IR HUB
CRITICAL DESIGN REVIEW

By:
Jeremiah Prousalis
Nathaniel Bradley
Jesus Castro
DEVELOPMENT TEAM:

• Jeremiah Prousalis:
 • Project Lead
 • Firmware Lead
 • Bluetooth Module Interfacing

• Nathaniel Bradley:
 • Hardware Lead
 • Analog IR Design
 • Power System Design

• Jesus Castro:
 • Software Lead
 • Android Application
 • PCB Layout Lead
PRODUCT DESCRIPTION:

- IR Hub will feature an MCU connected to a Bluetooth Low Energy Module.
- The BLE Module will enable users to interact with the Hub via an accompanying Android app.
- An IR receiver will be used to read and store button codes from users’ remote controls.
- An array of IR LEDs will be arranged around the perimeter of the PCB allowing known button codes to be rebroadcast on command.
APPLICATION:

• **IR Hub** will solve the problem of cluttering your living room with one or more infrared remotes by turning your **phone** into a **universal remote**.

• The **IR sensor** will allow the Hub to act as a truly **universal** remote by enabling the device to **learn** the outputs of any remote control no matter how obscure the brand.

• This will all be housed in a domed casing intended to be mounted in a central location of a user’s room, and any IR signals transmitted provide **360° room coverage**.
CRITICAL ELEMENTS:

• Precise signal capturing
• Precise signal broadcasting
• Responsive handling of user input
PARTS:

- **Microprocessor**
 - LPC4088
 - 512kB Flash
 - persistent storage used for remote codes
 - 12 bit ADC
 - 400kHz Conversion Rate
 - PWM Capture Pin
 - 120MHz Clock
 - 2.4V-3.6V Supply Voltage
 - UART Interface
 - On-Board PWM
SUB-SYSTEMS:

- **Power**
 - Optional wall or battery power

- **Bluetooth**
 - Bluetooth Low Energy module allowing users to command Hub to either learn or transmit a remote code

- **IR Receiver**
 - Infrared phototransistor for reading raw signal from remotes

- **IR Transmitter**
 - 8 infrared LEDs arranged around the perimeter of the PCB

- **User Interface**
 - Android Application allowing users to create, organize, and activate buttons for various devices
POWER DISTRIBUTION:

- 9V input, regulated down to 3.3V to supply entire PCB
- Jumper to select between wall or battery power
 - Barrel Jack with 9V input on wall power
 - 9V battery on battery power
- 1 Analog and 1 Digital Power Plane
 - IR Receiver/Transmitter supply analog plane
 - Rest digital plane
PARTS:

- Bluetooth Module
 - Adafruit Bluefruit LE
 - UART interface at 9600 baud
 - HW flow control (CTRS, RTS)
 - Simple AT command set for configuration
 - 3.3V Supply Voltage
 - 20 mA peak current consumption
 - On-board ADC for battery read
 - Through hole female socket connectors for mounting module
PARTS:

- **IR I/O**
 - BPV22 IR Phototransistor
 - 8 TSAL6200 IR Emitters
 - 940nm wavelength
 - 1.35V
 - 100mA
ANDROID APPLICATION MOCKUP:
TECHNOLOGY REUSE:

• BLE Module
 • Existing Adafruit BLE Libraries for nRF51 based modules
 • Proprietary Nordic UART BLE connection profile
 • Nordic UART Service (UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E)
 • TX Characteristic (UUID: 6E400002-B5A3-F393-E0A9-E50E24DCCA9E)
 • RX Characteristic (UUID: 6E400003-B5A3-F393-E0A9-E50E24DCCA9E)

• LPCOpen
 • Open source libraries and code
FIRMWARE STRUCTURE:

• **Battery Read**
 • BLE module contains ADC and battery read AC Command
 • Periodic interrupt reads battery level
 • Red LED indicator blinks when battery is low
FIRMWARE STRUCTURE:

- **Learning Mode**
 - BLE command over UART bridge wakes MCU from idle state
 - Frame "0xF0" indicates learning mode
 - ID sent for addressing button in the future
 - Yellow LED indicates state change
 - Timeout timer started
 - IR Receiver interrupts enabled
 - PWM1_CAP0 reads in remote signal
 - Green LED indicates whether signal has been received
FIRMWARE STRUCTURE:

• **Store**
 • Input data is processed and compressed
 • Data is broken down into 3 key pieces of information:
 • Carrier Frequency
 • Pulse Duration
 • Code
 • Data is stored in flash, indexed according to ID previously provided by phone
FIRMWARE STRUCTURE:

- **Send**
 - BLE command over UART bridge wakes MCU from idle state
 - Frame "0xFF" indicates learning mode
 - ID indicates index of code to transmit
 - PWM0_1 configured to carrier frequency
 - Code is iterated through, bit by bit delaying by pulse duration each iteration

<table>
<thead>
<tr>
<th>Start</th>
<th>0xFF</th>
<th><ID></th>
<th>Stop</th>
</tr>
</thead>
</table>

BILL OF MATERIALS:

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Manuf Part #</th>
<th>Units per Board</th>
<th>Total Units</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>uController</td>
<td>NXP Semiconductors</td>
<td>LPC4088FBDB208</td>
<td>1</td>
<td>4</td>
<td>$12.7800</td>
<td>$51.12</td>
</tr>
<tr>
<td>RS232 Level Shifter</td>
<td>Products</td>
<td>MAX3233ECWP+G</td>
<td>1</td>
<td>4</td>
<td>$7.1700</td>
<td>$28.68</td>
</tr>
<tr>
<td>Pushbutton</td>
<td>C & K Components</td>
<td>PTS645SK95-2 LFS</td>
<td>2</td>
<td>8</td>
<td>$0.1900</td>
<td>$1.52</td>
</tr>
<tr>
<td>Yellow Test LEDs</td>
<td>Lite-On</td>
<td>LTST-C170YKT</td>
<td>1</td>
<td>4</td>
<td>$0.3700</td>
<td>$1.48</td>
</tr>
<tr>
<td>Green Test LEDs</td>
<td>Lite-On</td>
<td>LTST-C170GKT</td>
<td>1</td>
<td>4</td>
<td>$0.3300</td>
<td>$1.32</td>
</tr>
<tr>
<td>IR LED Emitter</td>
<td>Vishay</td>
<td>TSAL6200</td>
<td>8</td>
<td>32</td>
<td>$0.57</td>
<td>$18.24</td>
</tr>
<tr>
<td>IR Photo Receiver</td>
<td>Vishay</td>
<td>BPV22NF</td>
<td>1</td>
<td>4</td>
<td>$1.11</td>
<td>$4.44</td>
</tr>
<tr>
<td>Red Test LEDs</td>
<td>Lite-On</td>
<td>LTST-C170CKT</td>
<td>5</td>
<td>20</td>
<td>$0.0823</td>
<td>$1.65</td>
</tr>
<tr>
<td>10K Resistors</td>
<td>Vishay</td>
<td>CRCW080510K5FKEA</td>
<td>6</td>
<td>24</td>
<td>$0.0050</td>
<td>$0.12</td>
</tr>
<tr>
<td>100K Resistors</td>
<td>Vishay</td>
<td>CRCW0805100KJNEA</td>
<td>1</td>
<td>4</td>
<td>$0.10</td>
<td>$0.40</td>
</tr>
<tr>
<td>10 Ohm Resistors</td>
<td>Vishay</td>
<td>CRCW080510R0JNEA</td>
<td>8</td>
<td>32</td>
<td>$0.10</td>
<td>$3.20</td>
</tr>
<tr>
<td>2K Resistors</td>
<td>Vishay</td>
<td>CRCW08052K0JNEA</td>
<td>7</td>
<td>28</td>
<td>$0.0030</td>
<td>$0.08</td>
</tr>
<tr>
<td>1 nF Capacitors</td>
<td>Kemet</td>
<td>C0805C102J5GACTU</td>
<td>9</td>
<td>36</td>
<td>$0.0780</td>
<td>$2.81</td>
</tr>
<tr>
<td>4.7 uF Capacitors</td>
<td>Kemet</td>
<td>C0805C475K4PACTU</td>
<td>9</td>
<td>36</td>
<td>$0.1460</td>
<td>$5.26</td>
</tr>
<tr>
<td>100 nF Capacitors</td>
<td>Kemet</td>
<td>C0805C104J5RACTU</td>
<td>31</td>
<td>124</td>
<td>$0.0360</td>
<td>$4.46</td>
</tr>
<tr>
<td>1 uF Capacitors</td>
<td>Kemet</td>
<td>C0805C105K4RACTU</td>
<td>2</td>
<td>8</td>
<td>$0.0890</td>
<td>$0.71</td>
</tr>
<tr>
<td>JTAG</td>
<td>Harwin</td>
<td>M50-3500542</td>
<td>1</td>
<td>4</td>
<td>$0.0000</td>
<td>$0.00</td>
</tr>
<tr>
<td>Berg Connector</td>
<td>FCI</td>
<td>68001-220HLF</td>
<td>1</td>
<td>4</td>
<td>$0.0690</td>
<td>$0.28</td>
</tr>
<tr>
<td>DB9 Connector</td>
<td>FCI</td>
<td>10090097-P094VLF</td>
<td>1</td>
<td>4</td>
<td>$0.0000</td>
<td>$0.00</td>
</tr>
<tr>
<td>BLE Module Headers</td>
<td>Preci-Dip</td>
<td>801-87-008-10-00110</td>
<td>1</td>
<td>4</td>
<td>$0.6000</td>
<td>$2.40</td>
</tr>
<tr>
<td>Barrel Power Jack</td>
<td>CUI</td>
<td>PJ-102AH</td>
<td>3</td>
<td>12</td>
<td>$2.66</td>
<td>$31.92</td>
</tr>
<tr>
<td>3v3 Regulator</td>
<td>Texas Instruments</td>
<td>LM1084ISX-3.3/NOPB</td>
<td>2</td>
<td>8</td>
<td>$0.58</td>
<td>$4.64</td>
</tr>
<tr>
<td>N-Chanel MOSFET</td>
<td>Microchip Technology</td>
<td>VN0104N3-G</td>
<td>1</td>
<td>4</td>
<td>$17.50</td>
<td>$70.00</td>
</tr>
<tr>
<td>BLE Module</td>
<td>Adafruit</td>
<td>Adafruit Bluefruit LE UART</td>
<td>1</td>
<td>4</td>
<td>$17.50</td>
<td>$70.00</td>
</tr>
</tbody>
</table>

Total: $239.45
IR HUB
CRITICAL DESIGN REVIEW

Questions?