UCSB HYPERLOOP

Electrical Engineering: Brian Canty, Ricky Castro. Kevin Kha, Alejandra Santos
Computer Engineering: Yang Ren, Tristan Seroff, Jesus Diera, Esthla Kaduwela,
Advisors: Tyler Susko (ME), Greg Balsen (ME), Trevor Marks (ME), Steve Laguette (ME), Ilan Ben-Yaacov (EE), John Johnson (GE)

STABILITY
- Pod travels along central I-Beam
- Pair of stability wheels keeps pod on track, prevents rotation around y-axis (yaw)

Figure 1: SpaceX Track Cross Section
Figure 3: Braking System and I-Beam, Red Keep-Out Zones

BRAKING
- Rubber pads clamp onto central I-beam, can slow from a speed of 200 mph in 17 seconds
- Two pairs of brakes, each pair can stop pod on its own

Figure 2: Pod Motion Along Test Track
Figure 4: Payload Mounted to Cart (Blue)

HYBRID DESIGN
- Wheels provide best stability at operating speed
- Cart/Payload design:
 - Cart: stable, rigid outer frame, has stability wheels, brakes, and drag racing wheels
 - Payload: Moves vertically along linear bearings, MagLev engines support the weight of electronics and battery banks

Figure 5: An example of a wheel

MAGNETIC LEVITATION
- Motion of magnets generates eddy currents in conductive surface, which creates an opposing magnetic force that lifts pod
- Utilizes Halbach arrays, maximizes field strength below pod, minimizes interference with electronics

Figure 6: Halbach Array Magnetic Field

THERMAL CONSIDERATIONS
- Heat is sunk into aluminum frame, thermal jackets
- Subsystems individually tested to ensure performance in low pressure environment

Figure 7: Magnetic Levitation Motor Thermal Profiles

ACKNOWLEDGMENTS: We would like to express our deepest gratitude to the UCSB College of Engineering and SpaceX for giving us this amazing opportunity, to all of our faculty and industry advisors for their valuable support throughout this past year, and to our sponsors which have been generous and encouraging in all of our efforts. We would also like to thank Jonathan Siegal, Mike Volpi, John Gemmass, Steve Holmgren for their individual contributions, and Roger Green and Andy Weinberg at the machine shop.

ELECTRONICS
- Powered by lightweight lithium polymer batteries. Batteries source 3.8 kilowatts of power to MagLev engines and subsystems
- Sensor array records pod temperature, power consumption, position, and subsystem status
- Wirelessly transmits information through web app

Figure 9: Hyperloop Pod
Figure 10: Subsystem Boards and Power Distribution Mounted in Pod

CONTROL SCHEME
- Each subsystem has state machine, ensures all behavior is controlled and characterized
- Braking has most safety checks, only deployed after time/distance threshold surpassed and no longer accelerating

Figure 8: Magnetic Levitation Motor Thermal Profiles

UCSB HYPERLOOP

Cart: stable, rigid outer frame, has stability wheels, engines support the weight of electronics and
Payload: Moves vertically along linear bearings.

Figure 9: Braking Subsystem Control Scheme

Figure 11: Braking Subsystem Control Scheme