Project Description

ChessMate is an interactive, LED illuminated chess board that enhances a player’s experience by providing various digital board augmentations. These include multicolor LEDs that automatically light up valid moves when a player picks up a piece and a touchscreen display that passively times each player as moves are made while displaying pertinent game information.
Application & Usage

- Designed to help visualize chess moves on the playing surface
 - “Middle-man” between player’s thought-process and game-board
- Applicable to players of all skill levels
 - Assist new players in learning possible moves for each piece
 - Complement experienced user's knowledge with visual representation
 - Toggle LED illuminations to practice/play without visualized moves enabled
- Simple touch LCD interface to combine simplicity and accessibility
 - Easily start/restart a new game with 1-button press
 - Track pieces that have been taken
 - Display last move made by each player
Design-Layout Abstraction

- Game Surface
- IR Proximity Sensors
- Digital LED Segment
- Vectorboard
- Assembled PCB
Simplified Design

- LCD Touchscreen Display NHD-7.0-ATXV
 - RGB/I2C

- IR Proximity Tile Sensors Vishay TCRT1010
 - Analog

- Controller LPC4088 (Cortex-M4)
 - I2C

- Multi-Color LED Strip LPD8806

- Game Board Surface

Key:
- No electrical connection
IR Proximity Sensor - Vishay TCRT1010

● Proximity Infrared Sensor
 ○ Detect when a piece is on/off a specific square
 ○ Tweaking needed to find “sweet spot”
 ○ Sunlight could play a factor - prototype!

● Analog output - convert to “digital” for simplicity
 ○ Schmitt triggers perform the conversion
 ○ Binary 0/1 determines if space is occupied

● One sensor per square - 64 total
 ○ Common GND/voltage for each sensor
 ○ Unique sensor lead passed through schmitt trigger
 ○ Board reads sensor and updates piece location
LED Strip - Adafruit Digital RGB LED Strip

- Digitally controlled LED’s
 - Individually control each LED
 - 2 daisy-chained strips for the entire board
- LEDs illuminate a possible/valid move
 - Player-specific colors - BLUE/GRN
 - Special move (castle, check) color - YLW
 - Eliminated piece - RED
- Strips placed beneath row of tiles
 - One LED segment per square
 - Daisy chained connection - serially load bits
 - Common power/ground for both strips
Vector Board

- **Bridges the external and on-board PCB components**
 - Sensor and LEDs communicate with PCB but are off-board
 - Only unique signals need to be sent to/from the PCB

- **Simplified connections**
 - Allows for common GND/Vcc for all sensors & LED daisy chains
 - Can be placed at optimal sensing and wiring distance
 - Reduces required number of wires coming from PCB

- **Debugging is heavily external**
 - Few components physically on the PCB itself
 - Isolate problems off of the board - no need to resolder components
 - Resistor arrays and Schmitt triggers connected where necessary
Critical Elements & Possible Issues

● Wiring Mess!
 ○ Neat wiring and organized sensor/header placement on the board for easier management
 ○ 64 sensors * multiple pins + multiple daisy chained LED strips

● Smooth sensor-to-tile interfacing for each tile & piece
 ○ An accurate and stable reading is needed for good results and piece location
 ○ What if multiple pieces are picked up simultaneously?
 ○ What if someone drops a piece? Multiple sensors go high

● Monitor and maintain piece locations in memory
 ○ Based on initial conditions - starting position is always known!
 ○ Special moves need to be considered - checking, castling, etc

● Smooth GUI Design and LCD Interface
 ○ Bluetooth App in case LCD fails