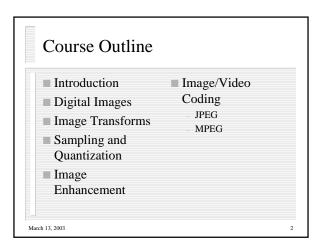
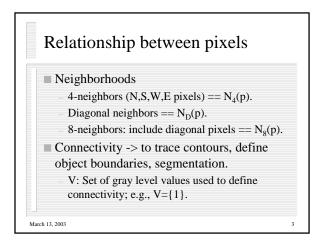
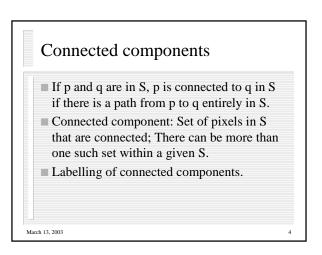
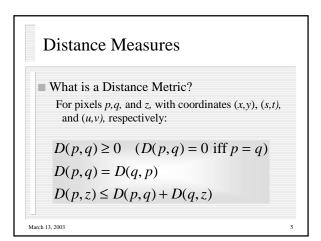


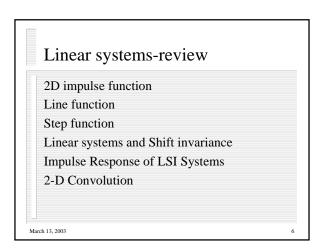
March 13, 2003

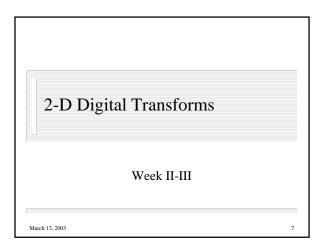


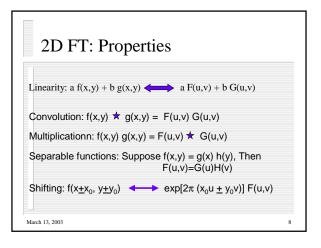


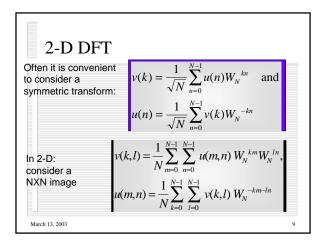


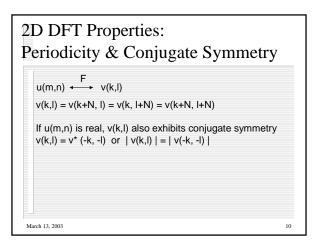


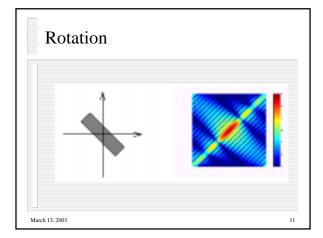


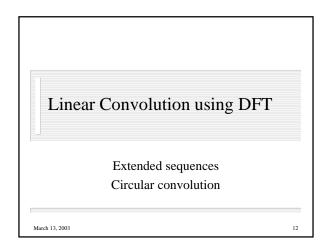


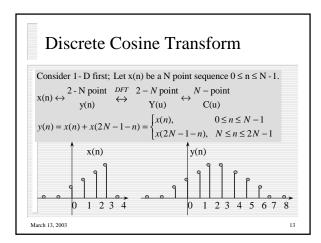


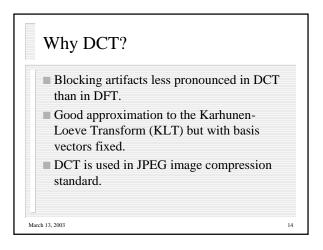


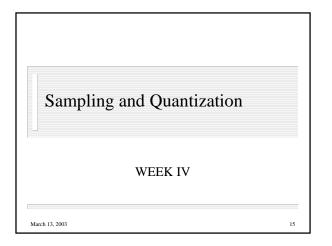


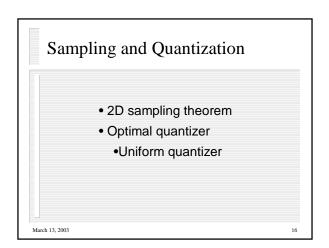


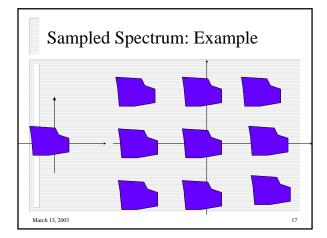


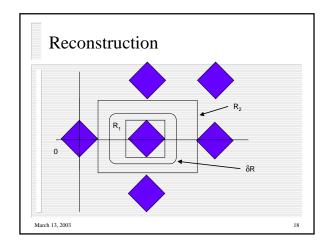


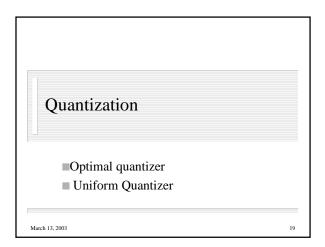


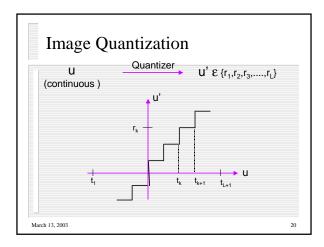


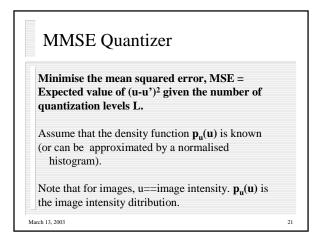


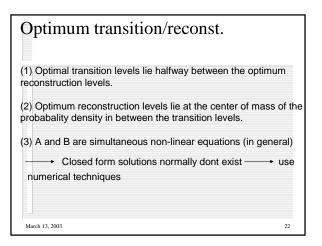


