of x and α accordingly as x =

[
xT
f xT

o xT
u

]T
and

α =
[
αT
f αT

o αT
u

]T
;

Set elements of x̂f to zero and elements of x̂o to one;
Using a set of maps X , calculate ζ̂ using the approach of Section
IV-A1;
Set σ̂0

0 = σinit,comm and σ̂0
k = σinit,cell, for k ∈ 1, · · · , no,u,

assuming that the indices of the elements of αo,u =
[
αT
o αT

u

]T

are 1, · · · , no,u;
for τ ← 0 to τmax do

Calculate α̂τ
o,u and Σ̂τ by substituting σ̂τ

0 , · · · , σ̂τ
no,u

and ζ̂
in (11);
Calculate σ̂τ+1

0 , · · · , σ̂τ+1
no,u

using (15) or the suboptimal
update rule of [25] with a better convergence rate;

if max1≤k≤no,u

∣
∣
∣
∣log

σ̂τ+1
k
σ̂τ
k

∣
∣
∣
∣ < tol then

break;
end

end
From the most updated α̂τ

o,u, use α̂τ
u and set

x̂u = U(α̂τ
u > αth), where U(.) is the vector indicator function;

4Here we have used the fact that for a Gaussian α, with mean α̂ and
covariance Σ, we have E{Rα} = Rα̂ and E{αTRα} = α̂TRα̂ + tr(RΣ),
for any positive definite R.

5Although we assume an uncorrelated map for the sake of estimating
σ0, · · · , σno,u , the estimate of ζ of Eq. 12 is used when calculating α̂τo,u
and Σ̂τ

o,u.
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V. INTEGRATION OF OCCUPANCY GRID MAPPING AND

TOTAL VARIATION (TV) MINIMIZATION FOR MAPPING

WITH SEE-THROUGH CAPABILITIES

So far we have discussed an integrated BCS and occupancy
grid mapping approach for wireless-based obstacle mapping
of hidden objects. In our past work, we have proposed a
Total Variation framework for wireless-based mapping of hidden
objects [17]–[19]. In this section, we briefly summarize our
past work along this line and then discuss how to integrate it
with occupancy grid mapping for the sake of completion. In the
subsequent sections, we then compare the performance of the
integrated occupancy grid/BCS-based and occupancy grid/TV-
based approaches and discuss the underlying tradeoffs. As we
discussed in Section I, the TV-based approach does not depend
on estimating any underlying model parameters or assuming a
specific model, which is an advantage over the BCS approach.
However, the estimated variances of the BCS approach can
provide a base for guiding the robots to the places which are
better for collecting wireless measurements, as we propose later
in Section VII. Thus, in this paper we consider integration
based on both approaches and bring an understanding to the
underlying tradeoffs.

TV minimization method works based on the fact that the
gradient of typical obstacle maps is sparse. Several methods
have been proposed in the literature for the reconstruction of
general 2D signals based on this property [20], [32], [33]. TV
minimization is one of such methods which is shown to be
effective in restoring signals that have staircase characteristics
[34]. Next, we explain this method in more detail.

Let f denote the vectorized version of an
M × N matrix F . Define the following operators:

Dh,i,j(f) =

{
Fi+1,j − Fi,j , i < M
Fi,j − F1,j , i =M

and Dv,i,j(f) =
{
Fi,j+1 − Fi,j , j < N
Fi,j − Fi,1, j = N

. The TV function is defined as

follows:
TV(f) =

∑

i,j

‖Di,j(f)‖, (16)

where Di,j(f) = [Dh,i,j(f) Dv,i,j(f)], and the ‖.‖ oper-
ator can either represent the 
1 norm, corresponding to the
anisotropic discretization of TV, or the 
2 norm, corresponding
to the isotropic discretization of TV. Unless we specifically
indicate otherwise, the results of this paper are based on
using anisotropic TV. TV minimization method then solves the
following problem or a variation of it:

min
f

TV(f), subject to b = Af, (17)

