AURCA
Ground Station System Level Block Diagram
AURCA
On-Board System Level Block Diagram
AURCA

Group Organization

- **Alexander Adams - Aircraft Control & Power Manager**
 - Power Supplies
 - PWM Controllers
 - Inertial Reference Unit

- **Sebastian Siatkowski - Microprocessor Manager**
 - Microprocessor Hardware
 - Microprocessor Software Initialization and Configuration
 - Camera Module

- **Michael McKeown - Software Architect**
 - On-Board Code Structure
 - Ground Station GUI Structure
 - GPS Module

- **Ethan Preble - Wireless Communication Manager**
 - Wireless Transceiver Configuration
 - Wireless Protocol Definition
 - Joystick Interface
AURCA
Vehicle Interface

• Power from BEC
• PWMs control ESC and Servos
• Out of radio range behavior
AURCA
Orientation Sensor

- Sensors
 - 3 axis accelerometer
 - 3 axis gyro
 - 3 axis magnetometer
- Kalman filtering
- OEM module
- Heading has singularity at board pitch of +/- 90 degrees
AURCA

Microprocessor Hardware

PIC24FJ64GA106

• 32 MHz clock
 o 8 MHz External Crystal w/ 4x PLL

• 4 UARTs

• 16 kB Memory

• Timer interrupts

• 16-bit Architecture
AURCA

Camera Module

LinkSprite LS-Y201

• On-Chip JPEG Compression

• Configuration
 o Compression Ratio
 o Image Size
 ▪ 640x480, 320x240, 160x120

• Implemented Features
 o Capture Mode
 ▪ Continuous (0.1 - 1 FPS)
 ▪ On Request
 o Image Save to Disk Option

• Large On-Board State Machine
AURCA

Global Position System (GPS) Module

66 Channel LS20031 GPS Receiver

- Original GPS module was faulty
- Configured to output latitude, longitude, altitude, ground speed, and fix information at 2.5 Hz
- Position Accuracy: 2.5m-3m (at best)
 Altitude < 18,000 m, Velocity < 500 m/s
- Transmits data to ground station at 1Hz
- Ground station displays data on GUI
AURCA

Ground Station Software Components and Structure

• Qt (Open Source GUI Framework) with Microsoft Visual Studio 2010 C++
 o Main Window
 o Widgets/Objects
 ▪ Open Source Libraries
 o Signals and Slots
AURCA
Ground Station Software Components and Structure
• Microchip MPLab X IDE with C30 Compiler in C
 o All UART serial communication is interrupt driven
 o Serial data received from all components goes into software buffer from ISR
 ▪ Except data received from wireless transceiver
 • Preserves priority for aircraft control data
 o Main loop polls and parses software receive buffers
 ▪ Transmission of sensor data to ground station based on parsing or timer
Serial data transmitted goes into software buffer

- Interrupt when hardware transmit buffer has at least one spot in it, fill hardware buffer with data from software buffer

- UART hardware buffers never overflow!
Xbee 900 Pro

- Range >300m
- Throughput 156 Kbps
 - 640*480 JPEG = 50kB
- Delay 0.1 - 0.2 sec
- FCC Approved
- ISM 900 MHz
 - Little interference
Wireless Packet Structure

<table>
<thead>
<tr>
<th>Flag</th>
<th>Payload Length</th>
<th>Packet Type</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
</table>

AURCA
Wireless Communication Protocol
AURCA
Wireless Communication Protocol

Image Chunk Retransmits
AURCA

Joystick Interface

- Four Axes
 - x - Roll
 - y - Pitch
 - z - Yaw
 - Throttle
- Interrupt driven
 - 25ms or 40Hz
- Deadzone
- Mappable buttons
AURCA
Completed and Populated PCB
AURCA
Camera/Aircraft Integration

Camera
AURCA
Ground Station
AURCA
First Flight

Flight 1: SBRCM Airstrip
5-27-2012
First Flight
What Went Wrong & How We Fixed It

- **Problem**
 - Ailerons engaged on takeoff

- **Cause**
 - Unintended X-Axis Movement
 - No Deadzone

- **Fix**
 - Added Joystick Deadzones and rescaled
AURCA Second Flight

AURCA Test Flight 2
SBRCM Airfield 5-28-2012
Conclusions

• What we felt we did right
 o Good organization and teamwork
 o Designing for robustness and reliability
 o Picked an exciting project idea
 o Did not try to do TOO much, we wanted to add a lot more

• What we felt we did wrong
 o Left some important parts to the last minute
 o Overly complex components
 o Thoroughness of checking board layout

• Advice to future Senior Capstone Students
 o START EARLY!!!
 o Pay attention to all details, do not overlook ANYTHING
 o Pick a project that you think will be fun and will have exciting results. This makes the whole class easier.
AURCA

Thanks to Our Sponsors and Others!

UCSB, ECE Department, Professor Butner, and ECE Shop

Rapid Prototypes Technology & Manufacturing, LLC

SPE Robotics & Electronics

Mentor Graphics

Digi-Key Corporation

Microsoft Academic Alliance

Qt

Qualcomm

SDL

Microchip