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Abstract—In this paper we consider a mobile cooperative
network that is tasked with building an obstacle map in an
environment. We propose a framework that allows the robots to
build the obstacle map non-invasively and with a small number
of wireless channel measurements. By extending our previous
work on sparse obstacle mapping, we show how the nodes
can exploit the sparse representation of the map in order to
build it with minimal sensing. The proposed work allows the
robots to efficiently map an area before entering it. We propose
two approaches based on random and coordinated wireless
measurements. Our simulation and experimental results show
the superior performance of the proposed framework.

I. INTRODUCTION

Mobile intelligent networks can play a key role in emer-

gency response, surveillance and security, and battlefield op-

erations. The vision of a multi-agent robotic network cooper-

atively learning and adapting in harsh unknown environments

to achieve a common goal is closer than ever. An important

issue key to the robust operation of a mobile robotic network

is the accurate mapping of the obstacles. In most related

work, however, only areas that are directly sensed are mapped.

The rich literature on Simultaneous Localization and Mapping

(SLAM) fall into this category [1], [2]. Similarly, approaches

based on generating an occupancy map also address reducing

sensing uncertainty [3]. However, areas that are not sensed

directly are not mapped. In general, there is currently no

framework for cooperative obstacle mapping, based on a very

small number of measurements.

Consider an obstacle map. By an obstacle map, we refer

to a 2D (or 3D) map of the environment where we have

zeros at locations where there is no obstacle and non-zero

values at obstacle locations. Each non-zero value could be

one to indicate the presence of an obstacle or could be the

decay rate of the wireless signal within the object at that

location, as we will see in the next section. By obstacle

mapping, we then refer to a number of robots generating a

spatial map of the obstacles. In this paper, we are interested

in non-invasive obstacle mapping. By non-invasive mapping,

we refer to the mapping of the obstacles without sensing

them directly. Consider the case where a number of robots

want to build a map of the obstacles inside a building before

entering it. Non-invasive mapping allows the nodes to assess

the situation before entering the building and can be of
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particular interest in several applications such as an emergency

response or battlefield operation. In general, devising non-

invasive mapping strategies can be considerably challenging.

In our previous work [4], we proposed a framework for

compressive obstacle mapping based on wireless channel

measurements. In this paper, we extend our previous work

to consider cooperative mapping based on both random and

coordinated measurements. We furthermore show the perfor-

mance of our proposed framework with an experimental setup,

in which robots map a real obstacle on the campus of the

University of New Mexico. A survey of the existing work in

the literature shows very few works with a similar flavor. There

are a number of radar-based approaches for imaging [5], [6],

which are completely different from the proposed method. In

[7] and [8], the authors build a network of several hundred

fixed sensors in order to detect the presence of a person. The

framework is based on making several measurements between

pairs of sensors. Then the goal is to roughly track a person as

opposed to building a map of obstacles. There is a need for

prior learning in the area of interest as well. As such, those

papers are more on detecting an obstruction to a wireless signal

as opposed to obstacle mapping with minimal measurements.

To the best of authors’ knowledge, aside from authors’

work, there is currently no framework for cooperative non-

invasive mapping of real obstacles, with minimal measure-

ments. Our proposed theory and design tools are inspired

by the recent breakthroughs in non-uniform sampling theory

[9]. The new theory of compressive sampling (also known by

other terms such as compressed sensing, compressive sensing

or sparse sensing) shows that under certain conditions, it is

possible to reconstruct a signal from a considerably incomplete

set of observations, i.e. with a number of measurements much

less than predicted by the Nyquist-Shannon theorem [9]. This

opens new and fundamentally different possibilities in terms

of information gathering and processing in mobile networks.

In this paper, we develop the fundamentals of cooperative

non-invasive obstacle mapping in mobile networks from a

compressive sampling perspective and based on only wireless

channel measurements. By utilizing the sparse representation

of the map in space or in spatial variations, we show how the

vehicles can solve for the map cooperatively, based on minimal

measurements, and more importantly in a non-invasive man-

ner. More specifically, we propose two cases of 1) wireless

random measurements and 2) wireless coordinated measure-



ments, where the latter can result in the sparse sampling of

the frequency transformation of the obstacle map. We show the

superior performance of the proposed framework through both

simulation and experiment. Overall, our framework is a new

multidisciplinary approach that integrates robotics and wireless

communications for efficient non-invasive obstacle mapping,

based on wireless channel measurements.

