ECE 178: Introduction (contd.)

Lecture Notes \#2: January 9, 2002
■ Section 2.4 -sampling and quantization

- Section 2.5 -relationship between pixels, connectivity analysis

Jan 9
W03/Lecture 2

Light and the EM Spectrum

Announcements (01/09/02)

- Send your contact information and availability on Fridays for discussion sessions to Marco ASAP.
- 01/10/2003: Discussion session will be at WEBB 1100.
- Note that the HW\#1 due on Jan 17.
- HW\#2 will be due on Jan 24.
- Today:
- Basic relationship between pixels (Section 2.5)
- Image sampling and quantization (Section 2.4, notes)
- A quick introduction to MATLAB
- Linear systems review (time permitting)

Storage Requirement

Image Dimension: $\mathrm{NxN} ; \mathrm{k}$ bits per pixel.
บมีเ?

N14	$14-8$	2x-4	3at - b	$4 \mathrm{ta}-\mathrm{me}$	$3 \mathrm{te}-38$		+E-103	85-38
E	103	3us	100	400	310	***	rue	s.e
\pm	$\cdots \times$	SHIL	12 ma	M,	Mes	3 ms	20w	Exa
0	15, ${ }^{\text {an }}$	eses	ent	0 cos	sum	nxa	10x	Wut
5	H003	twa	14505	3.w	amae	tous	-**	tocer
45	3 LIL	2us	Sum	Tawn	Tנ10\%	1)tee	Limes	1-90
EM	UEEC5	timat	1-3ts	4 com	Sueme	Nuike	theort	4TMus
3e	4. F	stuas	をxex	mitar	3veusp	Brast	swers	10060
amm	MTOSM	THum	Exam	cukis	Evenes	Twatre	ITHasm	143\%13
बत	atimed	valors	Mucste	meller	181406	ecalus	※xck	3umbe

Jan 9
W03/Lecture 2
9

Additional Reading

- Chapter 1, Introduction
- Chapter 2, Sections 2.1-2.4
- We will discuss sampling and quantization in detail later (Week 2)
- Next:
- some basic relationships between pixels (Section 2.5)
- MATLAB: an overview
- A quick tour of linear systems (note, G\&W additional reading)

Jan 9
wo3/Lecture 2

Pixel Connectivity

Connectivity $->$ to trace contours, define object boundaries, segmentation.
In order for two pixels to be connected, they must be "neighbors" sharing a common property-satisfy some similarity criterion. For example, in a binary image with pixel values " 0 " and " 1 ", two neighboring pixels are said to be connected if they have the same value.

Let V : Set of gray level values used to define connectivity; e.g., $\mathrm{V}=\{1\}$.

Connectivity-contd.

- 4-adjacency: Two pixels p and q with values in V are 4-adjacent if q is in the set $N_{4}(p)$.
- 8-adjacency: q is in the set $\mathrm{N}_{8}(\mathrm{p})$.
- m-adjacency: Modification of 8-A to eliminate multiple connections.
$-q$ is in $N_{4}(p)$ or
$-q$ in $N_{D}(p)$ and $N_{4}(p) \cap N_{4}(q)$ is empty.

Jan 9
W03/Lecture 2

Connected components

- Let S represent a subset of pixels in an image.
- If p and q are in S, p is connected to q in S if there is a path from p to q entirely in S.
- Connected component: Set of pixels in S that are connected; There can be more than one such set within a given S.

Exercise

Develop a similar algorithm for 8connectivity.

Related questions

- Can you "tile" a plane with a pentagon?

Distance Measures

- What is a Distance Metric?

For pixels p, q, and z, with coordinates $(x, y),(s, t)$, and (u, v), respectively:
$D(p, q) \geq 0 \quad(D(p, q)=0$ iff $p=q)$
$D(p, q)=D(q, p)$
$D(p, z) \leq D(p, q)+D(q, z)$

Jan 9
W03/Lecture 2

Matlab: a quick introduction

- http://varuna.ece.ucsb.edu/ece178/matlabip.htm
- A detailed document is available on-line
- More on MATLAB during the discussion session(s).

Jan 9 W03/Lecture 2

26

