PIP: The Plug-In Player

Kevin Malby:
Michael Holyland
Luis Rocha
Edward Gabriel III
What’s the PIP?

- MP3 Player
- Any USB Mass Storage Device
- IR remote
- Touchscreen display
Why the PIP?

- No internal hard drive
- Can use any USB mass storage device
Features I

- Touchscreen LCD Display & Interface
 - 2.8” 18-bit color Thin Film Transistor Liquid Crystal Display
 - Resistive touchscreen
 - 320x240 resolution
 - 10-bit touch resolution
 - Finger and stylus touch capable

- Multiple Audio Formats
 - MP3
 - WAV
 - WMA
 - MP4
Features II

- Remote Controlled
 - Small Infrared Remote
 - Next/Previous Song
 - Volume Control
 - Play/Pause
 - Approximately 25 foot range
- Multiple Media Sources
 - USB
 - SD Card
Features III

- Easy-to-Use Graphical User Interface
- Runs off rechargeable battery
 - Up to 25 hours of battery life
- Make Custom Playlists On-The-Fly
 - Store playlists on SD Card
- Bass & Treble Control
 - Adjustable cutoff frequency and amplitude
Processor

- ATMEL UC3A
 - 512 KB of Program Memory
 - 66 MHz Clock
 - 144 Pin LQFP
 - 3.3 V Power

- Why did we choose it?
 - A lot of support for it from Atmel and online community
 - Supports all of the peripheral functions that we need
 - USB
 - SPI
 - ADC
 - Visual Studio
 - AVR Dragon Programmer
Memory

- Micron Technology SDRAM
 - 64 MB
 - 133 MHz
 - 16-bit data width
 - Volatile memory
- Why did we choose it?
 - Big enough for our application
 - Micron has a great reputation for manufacturing SDRAMs
MP3 Decoder

- VLSI VS1053B
 - Provides volume, bass and treble control
 - 18-bit DAC
 - Built-in amplifier
 - Programmable
 - Zero-cross detection for smooth volume change

- Why did we choose it?
 - Decodes multiple audio formats, not just MP3
 - SPI Interface
 - Straight-forward implementation
LCD

- Ilitek ili9325
 - Resistive Touchscreen
 - Adjustable gamma control
 - 8-bit data
 - Internal GRAM for storing the image

- Why did we choose it?
 - Graphics library available
 - Touchscreen capable

system 8-bit interface (2 transfers/pixel) 65,536 colors

<table>
<thead>
<tr>
<th>1st Transfer</th>
<th>2nd Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB 17</td>
<td>DB 17</td>
</tr>
<tr>
<td>DB 16</td>
<td>DB 16</td>
</tr>
<tr>
<td>DB 15</td>
<td>DB 15</td>
</tr>
<tr>
<td>DB 14</td>
<td>DB 14</td>
</tr>
<tr>
<td>DB 13</td>
<td>DB 13</td>
</tr>
<tr>
<td>DB 12</td>
<td>DB 12</td>
</tr>
<tr>
<td>DB 11</td>
<td>DB 11</td>
</tr>
<tr>
<td>DB 10</td>
<td>DB 10</td>
</tr>
<tr>
<td>R5 R4 R3 R2 R1 R0</td>
<td>G5 G4 G3 G2 G1 G0</td>
</tr>
<tr>
<td></td>
<td>DB 9 DB 8 DB 7 DB 6 DB 5 DB 4</td>
</tr>
<tr>
<td></td>
<td>DB 3 DB 2 DB 1 DB 0</td>
</tr>
</tbody>
</table>
Power

- Linear Technology LTC3521 Buck-Boost Converter
 - High efficiency DC/DC converter
 - 1.8 to 5.5 V input voltage range
- Why did we choose it?
 - High efficiency
 - Great documentation
 - Does not get hot
Other Parts

- USB
- SD Card
 - On SPI Bus
- IR Receiver
 - Receives 38 KHz Infrared signal and converts to PWM signal that the processor can decode
- Audio Jack
 - Allows connectivity to any stereo
Where does the data go?

- Music data originates from SD Card or USB drive
 - Processor moves song from the storage device to the SDRAM for quick access.
- Through the UI the user selects a song, the data goes back through the processor to extract song information and then gets sent to the MP3 decoder.
- The processor periodically sends data to the MP3 decoder, the decoder consumes the data and outputs it to speakers.
Software Design

- No Operating System
- Wrote low-level drivers for all subsystems first
 - Atmel provides the Atmel Software Framework, libraries that helped us initialize some of the peripherals.
 - Each subsystem had a test program that showed it working
- Then combined all the code, and developed the GUI
- From the GUI, we slowly added functionality to our design
- Every peripheral except the touchscreen is on interrupts
Graphical User Interface Development

Now Playing
One.mp3
Prev: Master of Pupp...
Next: Sweet Child O...

Playlists on Card:
1. Metallica
2. Guns N Roses
3. Rock

New Moon Rising
Cosmic Egg
Wolfmother

Folder Name 1
Folder Name 2
Folder Name 3
Folder Name 4
Folder Name 5
Folder Name 6
Folder Name 7
Folder Name 8
Folder Name 9
Folder Name 10
Demo/Video

- Insert video here
Conclusions

- Overall great learning experience
- Most worthwhile class we’ve taken
- We feel we made an excellent choice for the processor
- Spending a lot of time in the hardware design in the Fall paid off and made Spring quarter less stressful.
Problematic Areas

- We had two hardware mistakes, both involving the crystal oscillators
 - The main oscillator for the CPU was on the wrong pins
 - Fix was relatively simple, we cut five traces and wired them to the correct pins
 - The MP3 decoder wasn’t responding
 - The 2 capacitors on it were of the wrong size, removing them fixed the issue
 - From this project, we learned the importance of crystal oscillators
What Would We Change?

- Switch to a capacitive touchscreen.
- Move the LCD display to a bus and use the 16-bit data mode.
- Include a FLASH memory for storing GUI elements.
- Move the IR signal to a pin that supports PWM.
Work Distribution

- Kevin Malby:
 - User-Interface
 - USB
- Michael Holyland:
 - Touchscreen
 - LCD
- Luis Rocha:
 - SD Card
 - MP3 Decoder
- Edward Gabriel III:
 - IR Remote
 - SDRAM
Thank You!

- Professor Butner
- TA Ryan Pakbaz
Questions?

Thank you for your time!