II. AN OVERVIEW OF COMPRESSIVE SAMPLING THEORY

[9]–[11]

The new theory of sampling is based on the fact that

real-world signals typically have a sparse representation in

a certain transformed domain. Consider a scenario where

we are interested in recovering a vector x ∈ R
N . For 2D

signals, vector x can represent the columns of the matrix

of interest stacked up to form a vector. Let y ∈ R
K where

K � N represent the incomplete linear measurement of

vector x obtained by the sensors. We will have

y = Φx, (1)

where we refer to Φ as the observation matrix. Clearly, solving

for x based on the observation set y is an ill-posed problem as

the system is severely under-determined (K � N ). However,

suppose that x has a sparse representation in another domain,

i.e. it can be represented as a linear combination of a small

set of vectors:

x = ΓX, (2)

where Γ is an invertible matrix and X is S-sparse, i.e.

|supp(X)| = S � N where supp(X) refers to the set of

indices of the non-zero elements of X and | · | denotes its

cardinality. This means that the number of non-zero elements

in X is considerably smaller than N . Then we will have

y = ΨX, (3)

where Ψ = Φ×Γ. If S ≤ K and we knew the positions of the

non-zero coefficients of X , we could solve this problem with

traditional techniques like least-squares. In general, however,

we do not know anything about the structure of X except for

the fact that it is sparse (which we can validate by analyzing

similar data). The new theory of compressive sensing allows

us to solve this problem.

Theorem 1 (see [9] for details and the proof): If K ≥ 2S
and under specific conditions, the desired X is the solution to

the following optimization problem:

min||X||0, such that y = ΨX, (4)

where ||X||0 = |supp(X)| represents the zero norm of vector

X .

Theorem 1 states that we only need 2 × S measurements

to recover X and therefore x fully. This theorem, however,

requires solving a non-convex combinatorial problem, which is

not practical. For over a decade, mathematicians have worked

towards developing an almost perfect approximation to the `0
optimization problem of Theorem 1 [12], [13]. Recently, such

efforts resulted in several breakthroughs.

More specifically, consider the following `1 relaxation of

the aforementioned `0 optimization problem:

min||X||1, subject to y = ΨX. (5)

Theorem 2: (see [9], [10]) Assume that X is S-sparse.

The `1 relaxation can exactly recover X from measurement

y if matrix Ψ satisfies the Restricted Isometry Condition for

(2S,
√
2− 1), as described below.

Restricted Isometry Condition (RIC) [11]: Matrix Ψ satis-

fies the RIC with parameters (Z, ε) for ε ∈ (0, 1) if

(1− ε)||c||2 ≤ ||Ψc||2 ≤ (1 + ε)||c||2 (6)

for all Z-sparse vector c. Other conditions and extensions of

Theorem 2 have also been developed [14], [15]. While it is not

possible to define all the classes of matrices Ψ that satisfy RIC,

it is shown that random partial Fourier matrices [16] as well as

random Gaussian [17]- [18] or Bernoulli matrices [19] satisfy

RIC (a stronger version) with the probability 1−O(N−M ) if

K ≥ BMS × logO(1)N, (7)

where BM is a constant, M is an accuracy parameter and O(·)
is Big-O notation [9]. Eq. 7 shows that the number of required

measurements could be considerably less than N .

While the recovery of sparse signals is important, in practice

signals may rarely be sparse. Most signals, however, will

be compressible, i.e. most of signal’s energy is in very few

coefficients. In practice, the observation vector y will also be

corrupted by noise. The `1 relaxation and the corresponding

required RIC condition can be easily extended to the case of

noisy observations with compressible signals [20].