where b is the measurement vector, which is linearly related to
f through a matrix A. The optimization problem of (17) can
be proved to be convex. Several algorithms have been proposed
to solve this problem efficiently [32], [33], [35]. In this paper
we use the recently-proposed TVAL3 (TV minimization by
augmented Lagrangian and alternating direction) algorithm [33].
TVAL3 iteratively minimizes the augmented Lagrangian of (17),
which includes quadratic penalty terms that try to enforce the
equality constraints [33]. We next explain how TVAL3 can be
used for mapping the portion of the workspace that cannot be
seen by the onboard laser scanners of the robots.

Without loss of generality, assume that the obstacle map of

interest is a rectangular map and α is the vectorized version of
the 2D signal that represents the wireless decay coefficients of
the cells on the grid. Using (17), we then propose the following
integrated approach for estimating the parts of the map that have
not been seen by the laser scanners of the robots:

1) The sets If , Io and Iu are found using the laser mea-
surements and following the same approach of Section
IV. We then set x̂k = 0 for k ∈ If , and x̂k = 1 for
k ∈ Io.

2) The laser measurement matrix Φlas is formed. Each row
of Φlas has n elements and corresponds to a cell k ∈ If ,
with its kth element equal to one and the rest of its n− 1
elements equal to zero.

3) The estimate α̂ of α is then found by solving the following
TV minimization problem using the TVAL3 algorithm:

min
α

TV(α), subject to

[
ỹ
0

]

=

[
Φ
Φlas

]

α. (18)

4) For each k ∈ Iu, we then set x̂k = 1 if α̂k > αth, and
x̂k = 0 otherwise.

Algorithm 2: Integrated Occupancy Grid Mapping and TV
minimization for See-Through Mapping

Input: z1:t, u1:t−1, ỹ, Φ, αth and ψth

Output: Estimate of the binary map x̂ =
[
x̂T
f x̂T

o x̂T
u

]T

Using z1:t and u1:t−1, calculate ψk,t, for all k, using the
occupancy grid approach of Section III;
Calculate the set of indices If , Io and Iu and rearrange the
elements of x and α accordingly as x =

[
xT
f xT

o xT
u

]T
and

α =
[
αT
f αT

o αT
u

]T
;

Set elements of x̂f to zero and x̂o to one;
Form the laser measurement matrix Φlas;
Solve the TV minimization problem of (18) using a set of initial
values for the Lagrange multipliers and α (the initial guess for α
is usually the least square (LS) solution

α0 =
[
ΦT ΦT

las

]
[

ΦΦT ΦlasΦ
T

ΦlasΦ
T ΦlasΦ

T
las

]−1 [
ỹ
0

]
) ;

From the estimated α̂ pick α̂u and set x̂u = U(α̂u > αth),
where U(.) is the vector indicator function;

VI. COORDINATED VS. RANDOM WIRELESS CHANNEL

MEASUREMENTS

The quality of our wireless-based sampling depends heavily
on the positions from which the map is sampled. In our previous
work we proposed two motion sampling strategies for wireless-
based cooperative mapping based on TV minimization, namely
coordinated and random approaches. We next briefly summarize
these two approaches, which we will then extensively use for
our integrated approaches. For more details on these motion
sampling patterns in the context of TV-based wireless obstacle
mapping, the readers are referred to [17], [19].

Consider the case where a pair of robots move outside the
structure of interest in a coordinated fashion along the arrow
at angle 0◦ as shown in Fig. 3 (left). If wireless measurements
are taken at several places along that line such that at each
position the line segment between the TX and RX robots
representing the wireless ray (see dashed line in the figure)
remains perpendicular to the 0◦ line, then we say that the
robots are making coordinated measurements at angle 0 ◦. The
trajectories indicated by the arrows in Fig. 3 (left), are examples



8

of routes where coordinated measurements at angles 0◦ and 90◦

can be taken. Similar coordinated measurements can be made
across any other angle.

