Microprocessors, Microcontrollers & Digital Signal Processors

ECE 153B
Sensor & Peripheral Interface Design
Winter 2016
Intel 4004/ 8008

- 4004 introduced in 1971
 - First microprocessor
 - All CPU components on a single chip
 - 2,300 transistors @ 10µm; 108 KHz clock
 - Four bit data path
 - Particularly suitable for BCD arithmetic (i.e., calculators)
 - Too narrow for general purpose processing

- 8008 introduced in April 1972
 - Eight bit version of 4004
 - 3,500 transistors @ 10µm; 800 KHz clock
 - Architecture based on Datapoint 2200 processor

- Both 4004 and 8008 were dedicated (vs. general purpose) processors
Intel 8080

- 8080 was first general purpose microprocessor
 - Introduced in April 1974
 - 4,500 transistors @ 6\(\mu\)m; 2MHz clock
 - Superset of 8008 instruction set

- Basis for first personal/microcomputers
 - MITS Altair 8800
 - Single chip CPU, general purpose computer

- Required +5V, -5V and +12V supplies as well as two phase clock generation
Motorola 6800

- Introduced in August 1974
 - 4,100 transistors @ 6µm; 1 MHz clock

- Architecture influenced by DEC PDP-11
 - Relatively symmetric instruction set
 - Programmer’s model much “cleaner” than 8080
 - Compilers generally not available at this point for microprocessors
 - No I/O instructions (unlike 8080)
 - Utilized memory mapped I/O

- Very popular processor in computer peripherals and test equipment
Rockwell/ MOS Technology 6502

- Introduced in November 1974
 - Architecture similar to Motorola 6800
 - 3,510 transistors @ 8µm; 1 MHz clock

- Inexpensive and functionally as powerful as Intel 8080 and Motorola 6800
 - Roughly one sixth the cost

- Used in the Apple I & II, IIe and IIc
 - Also Atari game console/computer and Commodore PET/64 computer
Zilog Z80

- Zilog
 - “The last word (Z) in Integrated LOGic (ILOG)”

- Z80 introduced in July 1976
 - 8,500 transistors @ 4 µm

- Bit (software) compatible with 8080

- Many hardware improvements over 8080
 - Two register files for efficient context switching
 - Single 5V supply (available on 8085)
 - Single phase 5V clock (available on 8085)
 - Integrated DRAM refresh
Zilog Z80

- Hugely successful microprocessor for both general purpose and control applications
 - Dual register files allowed for efficient handling of interrupts for control applications

- The Z80 and the 6502 dominated the early years of the home/personal computer industry
 - Z80 used most notably in the Osborne I (the first portable PC) and the Radio Shack TRS80

 - The “Osborne Effect”
 - The Osborne Effect states that prematurely discussing future, unavailable products damages sales of existing products

 - The “Trash 80”
 - Total lack of respect for all things Radio Shack
Intel 8085

- 8085 was a hardware extension of 8080
 - Introduced in 1977
 - 6,500 transistors @ 3 μm; 5 MHz clock

- 5V only operation

- Integrated clock generator
 - Only external crystal required

- Long product life as a controller

8085 was a hardware extension of 8080

- Introduced in 1977
- 6,500 transistors @ 3 μm; 5 MHz clock

- 5V only operation

- Integrated clock generator
 - Only external crystal required

- Long product life as a controller
Intel 8088/ 8086

- Intel’s first 16 bit processors

8086 introduced in 1978
- 29,000 transistors @ 3μm; 5 MHz clock
- 16 bit internal/external data bus

8088 introduced in June 1979
- 29,000 transistors @ 3μm; 5 MHz clock
- 16 bit internal data bus, 8 bit external data bus
 - Allows for lower cost board implementation and peripheral interface
- Used in the IBM PC
Motorola 68000

- 16/32 bit processor introduced in September 1979
 - 16 bit external interface
 - 32 bit macroinstructions and register file
 - Forward compatible with “true” 32 bit processors
 - But not backward compatible with 6800

- 40,000 transistors @ 3.5 μm; 1 MHz clock (original version)
 - Viable architecture for nearly 30 years