A. Basis Pursuit (BP): Reconstruction Using `1 Relaxation

The `1 optimization problem of Eq. 5 can be posed as a

linear programming problem [21]. The compressive sensing

algorithms that reconstruct the signal based on `1 optimization

are typically referred to as “Basis Pursuit” [10]. Reconstruction

through `1 optimization has the strongest known recovery

guarantees [11]. The `1 magic toolbox [22] provides several

optimization tools for solving the aforementioned `1 relaxation

and its variations. The computational complexity, however, can

be high, especially when dealing with real data. SPARSA [23],

GPSR [24] and AC [25] are a few examples of the continuing

attempts to reduce the computational complexity of the convex

relaxation approach. Overall, we found SPARSA to be more

computationally efficient yet effective in solving this problem,

especially when dealing with real data.

B. Matching Pursuit (MP): Reconstruction using Successive

Interference Cancellation

While the `1 relaxation of the previous part can solve the

compressive sampling problem with performance guarantees,

its computational complexity can be high, as mentioned above.

Alternatively, there are greedy approaches that can solve the

compressive sampling problem more efficiently, at the cost of

a (possibly slight) loss of performance. Next, we summarize

such approaches.



The Restricted Isometry Condition implies that the columns

of matrix Ψ should have a certain near-orthogonality property.

Let Ψ = [Ψ1Ψ2 . . .ΨN ], where Ψi represents the ith column

of matrix Ψ. We will have y =
∑N

j=1 ΨjXj , where Xj is the

jth component of vector X . Consider recovering Xi:

ΨH
i y

ΨH
i Ψi

= Xi
︸︷︷︸

desired term

+

N∑

j=1,j 6=i

ΨH
i Ψj

ΨH
i Ψi

Xj

︸ ︷︷ ︸

interference

. (8)

If the columns of Ψ were orthogonal, then Eq. 8 would

have resulted in the recovery of Xi. For an under-determined

system, however, this will not be the case. Then there are two

factors affecting recovery quality based on Eq. 8. First, how

orthogonal is the ith column to the rest of the columns and

second how strong are the other components of X . In other

words, it is desirable to first recover the strongest component

of X , subtract its effect from y, recover the second strongest

component and continue the process. Adopting the terminol-

ogy of CDMA (Code Division Multiple Access), we refer to

such approaches as Successive Interference Cancellation [4].

In fact, if Xi 6= 0, one can think of Ψi coding Xi. If the ith

code is used as in Eq. 8, then ideally Xj for j 6= i can not be

decoded properly and only Xi can be recovered.

Recently, Tropp et al. independently proposed using a

version of successive interference cancellation in the context

of compressive sampling and derived the conditions under

which it can result in almost perfect recovery [26]. They

refer to it as Orthogonal Matching Pursuit (OMP). Similar

to Successive Interference Cancellation, the basic idea of

OMP is to iteratively multiply the measurement vector, y, by

ΨH , recover the strongest component, subtract its effect and

continue again. A variation of OMP, Regularized Orthogonal

Matching Pursuit (ROMP), was later introduced by Needell

et al. [11]. The main difference in ROMP as compared to

OMP is that in each iterative step, a set of indices (locations

of vector X with non-negligible components) are recovered

at the same time instead of only one at a time, resulting in a

faster recovery [11]. Other variations of this work have also

appeared.

C. Reconstruction Using Total Variation (TV) Minimization

The spatial variations of the map (gradient) are also con-

siderably sparse. Thus, another related sparsity-based recon-

struction approach is to use the sparsity in the gradient

[9], [22], [27]. Let f = [fi,j ] denote an m × m matrix

that represents the spatial function of interest. Define the

following operators: Dh,i,j(f) =

{
fi+1,j − fi,j i < m

0 i = 0
,

Dv,i,j(f) =

{
fi,j+1 − fi,j j < m

0 j = 0
and Di,j(f) =

(
Dh,i,j(f)
Dv,i,j(f)

)

. Then, the Total Variation function is defined

as follows: TV(f) =
∑

ij

√

(Dh,i,j(f))2 + (Dv,i,j(f))2 =
∑

ij ‖Di,j(f)‖2. TV minimization approaches solve the fol-

lowing problem or a variation of it:

min TV(f), subject to y = Ψf × vf , (9)

where vf is a column vector that results from stacking up the

columns of matrix f , and y is the observation vector, which

is linearly related to vf through matrix Ψf . The `1 magic

toolbox provides a solver for this TV minimization problem.