Having the robots move in a coordinated way, however, may
not be always possible due to environmental constraints. For
instance, the path where the robots need to move for making
coordinated measurements may be partially blocked. In such
cases, the robots may have to make measurements at any
location available to them without trying to maintain a specific
pattern. As such, we also consider a random measurement case,
where the robots make wireless measurements at randomly-
chosen TX-RX positions. Fig. 3 (right) shows an example of
such a case.

0°0°

90°90°

0°0°

90°90°

TX

RX

TX 1

TX 2

RX 1 RX 2

Fig. 3. An illustration of wireless-based obstacle mapping with (left)
coordinated wireless measurements and (right) random wireless mea-
surements.

In our previous work [19], we established that in general TV
minimization with coordinated measurements provides a better
reconstruction quality and see-through capability, as compared
to TV minimization with random measurements, as long as
jump angles are sampled [19]. It now becomes pertinent to
understand how BCS compares to TV minimization in the
context of both random and coordinated measurements. We start
by comparing the performance of the BCS-based and TV-based
approaches in a simulation environment where we can test more
scenarios. We then present our experimental results in Section
VIII.

Suppose that a pair of robots are trying to map the structure in
Fig. 13 (a). For the coordinated case, the robots move in parallel
along routes outside of the structure. Figure 3 (left) shows the
routes where the robots move to make measurements along 0 ◦

and 90◦ routes. As the number of measurements increases, the
robots make measurements along more angles, which are chosen
so as to make the angle distribution as uniform as possible,
while keeping the previously-chosen angles. For the random
case, the robots make measurements at random positions along
the dashed lines of Fig. 3 (right) without following a specific
pattern.

In order to motivate our discussion, we start by comparing
the performance of these approaches for a noiseless case, i.e.
when ωi,j,t of Eq. 1 is equal to zero. In this example, we assume
that the positions of the robots are known at any time and that
the reconstruction is based only on wireless measurements, i.e.
no probabilistic grid mapping is used. We show the results as
a function of the wireless sampling rate, where each sampling
rate denotes the total number of wireless transmissions divided
by the size of the 2D map in pixels (in percentage). In this
example, the size of the map is 64 by 64 pixels and the following

underlying parameters are used: αth = 0.2, σinit,comm = 0,
σinit,cell = 1, ζ̂ = 0.2, τmax = 150 and tol = 0.001 (see
Algorithm 1 for more on tol). We discuss how we estimate the
initial values of the underlying parameters for the BCS approach
when we present our experimental results in Section VIII.

Figure 4 shows the reconstruction using only 10% of mea-
surements. As can be seen, TV minimization with coordinated
measurements results in a perfect reconstruction. Furthermore,
similar to TV minimization, BCS coordinated also has a smaller
Normalized Mean Squared Error (NMSE) than BCS random.
As Fig. 5 shows, by increasing the number of measurements
to 15%, a significant increase in the reconstruction quality
of BCS coordinated is observed. For both cases (BCS and
TV minimization), the coordinated approaches outperform the
random ones. Furthermore, for the random strategy, BCS has a
better reconstruction quality than TV minimization. Fig. 6 (left)
confirms the same trend in the noiseless case, for a range of
percentage measurements.

BCS coordinated
 (NMSE = −5.57 dB)

BCS random 
(NMSE = −2.45 dB)

TV coordinated 
(NMSE = −Inf dB)

TV random
 (NMSE = −0.52 dB)

Fig. 4. The reconstruction of the obstacle of Fig. 13 (a) using 10%
noiseless simulated measurements.

BCS coordinated 
(NMSE = −11.81 dB)

BCS random 
(NMSE = −6.10 dB)

TV coordinated 
(NMSE = −Inf dB)

TV random 
(NMSE = −3.40dB)

Fig. 5. The reconstruction of the obstacle of Fig. 13 (a) using 15%
noiseless simulated measurements.
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Fig. 6. (left) NMSE versus the percentage of wireless measurements in the
noiseless case for the reconstruction of the obstacle of Fig. 13 (a); (right)
NMSE versus σ0 for the reconstruction of the obstacle of Fig. 13 (a) with
15% simulated wireless measurements.

