Point-to-point Autonomous Collision and Obstacle-avoidance Robot

Arthur Rudnick
Dan Dosch
Derek Spadaro
Nhat Le

Professor John Johnson
ECE 189A-B 2004-2005

http://www.AtotheR.com/robotics/pacobot
PACObot utilizes Global Positioning System technology, a digital compass, and both infrared and ultrasonic sensors to travel to preprogrammed waypoints while avoiding unplanned obstacles in its way.
Scientific: Topological mapping, mapping of other planets, regular distance soil and water sampling.

Military: Automated reconnaissance, unmanned convoy control, robotic sentry, mine field charting.

Public Utility: Automated lane line painting, lot line adjustment, spill clean up, parking lot layout.

Homeland Security: Automated border patrol, airport parking lot and loading area monitoring.

Household Consumer: Automated dog walking, intelligent large area lawn mower.
Arthur Rudnick: Group Leader
Inter-Processor Communication
Power Management and Distribution
System Level Design and Integration
Control Processor Software
Crisis Management

Dan Dosch: Object Detection
Infrared Sensors
Ultrasonic Sensor
Digital Compass
Navigation Processor Software

Derek Spadaro: Navigation
Global Position Satellite Module
PC User Interface
Navigation Processor Software

Nhat Le: Vehicle Control
Motor and Servo Control
Chassis Design and Fabrication
Design Plan (Fall)

Project PACObot

No Risk Systems

PACObot

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Idea and Team Formation</td>
<td>5 days</td>
</tr>
<tr>
<td>2</td>
<td>Refined Project</td>
<td>5 days</td>
</tr>
<tr>
<td>3</td>
<td>Initial Design Review</td>
<td>3 days</td>
</tr>
<tr>
<td>4</td>
<td>System Level Design</td>
<td>10 days</td>
</tr>
<tr>
<td>5</td>
<td>Preliminary Design Review</td>
<td>3 days</td>
</tr>
<tr>
<td>6</td>
<td>Detailed Design</td>
<td>20 days</td>
</tr>
<tr>
<td>7</td>
<td>Critical Design Review</td>
<td>3 days</td>
</tr>
<tr>
<td>8</td>
<td>Implementation of Hardware Design</td>
<td>10 days</td>
</tr>
<tr>
<td>9</td>
<td>Establish Purchase Orders</td>
<td>3 days</td>
</tr>
<tr>
<td>10</td>
<td>Contact Free Part Contacts</td>
<td>3 days</td>
</tr>
<tr>
<td>11</td>
<td>Obtain Parts</td>
<td>5 days</td>
</tr>
<tr>
<td>12</td>
<td>Basic Microcontroller Unit Test</td>
<td>5 days</td>
</tr>
<tr>
<td>13</td>
<td>Servo Control Unit Test</td>
<td>3 days</td>
</tr>
<tr>
<td>14</td>
<td>Motor Control Unit Test</td>
<td>3 days</td>
</tr>
<tr>
<td>15</td>
<td>IR Sensor Unit Test</td>
<td>3 days</td>
</tr>
<tr>
<td>16</td>
<td>Sonic Sensor Unit Test</td>
<td>2 days</td>
</tr>
<tr>
<td>17</td>
<td>Digital Compass Unit Test</td>
<td>2 days</td>
</tr>
<tr>
<td>18</td>
<td>RS-232 Unit Test</td>
<td>3 days</td>
</tr>
<tr>
<td>19</td>
<td>GPS Unit Test</td>
<td>5 days</td>
</tr>
<tr>
<td>20</td>
<td>Integration Testing</td>
<td>5 days</td>
</tr>
<tr>
<td>21</td>
<td>Schematic Layout</td>
<td>2 days</td>
</tr>
<tr>
<td>22</td>
<td>System Prototype</td>
<td>7 days</td>
</tr>
<tr>
<td>23</td>
<td>PCB Layout</td>
<td>5 days</td>
</tr>
</tbody>
</table>

Proposed Project Schedule

<table>
<thead>
<tr>
<th></th>
<th>October 2004</th>
<th>November 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Task

- **Split**
 - Project Idea and Team Formation
 - Refined Project
 - Initial Design Review
 - System Level Design
 - Preliminary Design Review
 - Detailed Design
 - Critical Design Review
 - Implementation of Hardware Design
 - Establish Purchase Orders
 - Contact Free Part Contacts
 - Obtain Parts
 - Basic Microcontroller Unit Test
 - Servo Control Unit Test
 - Motor Control Unit Test
 - IR Sensor Unit Test
 - Sonic Sensor Unit Test
 - Digital Compass Unit Test
 - RS-232 Unit Test
 - GPS Unit Test
 - Integration Testing
 - Schematic Layout
 - System Prototype
 - PCB Layout