More recently, TVAL [27] is proposed for solving this problem

more efficiently and robustly, which we will use in the next

section.

III. COMPRESSIVE COOPERATIVE MAPPING OF

OBSTACLES

In this section we show how a group of mobile nodes

can build a map of the obstacles non-invasively. We start

by summarizing our original proposed framework of [4]. We

then extend that work and propose two different strategies for

compressive obstacle mapping: 1) random wireless measure-

ments and 2) coordinated wireless measurements, where the

second approach can result in sampling in the frequency or

space domain. Finally, and most importantly, we show the

reconstruction of a real obstacle on UNM campus, using our

proposed framework and two robotic units.

We consider building a 2D map of the obstacles in this

paper. For instance, for real 3D structures, we reconstruct a

horizontal cut of them, as shown in Section IV. It should,

however, be noted that our proposed approach can also be

easily extended to 3D maps. Figure 1 (both left and right)

shows a sample 2D obstacle map where a number of vehicles

want to map the space before entering it. Let gn(u, v) represent

the binary map of the obstacles at position (u, v) for u, v ∈ R.

We have

gn(u, v) =

{
1 if (u, v) is an obstacle

0 else
(10)

Consider communication from Transmitter 1 to Receiver 1,

as marked in Fig. 1 (right). A fundamental parameter that

characterizes the performance of a communication channel

is the received signal strength. There are three time-scales

associated with the spatio-temporal changes of the channel

quality and therefore received signal strength [28], as indicated

in Fig. 2. The slowest dynamic is associated with the signal

attenuation due to the distance-dependent power fall-off (path

loss). Then there is a faster variation referred to as shadow

fading (shadowing), which is due to the impact of the blocking

objects. This means that each obstacle along the transmission

path leaves its mark on the received signal by attenuating it

to a certain degree characterized by its properties. Finally,

depending on the receiver antenna angle, multiple replicas of

the transmitted signal can arrive at the receiver due to the

reflection from the surrounding objects, resulting in multipath

fading, a faster variation in the received signal power [29].

A communication from Transmitter 1 to Receiver 1 in Fig. 1

(right), therefore, contains implicit information of the obstacles

along the communication path. Consider the dashed ray (line)

that corresponds to distance t and angle θ in Fig. 1 (right). This

line is at distance t from the origin and is perpendicular to the
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Fig. 1. An indoor obstacle map with the obstacles marked in white and the illustration of the proposed compressive cooperative mapping using (left) random
and (right) coordinated wireless measurements.

line that is at angle θ with the x-axis. Let P (θ, t) represent

the received signal power in the transmission along the ray

that corresponds to distance t and angle θ, as shown in Fig. 1

(right). We will have [28], [29],

P (θ, t) = Ps(θ, t)w(θ, t), (11)

where

Ps(θ, t) =
βPT

(
d(θ, t)

)α

︸ ︷︷ ︸

path loss

× e
∑

i
ri(θ,t)ni(θ,t)

︸ ︷︷ ︸

shadowing due to obstacles

(12)

represents the contribution of distance-dependent path loss and

shadowing. For the path loss term, PT represents the transmit-

ted power, d(θ, t) is the distance between the transmitter and

receiver across that ray, α is the degradation exponent of the

wireless signal and β is a constant that is a function of system

parameters. For the shadowing (or shadow fading) term, ri is

the distance travelled across the ith object along the (θ, t) ray

and ni < 0 is the decay rate of the wireless signal within the ith

object. Furthermore, the summation is over the objects across

that line. As can be seen, shadowing characterizes wireless

signal attenuation as it goes through the obstacles along the

transmission path and therefore contains information about the

objects along that line.