Next, we consider the impact of noise. As we indicated in the
wireless channel measurement model of Eq. 8, the elements of ω
are taken to be uncorrelated Gaussian random variables with the
variance σ2

0 . We furthermore showed that this assumption does
indeed provide a good match with the data obtained using our
experimental robotic platform. We next show the effect of such
noise in a simulation environment with the same parameters as
before except for: τmax = 500 and σinit,comm = σ0.

Figure 7 shows the mapping performance using 15% noisy
measurements with σ0 = 0.1. As can be seen, similar to the
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noiseless case, the coordinated approaches provide a better
reconstruction quality than the random ones. Furthermore, TV
minimization with random measurements has the worst perfor-
mance for this sample noise variance. Fig. 6 (right) then shows
the NMSE as a function of σ0. It can be seen that similar trends
hold in this figure except at very high values of σ0 where the
random TV starts outperforming the random BCS. However, the
reconstruction quality at such high level of noise may not be
acceptable anymore for both cases.

BCS coordinated
 (NMSE = −6.52 dB)

BCS random
 (NMSE = −1.16 dB)

TV coordinated 
(NMSE = −6.75 dB)

TV random 
(NMSE = 0.99 dB)

Fig. 7. The reconstruction of the obstacle of Fig. 13 (a) using 15%
noisy simulated wireless measurements (σ0 = 0.1).

VII. AN ADAPTIVE DATA COLLECTION STRATEGY FOR

INTEGRATED OBSTACLE MAPPING

So far, we have assumed that the laser and wireless channel
measurements are collected through either random or coordi-
nated motion patterns, without an online optimization of the
data collection process. The trajectories can further be adapted
online to better collect laser or wireless channel measurements
based on a feedback from the current mapping quality. Online
motion optimization for occupancy grid mapping, using laser
measurements, has been extensively studied in the robotics
literature. Examples include next-best-view (NBF) [36] and
frontier-based [37], [38] algorithms. However, online motion
adaption based on a feedback from the current mapping quality
for wireless-based see-through mapping has not been studied
before. In this section, we propose an adaptive strategy for
collecting wireless channel measurements that aims to improve
the see-through performance of either BCS or TV minimization
methods.

Consider the obstacle-free part of the workspace Wf ⊂ W ,
estimated using the occupancy grid approach of Section III.
Without loss of generality, assume that there exists only one pair
of TX and RX robots. Let P ⊂ Wf denote the set of possible
positions where the robots can be. For instance, P could be the
set of positions along the rectangle that surrounds the workspace
(see the dashed line of Fig. 3 (right) for an example). Consider
the wireless channel measurements available to the robots
at time t. These channel measurements include the channel
measurements collected by the robots along their trajectories up
to time t, and possibly a set of a priori channel measurements
available at the beginning of the operation. The idea is to choose
the next best positions of the robots such that the new channel
measurement at time t + 1 is the most informative, given the
past measurements.

We specifically propose two adaptive approaches: ad-hoc and
variance-based. The ad-hoc approach can be used to adaptively
collect wireless measurements in both BCS and TV minimiza-
tion methods. The variance-based approach, on the other hand,
uses the estimated variance of the BCS case and is therefore
only applicable to the BCS method.

Let Φt denote the measurement matrix found based on the
available wireless channel measurements up to time step t.