Milestone

- Arthur
- Nhat
- Dan
- Derek

External Tasks

- Arthur
- Nhat
- Dan
- Derek

Summary

- Project Summary

Page 1
Testing and Development Plan (Spring)

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>April 2005</th>
<th>May 2005</th>
<th>June 2005</th>
<th>July 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechanical Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Finish Chassis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hardware Verification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Obtain Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Power Up Empty Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Check All Chip Power Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Power Up Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Program And Test Power Up LED Externally</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Program And Test Power Up LED In Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Program And Test LED Blink</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Debounce Switches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Program And Test Switch Controlled LED Toggle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Parallel Unit Testing And Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Motor Control Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Servo Control Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>IR Sensor Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ultrasonic Sensor Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Digital Compass Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>RS-232 Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>GPS Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Processor Interconnect Unit Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>System Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>RS-232 to Ctrl Proc to Nav Proc Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Sensor to Ctrl Proc to Motor and Servo Integration (Obstacle Avoidance Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Digital Compass and GPS to Nav Proc Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Nav Proc to Ctrl Proc to Motor and Servo Integration (Navigation Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Project Finalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Obstacle Avoidance Mode and Navigation Mode Incorporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Final Shakedown and Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Overview

- Microchip PIC18F4331
 - Running on 8MHz Internal Clock
 - 40 MHz Capable with External Clock
 - 40 I/O Pins
 - 2 PWM Modules (8 & 2 Channel)

- Dual Processors
 - Faster Response Times
 - Task Modularization
 - Parallel Development Process

- Robust and Testable Design
 - Highly Modular
 - Pin Headers
 - Socket Mount Components
 - Off Board Modules
 - Diagnostic LEDs
 - Test Points
Vehicle Control (Motor & Servo Subsystems)

- 4 HOB-10 Gearhead Motors (12v)
 - Speed: 500 RPM
 - Stall Torque: 105 oz/in
 - Stall Current: 4.7 Amps

- 2 KCMD L298 Motor Control Modules
 - Voltage Range 6v – 26v Operation
 - Thermal Overload Shutdown
 - Regenerative Braking

- 2 GWS S-19CLMG Servo Motors (6v)
 - Stall Torque: 100 oz/in
 - Stall Current: 1.5 Amps
Object Detection (Sensor Subsystem)

- 1 SRF08 Ultra Sonic Range Finder
 - I2C Interface
 - 56 ms Average Response Time
 - 11 Meter Range

- 5 Sharp GP2D05 Infrared Sensors
 - Binary Interface
 - 30 ms Average Response Time
 - 1.5 Foot Range
Navigation (GPS & Digital Compass Subsystems)

- Devantech CMPS03 Digital Compass
 - I²C Interface
 - 8 Bit Precision

- Motorola Oncore FS GPS Eval Board
 - RS-232 Interface
 - 12 Channel Receiver
 - 1 Hz Refresh Rate
Software (Navigation Processor)

USR_MODE
RUN

Disable NAV_DEST Signal

Check Waypoint Queue

Enable NAV_DEST Signal

Is Queue Empty?

YES

NO

Disable NAV_RIGHT Signal

Disable NAV_LEFT Signal

Pop Waypoint

Poll GPS Module

Parse GPS String

Near Waypoint?

YES

NO

Compute Bearing to Waypoint

Poll Digital Compass

Compute Heading Adjust

Update NAV_LEFT

Update NAV_RIGHT

Possibility for increased responsively by skipping GPS polling step N times (determined by empirical testing in the spring)
Power Distribution Specifications

- 12v Capacity: 1.3 AH Sealed Lead Acid
- 12v Peak Current Draw: 10 Amps
- 12v Average Current Draw: 1 Amp
- Protected by 10 Amp Quick Blow Fuse

- 6v Capacity: 1.3 AH Sealed Lead Acid
- 6v Peak Current Draw: 6 Amps
- 6v Average Current Draw: 0.5 Amps
- Protected by 6 Amp Quick Blow Fuse

- 5v Capacity: 700 mAH NiCad
- 5v Peak Current Draw 40 mA

Chassis Specifications

- 4 Wheel Steering
- 4 Wheel Independent Suspension
- Top speed 5 MPH
- Turning Circle 2 Feet
- 1 Hour Average Run Time
Finished Product

- Autonomous Point to Point Navigation
- Autonomous Obstacle Avoidance
- Highly Adaptable and Extensible
Video

DIVX Medium Quality

Microsoft DV Super HQ
End of Presentation

Questions?

http://www.AtotheR.com/robotics/PACObot/