# ECE 178: Image Processing REVIEW 

Lecture \#20<br>March 13, 2003

## Course Outline

Introduction
$\square$ Digital Images

- Image Transforms
- Sampling and

Quantization

- Image

Enhancement

- Image/Video Coding
- JPEG
- MPEG


## Relationship between pixels

- Neighborhoods
- 4-neighbors (N,S,W,E pixels) $==\mathrm{N}_{4}(\mathrm{p})$.
- Diagonal neighbors $==N_{D}(p)$.
- 8-neighbors: include diagonal pixels $==\mathrm{N}_{8}(\mathrm{p})$.
$\square$ Connectivity -> to trace contours, define object boundaries, segmentation.
V: Set of gray level values used to define connectivity; e.g., $\mathrm{V}=\{1\}$.


## Connected components

- If $p$ and $q$ are in $S, p$ is connected to $q$ in $S$ if there is a path from $p$ to $q$ entirely in $S$.
- Connected component: Set of pixels in S that are connected; There can be more than one such set within a given S .
- Labelling of connected components.


## Distance Measures

- What is a Distance Metric?

For pixels $p, q$, and $z$, with coordinates $(x, y),(s, t)$, and ( $u, v$ ), respectively:

$$
\begin{aligned}
& D(p, q) \geq 0 \quad(D(p, q)=0 \text { iff } p=q) \\
& D(p, q)=D(q, p) \\
& D(p, z) \leq D(p, q)+D(q, z)
\end{aligned}
$$

## Linear systems-review

2D impulse function
Line function
Step function
Linear systems and Shift invariance
Impulse Response of LSI Systems
2-D Convolution

# 2-D Digital Transforms 

Week II-III

## 2D FT: Properties

Linearity: $\mathrm{af}(\mathrm{x}, \mathrm{y})+\mathrm{bg}(\mathrm{x}, \mathrm{y}) \longleftrightarrow \mathrm{aF}(\mathrm{u}, \mathrm{v})+\mathrm{bG}(\mathrm{u}, \mathrm{v})$

Convolution: $f(x, y) \star g(x, y)=F(u, v) G(u, v)$
Multiplicationn: $f(x, y) g(x, y)=F(u, v) \star G(u, v)$
Separable functions: Suppose $f(x, y)=g(x) h(y)$, Then

$$
F(u, v)=G(u) H(v)
$$

Shifting: $\mathrm{f}\left(\mathrm{x} \pm \mathrm{x}_{0}, \mathrm{y} \pm \mathrm{y}_{0}\right) \longleftrightarrow \exp \left[2 \pi\left(\mathrm{x}_{0} \mathrm{u} \pm \mathrm{y}_{0} \mathrm{v}\right)\right] \mathrm{F}(\mathrm{u}, \mathrm{v})$

## 2-D DFT

Often it is convenient to consider a symmetric transform:

$$
\begin{aligned}
& v(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} u(n) W_{N}^{k n} \text { and } \\
& u(n)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} v(k) W_{N}^{-k n}
\end{aligned}
$$

In 2-D:
consider a NXN image

$$
\begin{aligned}
& v(k, l)=\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} u(m, n) W_{N}^{k m} W_{N}^{l n}, \\
& u(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} v(k, l) W_{N}^{-k m-l n}
\end{aligned}
$$

## 2D DFT Properties: Periodicity \& Conjugate Symmetry

$$
\begin{aligned}
& \mathrm{u}(\mathrm{~m}, \mathrm{n}) \stackrel{\mathrm{F}}{\longleftrightarrow} \mathrm{v}(\mathrm{k}, \mathrm{l}) \\
& \mathrm{v}(\mathrm{k}, \mathrm{l})=\mathrm{v}(\mathrm{k}+\mathrm{N}, \mathrm{l})=\mathrm{v}(\mathrm{k}, \mathrm{l}+\mathrm{N})=\mathrm{v}(\mathrm{k}+\mathrm{N}, \mathrm{l}+\mathrm{N})
\end{aligned}
$$

If $u(m, n)$ is real, $v(k, I)$ also exhibits conjugate symmetry $\mathrm{v}(\mathrm{k}, \mathrm{l})=\mathrm{v}^{*}(-\mathrm{k},-\mathrm{l})$ or $|\mathrm{v}(\mathrm{k}, \mathrm{l})|=|\mathrm{v}(-\mathrm{k},-\mathrm{l})|$

## Rotation



# Linear Convolution using DFT 

Extended sequences
Circular convolution

## Discrete Cosine Transform

Consider 1 - D first; Let $\mathrm{x}(\mathrm{n})$ be a N point sequence $0 \leq \mathrm{n} \leq \mathrm{N}-1$.

$$
\mathrm{x}(\mathrm{n}) \leftrightarrow \begin{array}{ccc}
2-\mathrm{N} \text { point } & \stackrel{D F T}{ } & 2-N \text { point } \\
\mathrm{y}(\mathrm{n}) & \leftrightarrow & \mathrm{Y}(\mathrm{u})
\end{array} \stackrel{N-\text { point }}{\leftrightarrow} \quad \mathrm{C}(\mathrm{u})
$$

$$
y(n)=x(n)+x(2 N-1-n)= \begin{cases}x(n), & 0 \leq n \leq N-1 \\ x(2 N-1-n), & N \leq n \leq 2 N-1\end{cases}
$$




## Why DCT?

- Blocking artifacts less pronounced in DCT than in DFT.
- Good approximation to the KarhunenLoeve Transform (KLT) but with basis vectors fixed.
$\square$ DCT is used in JPEG image compression standard.