Also let Φo,u,t denote the part of Φt that corresponds to the
occupied and unknown cells whose indices are in the set Io,u,
which is given at the end of the occupancy grid mapping
operation. Additionally, let Σ̂o,u,t represent the estimated co-
variance matrix Σo,u in the BCS method, calculated based on
the available wireless channel measurements up to time t. The
column vector of the diagonal elements of Σ̂o,u,t is then shown
by diag

(
Σ̂o,u,t

)
. At any time t, the set of admissible pairs of

positions for the RX and TX robots is a subset of P×P defined
as follows:

Ft �
{
(p1, p2) ∈ P × P

∣
∣
∣ ‖ξi,t − pi‖ ≤ dmax,

i = 1, 2, dir. antennas can be aligned along L(p1, p2)
}
,

(19)

where dmax is the maximum step size of the robots and
L(p1, p2) denote the line segment between p1 and p2. Note
that due to possible constraints on the rotation of the onboard
antennas of the robots, some of the points may not be feasible
and need to be excluded from the set of admissible points.
For any pair of positions (p1, p2) ∈ Ft we then propose the
following ad-hoc and variance-based next position optimization
problem:

• Ad-hoc:
(ξ1,t+1, ξ2,t+1) = argmax

(p1,p2)∈Ft

φTo,u(p1, p2) exp
(− ΦT

o,u,t1
)
,

(20)

• Variance-based:
(ξ1,t+1, ξ2,t+1) = argmax

(p1,p2)∈Ft

φTo,u(p1, p2)diag
(
Σ̂o,u,t

)
,

(21)
where ΦT

o,u,t1 denotes the column vector of the column-sum
of matrix Φo,u,t and φo,u(p1, p2) denotes the column vector
corresponding to the parts of φ(p1, p2) that are in Io,u. The
intuition behind the ad-hoc strategy is that the new measurement
vector (φT(ξ1,t+1, ξ2,t+1)) should have a small correlation with
the existing measurement vectors, i.e. rows of Φt. This will
increase the probability that the new wireless measurement (the
line segments between the TX and RX robots) hits the cells
that are not yet visited. We have further found that amplifying
the impact of the unvisited cells by using the exponential
function can improve the performance. The ad-hoc strategy (20)
then chooses the pair whose connecting line segment passes
through the cells that have previously been visited the least.
This strategy can be used with both BCS and TV. The variance-
based optimization function of (21), on the other hand, is based
on the summation of the variances of the cells that the new
wireless measurement line hits and thus can only be used by
BCS. The new measurement line is then chosen such that the
cells with high variances (high uncertainty) are selected.

We next show the performance of our online adaption
integrated mapping framework in a simulation environment.
Consider the case where the robots are trying to reconstruct the
obstacle map of Fig. 13 (a) based on only noiseless wireless
measurements.

Assume that no occupancy grid mapping is performed, i.e.
Φt = Φo,u,t for all t. For this example, we let P correspond
to a set of discrete positions along the square dashed line that
surrounds the map of interest (see Fig. 3 (right)). The size of
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the map is 64×64 pixels. Thus, we let the admissible positions
be evenly distributed along the dashed line such that card(P) =

256. We also set Ft �
{
(p1, p2) ∈ P × P

}
.

At the beginning of the operation, the robots make a very
small number of random wireless measurements, corresponding
to 3% of the map. The reconstruction of BCS and TV mini-
mization using these initial measurements is shown in Fig. 8.
For BCS, the same parameters of the example of Fig. 6 (left)
are used. The robots then proceed to make additional wireless
measurements based on our online adaptive approach, choosing
the next best positions out of Ft. We assume that dmax is infinite
and that any pair of positions can be selected from F t. Fig. 9
shows the quality of adaptive mapping after 15% measurements
are adaptively collected. As can be seen, the mapping quality
has improved considerably. It can furthermore be seen that,
while the ad-hoc methods result in an acceptable reconstruction
quality, the variance-based approach slightly outperforms the
ad-hoc strategies, as expected. Figure 10 shows the mapping
performance curves as a function of the percentage of the addi-
tional wireless measurements. As can be seen, BCS approaches
perform better than TV and the variance-based approach has a
slight performance gain over the ad-hoc one.

Original TV minimization (NMSE = 2.00 dB)BCS  (NMSE = 1.65 dB)

Fig. 8. Initial reconstruction of the obstacle of Fig. 13 (a) based on
3% noiseless simulated wireless measurements.