w(θ, t) of Eq. 11, on the other hand, is a positive random

variable with unit average which models the impact of multi-

path fading. For more mathematical details on wireless channel

modeling, readers are referred to [28]–[30]. We can then model

lnP (θ, t) as follows

lnP (θ, t) = lnPT
︸︷︷︸

transmitted power in dB

+βdB − αlnd(θ, t)
︸ ︷︷ ︸

path loss (≤0)

+
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadowing effect due to

blocking objects (≤0)

+ wdB(θ, t),
︸ ︷︷ ︸

multipath fading

(13)

where βdB = lnβ and wdB = lnw(θ, t). Then we have

h(θ, t) , lnP (θ, t)− lnPT −
(
βdB − αlnd(θ, t)

)

=
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadow fading effect

+ wdB(θ, t).
︸ ︷︷ ︸

multipath fading

(14)

Path loss and shadowing represent the signal degradation

due to the distance travelled and obstacles respectively and

wdB(θ, t) represents the impact of multipath fading. By using

an integration over the line that corresponds to θ and t, we

can express Eq. 14 as follows:

h(θ, t) =

∫ ∫

line (θ,t)

g(u, v)dudv + wdB(θ, t), (15)

where

g(u, v) =

{
n(u, v) if gn(u, v) = 1

0 else
(16)

with gn(u, v) representing the binary map of the obstacles

(indicated by Eq. 10) and n(u, v) denoting the decay rate of

the signal inside the object at position (u, v) (see ni(θ, t) in

Eq. 12). g(u, v) then denotes the true map of the obstacles

including wireless decay rate information.
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Fig. 2. A multi-scale representation of the received signal power in a wireless
transmission.

A. Random Wireless Measurements

Consider Fig. 1 (left), where pairs of robots are making

wireless measurements. In this case, we do not assume that

the robots are attempting to have a specific pattern, i.e. the θ

and t can be chosen randomly. In practice, the parameters of

the path loss component of the received signal in Eq. 13 can be

estimated by using a few Line Of Sight (LOS) transmissions in

the same environment, as we have shown in [29]. Therefore,

the impact of path loss can be removed and the receiving

robot can calculate h(θ, t). Thus, for each θ and t pair, a

wireless transmission and reception is made, which results in

measuring a line integral of Eq. 14. Let X of Eq. 3 be the

vector representation of g, where the columns are stacked up.

Then vector y is the vector of the gathered samples of h(θ, t)
of Eq. 14. In each row of Ψ, the non-zero elements correspond

to the obstacle map pixels that the corresponding ray visited,

with each non-zero value indicating the distance travelled in

the corresponding pixel. We will have y = ΨX + e, where e

models the impact of multipath fading and measurement noise.

Then, the sparsity in the spatial variations (TV) can be used

for reconstruction, as we shall see later in this section.

B. Coordinated Wireless Measurements

In this section, we consider an obstacle mapping approach

that is motivated by computed tomography approaches in

medical imaging [31], geology, and computer graphics. For

most cases, as we shall see in the next part, this approach has

a better performance than the previous one. However, due to

the environmental constraints, it may not always be possible to

make coordinated measurements. Consider Fig. 1 (right) and

the illustrated line at angle θ that passes through the origin.

Two vehicles can move in a coordinated fashion such that at

a given angle θ, a number of wireless channel measurements

at different ts are formed. By changing t at a specific θ, a

projection is formed, i.e. a set of ray integrals, as is shown in

Fig. 1 (right). Clearly, this results in the immediate sampling in

the space domain (similar to the random case). Then sparsity

in spatial variations (TV) can be used for reconstructing the

map. Alternatively, coordinated measurements can be used to

acquire frequency samples, as we discuss next.

Frequency Sampling: Let G(θf , f) represent the 2D Fourier

transform of g expressed in the polar coordinates. Let Ht(θ, f)

denote the 1D Fourier transform of h(θ, t) with respect to

t: Ht(θ, f) =
∫
h(θ, t)e−j2πftdt. We have the following

theorem.

Fourier Slice Theorem [31]: Consider the case where there

is no multipath fading in Eq. 15, i.e. wdB = 0. Then Ht(θ, f),
the Fourier transformation of h(θ, t) with respect to t, is equal

to the samples of G(θf , f) across angle θf = θ.

