Brown and Vranesic

- 4 Optimized Implementation of Logic Functions
 - 4.1 Karnaugh Map
 - 4.2 Strategy for Minimization
 - 4.2.1 Terminology
 - 4.2.2 Minimization Procedure
 - 4.3 Minimization of Product-of-Sums Forms
 - 4.4 Incompletely Specified Functions
 - 4.8 Cubical Representation
 - 4.8.1 Cubes and Hypercubes
Reading Assignment

- **Roth**
 - 1 Introduction Number Systems and Conversion
 - 1.4 Representation of Negative Numbers
 - 1.5 Binary Codes
 - 4 Applications of Boolean Algebra
 - Minterm and Maxterm Expansions
 - 4.5 Incompletely Specified Functions
Reading Assignment

- Roth (cont)
 - 5 Karnaugh Maps
 - 5.1 Minimum Forms of Switching Functions
 - 5.2 Two- and Three-Variable Karnaugh Maps
 - 5.3 Four-Variable Karnaugh Maps
 - 5.4 Determination of Minimum Expressions Using Essential Prime Implicants
 - 5.5 Five-Variable Karnaugh Maps
 Canonical Forms

- The canonical Sum-of-Products (SOP) and Product-of-Sums (POS) forms can be derived directly from the truth table but are (by definition) not simplified.
 - Canonical SOP and POS forms are “highest cost”, two-level realization of the logic function.
 - The goal of simplification and minimization is to derive a lower cost but equivalent logic function.
Simplification

- Reduce cost of implementation by reducing the number of literals and product (or sum) terms
 - Literals correspond to gate inputs and hence both wires and the size (fan-in) of the first level gates in a two-level implementation
 - Product (Sum) terms correspond to the number of gates in the first level of a two-level implementation and the size (fan-in) of the second level gate
Simplification

- **Algebraic Simplification**
 - Using theorems and properties of Boolean Algebra
 - Difficult with large number of variables and complex Boolean expressions
 - Most often incorporated into CAD Tools

- **Karnaugh Maps**
 - Graphical representation of logic function suitable for manual simplification and minimization
Two-Variable Karnaugh Map

- Location of minterms and maxterms on a two-variable map
 - Index is the same, expansion is complementary

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>m_0</td>
<td>m_1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>m_2</td>
<td>m_3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>M_0</td>
<td>M_1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>M_2</td>
<td>M_3</td>
<td></td>
</tr>
</tbody>
</table>
Two-Variable Karnaugh Map

- Simplification using $xy + xy' = x$ and $x + x'y = x + y$
 - $F = \Sigma m (0,2,3)$

F = A’B’ + AB’ + AB
F = B’ (A’ + A) + AB
F = B’ + AB
F = (B’ + A) (B’ + B)
F = B’ + A
Three-Variable Karnaugh Map

- Location of three-variable minterms

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>m_0</td>
<td>m_1</td>
<td>m_3</td>
<td>m_2</td>
</tr>
<tr>
<td>1</td>
<td>m_4</td>
<td>m_5</td>
<td>m_7</td>
<td>m_6</td>
</tr>
</tbody>
</table>
Three-Variable Karnaugh Map

- Adjacent cells differ in the value of only one variable
 - Known as Gray coding
 - Topological adjacency equates to algebraic adjacency

\[
\begin{align*}
000 &\rightarrow 001 \rightarrow 011 \rightarrow 010 \\
&\uparrow \quad \quad \quad \quad \quad \quad \downarrow \\
100 &\leftarrow 101 \leftarrow 111 \leftarrow 110
\end{align*}
\]
Three-Variable Karnaugh Map

- Three Variable Sum-of-Products Simplification
 - Groupings of 4 \((2^2)\)

\[
\begin{array}{c|cccc}
A & 00 & 01 & 11 & 10 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
F = A'B' + A'B'C' + A'BC' + ABC' \\
F = (A' + A) B'C' + (A' + A) BC' \\
F = B'C' + BC' \\
F = (B' + B) C' \\
F = C'
\]
Three-Variable Karnaugh Map