Original
TV ad-hoc

 (NMSE = −3.38 dB)
BCS ad-hoc 

(NMSE = −6.84 dB)
BCS variance−based

 (NMSE = −Inf dB)

Fig. 9. The reconstruction of the obstacle of Fig. 13 (a) after 15%
additional adaptive wireless measurements are collected.
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Fig. 10. NMSE as a function of the percentage of the additional wireless
measurements for our adaptive path planning strategy, in reconstructing
the whole map of Fig. 13 (a) (3% initial random measurements were
used).

VIII. EXPERIMENTAL RESULTS

So far we have proposed two approaches for integrating
occupancy grid mapping (using laser measurements) with CS
mapping (using wireless channel measurements). In this section,

we show the performance of our proposed framework in the
reconstruction of a real occluded structure that can not be
mapped with any of the existing techniques in the literature.
We start by describing our experimental robotic setup.

A. Summary of the Experimental Setup
Our setup consists of two Pioneer P3-AT mobile robots [39].

We equipped each robot with a directional narrow-beam antenna
from Laird with horizontal and vertical beamwidths of 21 ◦ and
17◦, respectively. As we have shown in our previous work
[28], the use of narrow-beam antennas is crucial in order to
limit the impact of multipath fading. We have also developed
a servo mechanism for antenna rotation and control, which
allows the antennas of the TX and RX robots to remain aligned
throughout the experiment. Each antenna is connected to an
IEEE 802.11g wireless card and can record the received RSSI
as the robots move. Additionally, we equipped each robot with
a Hokuyo URG laser scanner which has a maximum range of
5.6 m and a scanning angle of 240◦. Figure 11 (left) shows
the resulting platform with the laser scanner and the directional
antenna. Figure 11 (right) shows the robots making wireless
measurements in order to see through the walls and reconstruct
the obstacle inside while the onboard laser scanners are used to
map the portions of the workspace that can be directly seen by
the laser scanners.

Fig. 11. (left) A Pioneer P3-AT robot equipped with our servo con-
trol mechanism/fixture, adaptive narrow-beam directional antenna and
Hokuyo laser scanner; (right) two robots using laser scanners and
wireless measurements in order to map an obstacle structure that
includes occluded parts.

We have developed two separate software packages for our
experiments. The first one is for motion planning and occupancy
grid mapping using laser scanners. This software package is
developed in C++ under Linux and makes use of the Robot
Operating System (ROS) [40] for controlling the Pioneer P3-AT
platform (using p2os stack), operating the Hokuyo URG laser
scanner (using hokuyo_node laser driver) and implementing
SLAM (using the gmapping stack). The second software
package is used for collecting the RSSI measurements between
the two robots as they move along their trajectories. More details
on this software package can be found in [28].

We then implement our integrated framework in MATLAB by
using the RSSI data collected by the robots and the occupancy
grid map that is given by the SLAM algorithm to build the
entire map of the structure.

B. Experimental Results for Mapping a Structure with Occluded
Parts

We next show the performance and see-through capabilities
of our proposed integrated approach in mapping an obstacle
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structure that has occluded parts. Figure 12 (left) shows a
structure with its horizontal cut shown in the right figure. First,
consider the case where a robot only uses its laser scanner
outside of the structure as far as it can get using the entrance
on the lower right side. In order to avoid the laser scanner
falsely detecting the antenna as an obstacle, we set the gmapping
algorithm to discard any laser reading beyond the range −60 ◦

to 60◦ (with respect to the robot frame). Fig. 13 (b) shows the
resulting generated map. As can be seen, the existence, position
and dimensions of the occluded parts can not be determined by
the laser scanner, as expected. Thus, we let the robots do a few
random wireless measurements from the positions along the
dashed trajectories of Fig. 12 (right) and apply our proposed
integrated approach.6 The following parameters are used for
the BCS case: αth = 7, σinit,comm = 10.34. The rest of the
parameters are the same as in Section VI. As pointed out before,
we estimated ζ = 0.2 by using several existing real maps a
priori and applying Eq. 12. We consistently found that BCS is
not as sensitive to the initialization of σinit,cell and therefore we
have fixed it to a small value of one. As for σ init,comm, we have
used a priori wireless measurements with other structures that
we have constructed in the past and estimated ωdB by subtracting
the impact of the structure to measure samples of the noise as
illustrated in Fig. 2. We then calculated the standard deviation
of this noise.