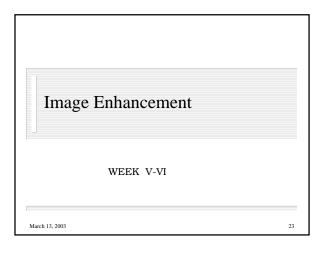


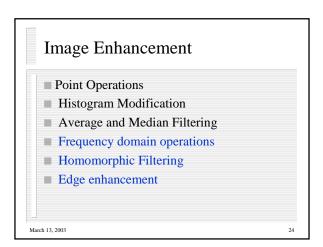


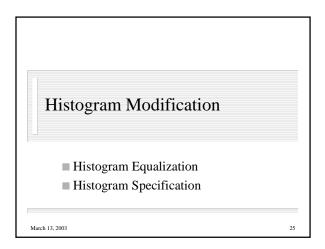


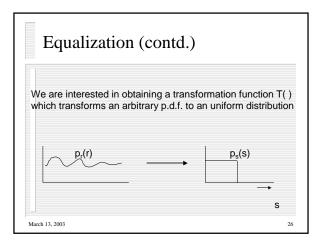


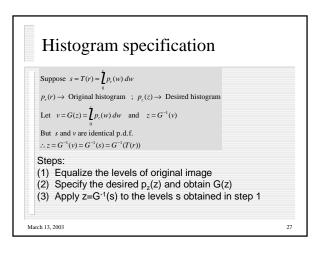


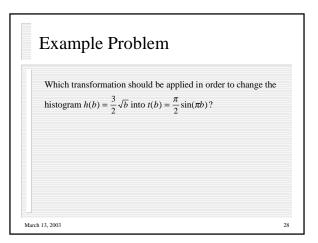


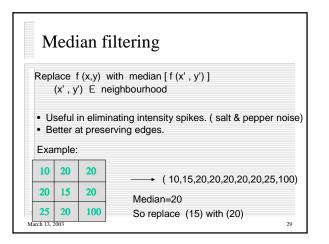


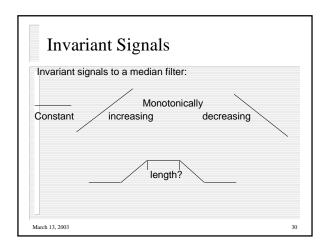












Homomorphic filtering (not discussed during class lecture)	
Consider $f(x,y) = i(x,y) \cdot r(x,y)$	
1 1	
Illumination Reflectance	
Now $\Im{f(x, y)} \neq \Im{i.r}$	
So cannot operate on individual components directly	
Let $z(x, y) = \ln f(x, y) = \ln i(x, y) + \ln r(x, y)$	
$\Im\{z(x, y)\} = \Im\{\ln i\} + \Im\{\ln r\}$	
Z(u, v) = I + R; Let $S(u, v) = HZ = HI + HR$	
$s(x, y) = \mathfrak{Z}^{-1}{HI} + \mathfrak{Z}^{-1}{HR}$	
Let $i'(x, y) = \mathfrak{Z}^{-1}{HI}$; $r'(x, y) = \mathfrak{Z}^{-1}{HR}$	
March 13, 2003	31