By making a number of measurements at different ts for

a given θ, the Fourier Slice Theorem allows us to measure

the samples of the Fourier transform of the map g at angle θ.

By changing θ, we can sample the Fourier transform of the

map of the obstacles at different angles. We can then pose the

problem in a compressive sampling framework. By measuring

the received signal power across the rays, the vehicles can

indirectly sample the Fourier transformation of the obstacle

map. Then the sparsity in the spatial domain or TV can be

used for reconstruction.

Let x of Eq. 1 denote the vector representation of G (2D

Fourier transform of the obstacle map), where the columns of

G are stacked up to form a vector. Then y represents the very

few samples of G acquired using the proposed framework, i.e.

wireless channel measurements across a number of rays and

applying the Fourier Slice Theorem. For reconstruction based

on sparsity in the spatial domain or TV, X will be the vector

representation of g and Γ is the Fourier transform matrix. Φ
represents a matrix with only one 1 in every row. If there are

redundant measurements, there may be more than one 1 in

every column. Otherwise, there will be at most one 1 in every

column. Then the Ψ matrix that results from point sampling

in the frequency domain and reconstruction using sparsity in

the spatial domain will meet the RIC condition [16].

IV. PERFORMANCE OF THE PROPOSED OBSTACLE

MAPPING APPROACHES

So far we proposed two approaches for obstacle mapping

using random and coordinated sparse wireless measurements.

We furthermore discussed different reconstruction possibilities

using BP, MP and TV approaches. In this section, we show

the performance of our proposed sparse obstacle mapping

framework, using wireless channel measurements. We show

the underlying tradeoffs between different methods. We also

show the reconstruction of a real obstacle using robotic units

and wireless measurements.

We start by showing the performance in a simulation

environment. Fig. 3 compares the performance of the proposed

random and coordinated approaches as a function of the

percentage of the measurements taken in the reconstruction

of a T-shaped obstacle. In this result, for the coordinated

case, frequency samples are acquired using the Fourier Slice

Theorem, as described earlier. The original T-shape is shown

in Fig. 7 (left). Then Fig. 3 shows the normalized MSE of

the reconstruction. As can be seen, the coordinated approach

outperforms the random one considerably, as expected. How-

ever, at an extremely low sampling rate, it can be seen that

the random approach outperforms the coordinated one. To

see this more clearly, Fig. 4 shows the reconstruction of the



aforementioned T-shaped obstacle map, for two different sam-

pling rates. The top row shows the reconstruction for the case

where only 0.77% measurements are taken whereas the bottom

row shows the reconstruction quality for the case with 4.6%
measurements. It can be seen that for the top row, the random

projection can provide a recognizable reconstruction while the

coordinated one can not provide any useful information. This

makes sense as the coordinated approach makes measurements

at only a few θs (see Fig. 1 (right)) but extensively and

at different ts for each θ. As such, for an extremely small

sampling rate, it only measures the obstacle map from a very

small number of angles. The random approach, on the other

hand, samples the map from possibly different views even at

a considerably small sampling rate. If the sampling rate is

not extremely small, however, the coordinated approach will

outperform the random one considerably. This can be seen

from Fig. 3. An example of it can also be seen from Fig. 4

(bottom row), where the coordinated approach can provide an

almost perfect reconstruction with only 4.6% measurements.

For this result, no multipath fading is considered.
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Fig. 3. Performance of the proposed sparse obstacle mapping framework
using 1) random measurements and space sampling and 2) coordinated
measurements and frequency sampling.
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Fig. 4. Comparison of the proposed random and coordinated approaches at
an extremely small (top row) and small (bottom row) sampling rates in the
reconstruction of a T-shaped obstacle.

A. Compressive Reconstruction of a Real Obstacle

In the previous parts, we showed the performance of our

proposed framework in a simulation environment. The afore-

mentioned modeling of a wireless channel, however, can not

possibly embrace all the propagation phenomena. As such,

we do not expect perfect recovery with a very small number

of measurements in a real environment. However, as long as

the reconstruction is informative for the cooperative operation

of the robots, it would be valuable. For instance, if it allows

the vehicles to build a rough map of inside a room before

entering it, it could be considerably valuable. In order to

test our framework, we also built an experimental setup for

cooperative obstacle mapping. In our setup, a number of robots

that are equipped with transceivers, make a small number of

wireless channel measurements, as proposed in this paper.