Subfigures (e) and (f) of Fig. 13 show the performance of our
proposed integrated approach with BCS and TV minimization
respectively. As can be seen, even at the very low sampling
rate of 18% of the unknown part, corresponding to 6% of the
overall map, the occluded wall (occluded to the laser scanners)
can be clearly seen. The unknown part refers to the area where
the laser scanner can not see the obstacles as marked in Fig. 13
(b). 18% wireless measurements is then the percentage of the
wireless measurements as compared to the total number of the
pixels of the unknown part. This percentage translates to 6%
of the overall map, which is fairly small. It can be seen that
the robots can map the structure with our integrated approach.
Furthermore, it can be observed that random BCS performs
better than random TV as we expected from the simulation
results of the previous section. For the sake of comparison,
Fig. 13 (c) and (d) show the reconstruction if we only use the
collected wireless measurements (6% wireless measurements),
without integration with the laser scanner data. As can be seen,
it is hard to map this structure based on only 6% wireless
measurements that are randomly collected from the dashed line
of Fig. 12 (right), which motivates the use of the integrated
approach.7

In summary, our experimental results show that the pro-
posed integrated framework can map a more complex occluded
structure that can not be mapped with existing strategies in
the literature. Furthermore, both integrated TV and BCS-based
approaches provide comparable reconstruction results, with the
BCS-based approach performing better with random measure-

6Note that the robots make wireless measurements when positioned on
the dashed line of Fig. 12 (right) in our experiment. If one robot transmits
from inside the structure (using the entrance on the lower-right corner), better
reconstructions can be achieved.

7Note that the case where both TX and RX are on the same side of the
structure is naturally excluded from the possible set of TX/RX positions.

horizontal 
cut

Fig. 12. (left) The obstacle structure of interest and (right) its horizontal
cut. The paths where the robots can make random wireless measure-
ments are marked with dashed lines in the right figure.

ments and TV-based approach with coordinated measurements.
However, integrated BCS-based approach requires estimating
the underlying model parameters as compared to the TV-
based approach. This needs an initial estimation of the model
parameters, which can be prone to errors. Thus, depending on
the system requirements, the integrated mapping choice that is
more suitable can be selected in practice.

IX. CONCLUSIONS AND FUTURE EXTENSIONS

In this paper we considered the problem of obstacle/object
mapping using a team of mobile robots. We considered a
scenario where each robot is equipped with a laser scanner,
a wireless communication device and a directional antenna.
We proposed an integrated framework for mapping with see-
through capabilities based on both laser and wireless channel
measurements. We specifically showed how to integrate occu-
pancy grid mapping with two CS-based reconstruction meth-
ods: Bayesian compressive sensing (BCS) and total variation
(TV) minimization. We compared the performance of these
two approaches using both simulated and real data from our
robotic platforms. For instance, our results indicated that the
integrated BCS-based method is more appropriate for map-
ping based on random wireless measurements while TV-based
integrated approach performs better with coordinated wireless
measurements. The integrated BCS-based approach furthermore
provides an estimate of the current mapping variance, which
is more informative in general or can specifically be used for
adaptive path planning and wireless measurement collection.
It, however, requires an initial estimation of the underlying
model parameters. Our experimental robotic testbed confirmed
that the proposed integrated framework can map a more com-
plex occluded structure that can not be mapped with existing
strategies in the literature. We finally proposed an adaptive path
planning strategy that utilizes the current estimate of uncertainty
to better guide the robots for wireless measurement collection.
Evaluation of the performance of our adaption strategies in
mapping real obstacles is a subject of our future work.
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