- Three Variable Product-of-Sums Simplification
 - Groupings of 4 (2^2)

![Karnaugh Map Diagram]

- $F = C'$
- Groupings: $A + C'$, $A' + C'$, $A' + B' + C'$, $A + B + C'$
Four-Variable Karnaugh Map

Location of four-variable minterms

<table>
<thead>
<tr>
<th>AB</th>
<th>CD</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>m0</td>
<td>m1</td>
<td>m3</td>
<td>m2</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>m4</td>
<td>m5</td>
<td>m7</td>
<td>m6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>m12</td>
<td>m13</td>
<td>m15</td>
<td>m14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>m8</td>
<td>m9</td>
<td>m11</td>
<td>m10</td>
<td></td>
</tr>
</tbody>
</table>
Four-Variable Karnaugh Map

- Four-bit Gray code

0000 → 0001 → 0011 → 0010
0100 ← 0101 ← 0111 ← 0110
1100 → 1101 → 1111 → 1110
1000 ← 1001 ← 1011 ← 1010
Four-Variable Sum-of-Products Map

\[F = A + B'CD \]
Implementation with AND/ OR/ NOT & NAND gates
Four-Variable Product-of-Sums Map

\[F = (A + B')(A + C)(A + D) \]
Algebraic conversion between SOP and POS forms

- **Multiplying out**
 - POS \rightarrow SOP

 \[F = (A + B')(A + C)(A + D) \]

 \[
 \begin{align*}
 & A + B' \\
 & A + C \\
 & AA + AB' \\
 & \underline{AC + B'C} \\
 & A + AB' + AC + B'C \\
 & A + B'C \\
 & A + D \\
 & AA + AB'C + AD + B'CD
 \end{align*}
 \]

 \[F = A + B'CD \]

- **Factoring**
 - SOP \rightarrow POS

 \[F = A + B'CD \]

 \[F = (A + B')(A + C)(A + D) \]
Five-Variable Karnaugh Maps

A'B'D'

AB'C

BCDE

A=0

B'CD'

A=1

BC
Six-Variable Karnaugh Map

AB=00

AB=01

AB=10

AB=11

B’DF

C’DF

ADF
Terminology

- **Literal**
 - An appearance of a variable or its complement

- **Implicant**
 - Any minterm and/or product term for which the value of the function equals 1 (in SOP form) or any maxterm and/or sum term for which the value of the function equals 0 (in POS form)
Terminology

- Prime Implicant
 - *An implicant that cannot be combined into another implicant that has fewer literals*

- Essential Prime Implicant
 - *A prime implicant that includes at least one minterm not covered by any other prime implicant*
Terminology

- **Cover**
 - A collection of implicants that accounts for (covers) all minterms (or maxterms) for which a given function equals 1 in SOP form (or 0 in POS form)

- **Cost**
 - An heuristic figure of merit determined generally from the number of product (sum) terms and the number of literals in a given cover
Minimization Procedure

- Generate all prime implicants for the given function
- Find the set of all essential prime implicants
- If the set of essential prime implicants covers the function, this set is the desired cover
 - Otherwise, determine the nonessential prime implicants that should be added to form a complete, minimal cost cover
Minimization Example

10 Implicants (minterms)

6 Prime Implicants
BC’, AB, AC,
B’CD, A’B’D, A’C’D

2 Essential Prime Implicants
BC’, AC

Final Cover with A’B’D
F = A’B’D + BC’ + AC
Combinational Logic Circuit Design

- Specify combinational function using
 - Truth Table,
 - Karnaugh Map, or
 - Canonical sum of minterms (product of maxterms)

- This is the creative part of digital design
 - Design specification may lend itself to any of the above forms
Combinational Logic Circuit Design

- Find minimal POS or SOP form of the logic function
 - Technology can determine whether POS or SOP is appropriate solution
 - Nature of function and cost of implementation can determine whether POS or SOP is better solution
Combinational Logic Circuit Design