Fig. 5 shows one of our robotic platforms. We tested our

setup on the campus of the University of New Mexico, where

two robots made a small number of wireless measurements

in order to build a 2D map of the column of Fig. 6 (left).

A horizontal cut (2D map) of the column has a T-shape as

shown in Fig. 6 (right). Our robots then aim at reconstructing

this structure based on only wireless channel measurements.

We consider reconstruction in a horizontal plane, i.e. the goal

is for the robots to reconstruct the horizontal cut of Fig. 6.

Fig. 7 (middle) shows the reconstruction of the T-shape, based

on only 9.09% coordinated wireless measurements. Earlier

in this paper, we showed the performance of coordinated

measurements and frequency sampling. Thus in this case, we

show the reconstruction with coordinated measurements and

space sampling. We note that the frequency sampling of the

previous section results in a very similar reconstruction. The

reconstruction is noisy as expected, due to several propagation

phenomena that our modeling did not include. However, the

T-shape structure can still be easily seen. To the best of

authors’ knowledge, this is the first time that robots have

mapped a real obstacle cooperatively, based on a small number

of wireless channel measurements. Fig. 7 (right) shows the

case where a threshold is applied to the reconstructed middle

figure such that any value that is 10dB below the maximum is

zeroed. This was done because we noticed that there could be

scenarios where reconstructed pixels with very small values

get magnified by some printers or monitors with certain

gamma settings. A simple thresholding can avoid such cases.

Fig. 5. Our robotic platform – Pioneer 3-AT robot equipped with a servo
control mechanism/fixture and a directional antenna.



Fig. 6. (left) T-shaped column on the campus of the University of New Mexico
and (right) a horizontal cut of it. Our robots reconstructed a 2D map of the
column (horizontal cut), using our proposed framework.

Fig. 7. Reconstruction of the T-shaped column of Fig. 6 on the campus of
the University of New Mexico. The left figure shows a horizontal cut of
the column. The middle figure shows our reconstruction of it, with 2 robots
cooperatively making a very small number of wireless measurements. The
T-shape can be easily detected in the reconstruction. The right figure shows
the case where a threshold of 10dB is applied to the reconstructed middle
figure such that any value that is 10dB below the maximum is zeroed.

V. CONCLUSIONS

In this paper we considered a mobile cooperative network

that is tasked with building an obstacle map non-invasively.

We proposed a framework that allowed the robots to build

the map, by making a small number of wireless channel

measurements. By exploiting the sparse representation of the

map in space or spatial variations, we showed how the robots

can map the obstacles efficiently. We proposed two cases of

random and coordinated measurements, where the latter can

result in the sparse sampling in the space or frequency domain.

Our simulation results then showed the superior performance

of the proposed framework. Finally, our experimental results

confirmed the performance of our framework with two robots

cooperatively mapping an obstacle on the campus of UNM.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Ding Li and Alireza Ghaffarkhah
for their help with the experimental setup.

REFERENCES

[1] F. Dellaert, F. Alegre, and E. B. Martinson. Intrinsic localization
and mapping with 2 applications: Diffusion mapping and macro polo
localization. In IEEE Intl. Conf. on Robotics and Automation, volume 2,
pages 2344 – 2349, 2003.

[2] R. Sim, G. Dudek, and N. Roy. A closed form solution to the single
degree of freedom simultaneous localisation and map building (SLAM)
problem. In IEEE CDC, volume 1, pages 191–196, 2000.

[3] R. Gartshore, A. Aguado, and C. Galambos. Incremental map building
using an occupancy grid for an autonomous monocular robot. In 7th

International Conference on Control, Automation, Robotics and Vision,
volume 2, pages 613–618, December 2002.