- Used in Apple Lisa & Macintosh (among others)

- Dominant processor in UNIX based workstation market (Sun & Apollo)
Microcontrollers

- All of the processors discussed so far were designed for general purpose (computer) applications
 - All fit the definition of a “microprocessor”
 - CPU on a single chip

- For a microprocessor to be used in control applications, additional components are required (beyond memory)
 - Parallel ports
 - UARTs
 - Timers
 - Memory controllers (DRAM, DMA, etc.)
 - LCD controllers
 - CRT controllers
 - etc., etc., etc…
Microcontrollers

- As the number of available transistors increases, the external components required to utilize a microprocessor in a control application can be incorporated with the CPU on a single chip.

- This is, by definition, a microcontroller.

- The first microcontrollers came into prominence in the 1980’s.

- In the case of general purpose microprocessors, this additional density is utilized to more effectively support operating systems and program execution.
 - By example, the x86 and Pentium implementations.
Microcontrollers

- Microcontrollers are most often used in embedded systems
 - Embedded systems are special purpose applications
 - Appliances, automotive applications, implantable medical devices, musical instruments, robotics, toys, etc.
 - All under the heading of “Computers as Components”
 - Terms embedded processor and microcontroller often used interchangeably
 - Critical issues are power, speed, package, and cost
 - Not necessarily in that order
The First Microcontrollers

- Texas Instruments TMS 1000
 - Introduced (commercially) in 1974
 - Included CPU, ROM, RAM and clock on a single chip
 - In reality, it was a calculator chip and not a general purpose microcontroller

- Intel 8048
 - Introduced in 1977
 - Included CPU, ROM and RAM
 - In reality, it was a PC keyboard controller and not a general purpose microcontroller
Early 8 bit Microcontrollers

- **Zilog Z8**
 - Introduced in 1979
 - Integrated clock oscillator
 - Two timers/counters
 - Serial line (UART)
 - 32 I/O lines (4 ports)
 - Harvard architecture
 - Separate data and program memory spaces
 - Internal program memory ranges from 0 KB to 4 KB
 - Can be expanded up to 64 KB of program memory using external ROM
 - 144 8-bit registers - 4 I/O registers, 16 control registers and 124 general registers
Early 8 bit Microcontrollers

- Intel 8051
 - Introduced in 1981
 - Implementations exist today as stand alone chips from multiple sources as well as cores (intellectual property)
 - Dual 16 bit address bus
 - It can access 2×2^{16} memory locations – 64 KB each of RAM and ROM
 - 128 bytes of on chip RAM
 - 4 KB of on chip ROM
 - Four 8 bit bidirectional input/output ports
 - UART (serial port)
 - Two 16 bit counter/timers
Early 8 bit Microcontrollers

- Microchip Technology PIC 16X
 - Originally developed as “Peripheral Interface Controller” for General Instruments CP1600 microprocessor in 1975
 - General Instruments spun off its microelectronics division in 1985 and PIC became the flagship architecture and a registered trademark of Microchip Technology
 - Today there are literally thousands of PIC based microcontrollers
 - Range from 6 pins to 100’s of pins
 - Any discussion of a microcontroller based (embedded system) design will include a Microchip Technology PIC at some point
Intel 80186/ 80286/ 80386/ 80486

- 80186 introduced in May 1979
 - 55,000 transistors @ 3µm
 - Not a very successful product

- 80286 introduced in May 1982
 - 134,000 transistors @ 1.5µm; 6 MHz clock
 - 16 bit data path

- 80386 introduced in October 1985
 - 275,000 transistors @ 1.5µm; 16 MHz clock
 - 32 bit data path
 - First processor packaged in Pin Grid Array (PGA)

- 80486 introduced in April 1989
 - 1,200,000 transistors @ 1µm; 25 MHz clock
 - On board floating point unit as opposed to “coprocessor”
Digital Signal Processors

- Architecture optimized for signal processing applications
 - Large number of mathematical operations on a series of data samples
- Hardware implementation of Multiply/Accumulate function
 - Critical for FFT type applications
The First DSP