# Sampling and Quantization 

WEEK IV

## Sampling and Quantization

- 2D sampling theorem
- Optimal quantizer
-Uniform quantizer


## Sampled Spectrum: Example



## Reconstruction



## Quantization

Optimal quantizer

- Uniform Quantizer


## Image Quantization

$$
\begin{array}{cl}
\mathrm{u} & \text { Quantizer } \\
{ } }
\end{array}
$$



## MMSE Quantizer

Minimise the mean squared error, MSE = Expected value of ( $\left.\mathbf{u}-\mathbf{u}^{\prime}\right)^{\mathbf{2}}$ given the number of quantization levels $L$.

Assume that the density function $\mathbf{p}_{\mathbf{u}}(\mathbf{u})$ is known (or can be approximated by a normalised histogram).

Note that for images, $\mathbf{u}==$ image intensity. $\mathbf{p}_{\mathbf{u}}(\mathbf{u})$ is the image intensity ditribution.

## Optimum transition/reconst.

(1) Optimal transition levels lie halfway between the optimum reconstruction levels.
(2) Optimum reconstruction levels lie at the center of mass of the probabality density in between the transition levels.
(3) $A$ and $B$ are simultaneous non-linear equations (in general)
$\longrightarrow$ Closed form solutions normally dont exist $\longrightarrow$ use numerical techniques

# Image Enhancement 

WEEK V-VI

## Image Enhancement

- Point Operations
- Histogram Modification
- Average and Median Filtering
- Frequency domain operations
- Homomorphic Filtering
- Edge enhancement


# Histogram Modification 

- Histogram Equalization
- Histogram Specification


## Equalization (contd.)

We are interested in obtaining a transformation function T ( ) which transforms an arbitrary p.d.f. to an uniform distribution


S

## Histogram specification

Suppose $s=T(r)=\prod_{0}(w) d w$
$p_{r}(r) \rightarrow$ Original histogram $; p_{z}(z) \rightarrow$ Desired histogram
Let $v=G(z)=\prod_{0}(w) d w$ and $z=G^{-1}(v)$
But $s$ and $v$ are identical p.d.f.
$\therefore z=G^{-1}(v)=G^{-1}(s)=G^{-1}(T(r))$

## Steps:

(1) Equalize the levels of original image
(2) Specify the desired $p_{z}(z)$ and obtain $G(z)$
(3) Apply $z=G^{-1}(s)$ to the levels $s$ obtained in step 1

## Example Problem

Which transformation should be applied in order to change the
histogram $h(b)=\frac{3}{2} \sqrt{b}$ into $t(b)=\frac{\pi}{2} \sin (\pi b)$ ?

## Median filtering

Replace $f(x, y)$ with median [ $f\left(x^{\prime}, y^{\prime}\right)$ ]
( $x^{\prime}, y^{\prime}$ ) E neighbourhood

- Useful in eliminating intensity spikes. ( salt \& pepper noise)
- Better at preserving edges.

Example:


$$
\begin{aligned}
& \longrightarrow(10,15,20,20,20,20,20,25,100) \\
& \text { Median=20 } \\
& \text { So replace (15) with }(20)
\end{aligned}
$$

## Invariant Signals

Invariant signals to a median filter:


## Homomorphic filtering (not discussed during class lecture)

Consider $f(x, y)=i(x, y) \cdot r(x, y)$
Illumination Reflectance
Now $\mathfrak{I}\{f(x, y)\} \neq \mathfrak{I}\{i . r\}$
So cannot operate on individual components directly
Let $z(x, y)=\ln f(x, y)=\ln i(x, y)+\ln r(x, y)$
$\mathfrak{I}\{z(x, y)\}=\mathfrak{I}\{\ln i\}+\mathfrak{J}\{\ln r\}$
$Z(u, v)=I+R$; Let $\quad S(u, v)=H Z=H I+H R$
$s(x, y)=\mathfrak{J}^{-1}\{H I\}+\mathfrak{I}^{-1}\{H R\}$
Let $i^{\prime}(x, y)=\mathfrak{J}^{-1}\{H I\} \quad ; \quad r^{\prime}(x, y)=\mathfrak{J}^{-1}\{H R\}$

# IMAGE COMPRESSION 

## Week VIII-IX

## Image compression

Objective: To reduce the amount of data required to represent an image.

Important in data storage and transmission

- Progressive transmission of images (internet, www)
- Video coding (HDTV, Teleconferencing)
- Digital libraries and image databases
- Medical imaging
-Satellite images


## IMAGE COMPRESSION

- Data redundancy
- Self-information and Entropy
$\square$ Error-free and lossy compression
$\square$ Huffman coding, Arithmetic coding
- Predictive coding
$\square$ Transform coding


## Video Coding

- Motion compensation
- H.261, MPEG-1 and MPEG-2


## The End

