Wavelets: a preview
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Material compiled from the MATLAB
Wavelet Toolbox UG.

Problem with Fourier...
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Fourier analysis -- breaks down a signal into constituent
sinusoids of different frequencies.

a serious drawback In transforming to the frequency
domain, time information is lost. When looking at a Fourier
transform of a signal, it is impossible to tell when a
particular event took place.
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Gabor’s proposal
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Fourier — Gabor — Wavelet
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Sinusoid with a small discontinuity
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in the transform domain
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Localization (or the lack of it)

AVAVAYAY

Pl Vel

\ i~
02/6/03 Wavalsl (W |,

Fourier decomposition
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and the Wavelet decomposition

Fourier transform: ~ F(®) = _[ SfOe ™ dt

Similarly, the continuous wavelet transform (CWT) is
defined as the sum over all time of the signal multiplied by
scaled, shifted versions of the wavelet function {:

c(scale, position) = j f(t) y (scale, position, )dt

The result of the CWT are many wavelet coefficients C,

which are a function of scale and position.
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Wavelet decomposition —contd.

Multiplying each coefficient by the appropriately scaled and
shifted wavelet yields the constituent wavelets of the original
signal:
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What do we mean by scale?
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The scale factor
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Shifting
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Computing a wavelet transform
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Computing the WT (2)
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Visualizing the WT coefficients
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..in 3-D
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The discrete wavelet transform

Calculating wavelet coefficients at every possible scale is a
fair amount of work, and it generates an awful lot of data.
What if we choose only a subset of scales and positions at
which to make our calculations?

It turns out, rather remarkably, that if we choose scales and
positions based on powers of two — so-called dyadic scales
and positions — then our analysis will be much more
efficient and just as accurate. We obtain just such an analysis
from the discrete wavelet transform (DWT).
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Approximations and Details

The approximations are the high-scale, low-frequency
components of the signal. The details are the low-scale,
high-frequency components. The filtering process, at its
most basic level, looks like this:

| ! | The original signal, S,

passes through two
—\_— e ] | —; | complementary filters
and emerges as two

D B | signals.
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Downsampling

Unfortunately, if we actually perform this operation on a
real digital signal, we wind up with twice as much data as
we started with. Suppose, for instance, that the original
signal S consists of 1000 samples of data. Then the
approximation and the detail will each have 1000 samples,
for a total of 2000.

To correct this problem, we introduce the notion of
downsampling. This simply means throwing away every
second data point. While doing this introduces aliasing
in the signal components, it turns out we can account for
this later on in the process.
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Downsampling (2)

The process on the right, which includes downsampling,
produces DWT coefficients.
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An example
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Wavelet Decomposition
Multiple-Level Decomposition

The decomposition process can be iterated, with
successive approximations being decomposed in turn, so
that one signal is broken down into many lower-resolution
components. This is called the wavelet decomposition
tree.
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Wavelet decomposition...
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IDWT: reconstruction
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Analysis vs Synthesis

‘Where wavelet analysis involves filtering and
downsampling, the wavelet reconstruction process consists
of upsampling and filtering. Upsampling is the process of
lengthening a signal component by inserting zeros between
samples:
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Perfect reconstruction
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Quadrature Mirror Filters
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Reconstructing Approximation &
Details
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Reconstructing As and Ds..contd..

Note that the coefficient vectors cAl and cD1 — because
they were produced by downsampling, contain aliasing
distortion, and are only half the length of the original
signal — cannot directly be combined to reproduce the
signal. [t is necessary to reconstruct the approximations
and details before combining them.

Reconstructing the signal
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Multiscale Analysis Wavelet Toolbox

Muliiviep Decomposiison and Rsconeirecison
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= See the wavelet demo
= Wavemenu — compression demo.
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