- The Texas Instruments TMS 5100
 - Introduced in 1978 as the Digital Signal Processor embedded in the TI “Speak and Spell”
 - Also first to utilize Linear Predictive Coding (LPC) in speech synthesis
 - Not general purpose, but got the DSP ball rolling
Texas Instruments TMS32010

- Introduced in April 1983
 - Not the first DSP per se, but ultimately defined the structure of a general purpose DSP
 - Basis of phenomenally successful family of DSP’s establishing TI as the industry leader
- 58,000 transistors @ 3µm; 20 MHz clock
- Harvard Architecture
 - Separate program and data memories
 - Similar to microcontroller architectures
- Fast Multiply/Accumulate instruction
- Not byte addressable
 - Operation on data samples, not ASCII characters
Modern DSPs

- Both fixed and floating point processors
- Highly irregular instruction sets as compared to general purpose microprocessors
- SIMD (Single Instruction, Multiple Data) instructions
 - Vectored instructions
- VLIW (Very Long Instruction Word) format
 - Instruction level parallelism
- Extensive use of DMA
 - No virtual memory due to latency of context switching
- Pipelined Architecture
- Highly parallel Multiply/Accumulate (MAC) modules
 - Direct support for matrix operations such as convolution, dot product and polynomial evaluation
The 1990’s and the Intel Pentium

- Pentium introduced March 1993
 - 3,100,000 transistors @ 0.8 µm; 66 MHz clock
 - Named vs. Numbered due to AMD litigation
 - You can trademark a name but not a number

- Pentium Pro introduced in November 1995
 - 5,500,000 transistors @ 0.6 µm; 200 MHz clock

- Pentium II introduced in May 1997
 - 7,500,000 transistors @ 0.25 µm; 300 MHz clock

- Pentium III introduced in 1999
 - 9,500,000 transistors @ 0.18 µm; 500 MHz clock

- Pentium 4 introduced in 2000
 - 42,000,000 transistors @ 0.18 µm; 1.5 GHz clock
CPU Transistor Counts 1971-2008 & Moore’s Law

Curve shows ‘Moore’s Law’: transistor count doubling every two years.

Transistor count

Date of introduction

State of the Art (2012)

- **CPU**
 - Intel 62 core Xeon Phi (2012)
 - 5,000,000,000 transistors
 - 22 nm (0.022 µm) technology

- **FPGA**
 - XILINX Virtex-7 (2011)
 - 6,800,000,000 transistors
 - 28 nm technology (0.028 µm) technology

- **Recall Intel 4004 technology (1971)**
 - 2,300 transistors
 - 10 µm technology
Modern Microcontrollers

- Thousands of variants from dozens of vendors
 - Power, performance, package, peripherals and cost

- All include
 - CPU
 - ranging from small and simple 4-bit processors to complex 32- or 64-bit processors
 - Volatile memory (RAM/register file) for data storage
 - Nonvolatile memory for program and operating parameter storage
 - Most often Flash in modern microcontrollers
 - ROM, PROM, EPROM, EEPROM in older chips
 - “Simple” serial input/output ports (UARTs)
 - Clock generator
 - An oscillator for use with a quartz crystal
 - And/or an internal RC circuit
Modern Microcontrollers

- Most include some combination of other serial communications interfaces
 - Inter Integrated Circuit (I²C)
 - Low speed peripherals
 - Serial Peripheral Interface (SPI)
 - Medium speed full duplex serial interface
 - Synchronous Serial Port (SSP/SPI)
 - Controller Area Network (CAN)
 - Automotive standard
 - Integrated Interchip Sound (I²S)
 - Serial bus standard for connecting digital audio devices
 - Ethernet
 - Universal Serial Bus (USB)
Modern Microcontrollers

- And other peripherals such as
 - General Purpose I/O pins & ports
 - LCD Controllers
 - Real Time Clock
 - SD/MMC
 - Memory card controller
 - Timers, event counters, etc.
 - PWM generators
 - Pulse Width Modulation for motor control
 - Analog to Digital Converters (ADC)
 - Digital to Analog Converters (DAC)