[4] Y. Mostofi and P. Sen. Compressive Cooperative Mapping in Mobile
Networks. In Proceedings of the 28th American Control Conference

(ACC), pages 3397–3404, St. Louis, MO, June 2009.
[5] M. C. Wicks. Rf tomography with application to ground penetrating

radar. In Asilomar Conference on Signals, Systems and Computers,
pages 2017–2022, November 2007.

[6] A. M. Haimovich, R. S. Blum, and L. J. Cimini. Mimo radar with
widely separated antennas. In IEEE Signal Processing Magazine, pages
116–129, January 2008.

[7] J. Wilson and N. Patwari. Radio tomographic imaging with wireless
networks. accepted to appear in IEEE Trans. on Mobile Comp., 2010.

[8] M. Kanso and M. Rabbat. Compressed RF tomography for wireless
sensor networks: Centralized and decentralized approaches. In IEEE Intl.

Conference on Distributed Computing in Sensor Systems, June 2009.
[9] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information.
IEEE Trans. on Information Theory, 52(2):489–509, February 2006.

[10] D. L. Donoho. Compressed sensing. IEEE Transactions on Information

Theory, 52(4):1289–1306, April 2006.
[11] D. Needell and R. Vershynin. Uniform uncertainty principle and signal

recovery via regularized orthogonal matching pursuit, 2007. Preprint.
[12] F. Santosa and W. W. Symes. Linear inversion of band-limited reflection

seismograms. SIAM Journal on Scientific and Statistical Computing,
7(4):1307–1330, 1986.

[13] R. Gribonval and M. Nielsen. Sparse representations in unions of bases.
IEEE Trans. on Information Theory, 49(12):3320–3325, December 2003.

[14] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Comm. Pure Appl. Math,
59(8):1207–1223, 2005.

[15] http://www.dsp.ece.rice.edu/cs/.
[16] M. Rudelson and R. Vershynin. Sparse reconstruction by convex

relaxation: Fourier and Gaussian measurements, 2006. Preprint.
[17] W. B. Johnson and J. Lindenstrauss (editors). Handbook of the Geometry

of Banach Spaces, volume 1,2. Elsevier Science Ltd, North-Holland,
Amsterdam, 2001.

[18] S. J. Szarek. Condition numbers of random matrices. J. of Complexity,
7(2):131–149, 1991.

[19] A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann.
Smallest singular value of random matrices and geometry of random
polytopes. Advances in Mathematics, 195(2):491–523, 2005.

[20] E. J. Candès. The restricted isometry property and its implications
for compressed sensing. Compte Rendus de l’Academie des Sciences,
346:589–592, 2008.

[21] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[22] `1 magic toolbox. http://www.acm.caltech.edu/l1magic/.
[23] S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction

by separable approximation. In IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 3373–3376, April 2008.
[24] M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright. Gradient projection

for sparse reconstruction: Application to compressed sensing and other
inverse problems. IEEE Journal of Selected Topics in Signal Processing,
1(4):586–597, Dec. 2007.

[25] Y. Nesterov. Gradient methods for minimizing composite objective
function. Center for Operations Research and Econometrics Discussion

Paper, (76), 2007.
[26] J. Tropp and A. Gilbert. Signal recovery from random measurements

via orthogonal matching pursuit. IEEE Trans. on Information Theory,
53(12):4655–4666, December 2007.

[27] Chengbo Li. An Efficient Algorithm For Total Variation Regularization

with Applications to the Single Pixel Camera and Compressive Sensing.
PhD thesis, RICE University, 2009.

[28] W. C. Jakes. Microwave Mobile Communications. Wiley-IEEE Press,
New York, 1994.

[29] Y. Mostofi, A. Gonzalez-Ruiz, A. Ghaffarkhah, and D. Li. Characteri-
zation and Modeling of Wireless Channels for Networked Robotic and
Control Systems - A Comprehensive Overview. In Proceedings of 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), St. Louis, MO, October 2009.
[30] A. Goldsmith. Wireless Communications. Cambridge University Press,

2005.
[31] A. C. Kak and M. Slaney. Principles of Computerized Tomographic

Imaging. IEEE, 1988.