- Implement design using AND/OR (or NAND) gates or OR/AND (or NOR) gates
 - In most technologies NAND and NOR implementations are superior
 - In terms of both size and speed

- Simulate design and verify functionality and performance
 - Design should always be verified before committing to fabrication
Combinational Design Example 1

- Design Specification
 - Design a logic network that takes as its input a 4-bit, one’s complement number and generates a 1 if that number is odd (0 is not odd)
 - Label the inputs A, B, C and D, where A is the most significant bit
 - Implement your design in standard sum-of-products representation using only NAND gates
Combinational Design Example 1

- Recall representation of fixed-point, signed and unsigned numbers from ECE 15A (lecture #14)

<table>
<thead>
<tr>
<th>Binary</th>
<th>Unsigned</th>
<th>Sign-Magnitude</th>
<th>One’s Complement</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>+0</td>
<td>+0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>-0</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
<td>-3</td>
<td>-0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Design Example 1 - Truth Table

- Odd, One’s complement numbers

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Design Example 1 - Karnaugh Map

\[F = A'D + AD' \]
Incompletely Specified Functions

- Some logic functions have input combinations that can never occur

 - Examples:
 - Sensors indicating a mutually exclusive event has occurred
 - Processor flags indicating a result was both positive and negative
 - Interlocked switches that can never be closed at the same time
Incompletely Specified Functions

- Conditions called “don’t cares”
 - For minterms/maxterms associated with “don’t care” input combinations, assign output value of 0 or 1 to generate the minimum cost cover
 - On Karnaugh Map, represent “don’t cares” with X and group with minterms (maxterms) to create prime implicants
 - Any X’s not covered can be ignored and will default to 0 (in SOP form) or 1 (in POS form)
Design Example 2

- Design Specification
 - Design a combinational circuit that takes as its input a Binary Coded Decimal (BCD) digit (four bits) and outputs a 1 if the input is an even number (not zero)
 - Recall Binary Coded Decimal representation from ECE 15A
 - Not most economical representation
 - 10 valid combinations per 4 bits
 - 100 valid combinations per byte
Design Example 2

- BCD Example

<table>
<thead>
<tr>
<th>BCD</th>
<th>Value</th>
<th>BCD</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>1010</td>
<td>X</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>1011</td>
<td>X</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>1100</td>
<td>X</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>1101</td>
<td>X</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>1110</td>
<td>X</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>1111</td>
<td>X</td>
</tr>
</tbody>
</table>
Design Example 2

- Canonical Forms for Incompletely Specified Functions
 - For design example, function determined directly from design specification
 - Even numbers, not 0

\[\sum m(2,4,6,8) + d(10,11,12,13,14,15) \]
\[\prod M(0,1,3,5,7,9) \cdot d(10,11,12,13,14,15) \]
Design Example 2 - SOP Karnaugh Map

\[F = BD' + AD' + CD' \]
Design Example 2 - POS Karnaugh Map

\[
F = D' (A + B + C)
\]
Design Example 3

Design Specification

- In this problem, you are to design the combinational circuit that controls the ceiling lights in my downstairs hallway.
- There are three wall switches: one at the front door (A), one at the back door (B) and one in the family room (C).
- When I walk in the front door, the ceiling lights are off, the A switch is ON and both the B and C switches are OFF.
- From these initial conditions, changing the position of any switch should turn the lights on; changing the position of any switch (again) should turn the lights off, etc.
Design Example 3 - Karnaugh Map

Initial Conditions:
A=1, B=0, C=0 and F=0

Changing the position of any switch causes the light to come on
Changing the position of any switch again causes the light to go off
And finally…

\[F = A'B'C' + AB'C + A'BC + ABC' = \text{XNOR} (A, B, C) \]
Design Example Review

From Design Specification to Implementation:

- Example 1
 - Generate truth table from specification

- Example 2
 - Generate sum of minterms (product of maxterms) from specification

- Example 3
 - Generate Karnaugh map from specification