IMAGE COMPRESSION-I

Week VIII Feb 25

02/25/2003

Image Compression-I

Reading..

Chapter 8

- Sections 8.1, 8.2
- 8.3 (selected topics)
- 8.4 (Huffman, run-length, loss-less predictive)
- 8.5 (lossy predictive, transform coding basics)
 - 8.6 Image Compression Standards (time permitting)

Image compression

Objective: To reduce the amount of data required to represent an image.

Important in data storage and transmission

- Progressive transmission of images (internet, www)
- Video coding (HDTV, Teleconferencing)
- Digital libraries and image databases
 Medical imaging
 Satellite images

IMAGE COMPRESSION

Data redundancy Self-information and Entropy Error-free and lossy compression Huffman coding Predictive coding Transform coding

Lossy vs Lossless Compression

Compression techniques

Information preserving

(loss-less)

Images can be compressed and restored without any loss of information. Application: Medical images, GIS Perfect recovery is not possible but provides a large data compression. Example : TV signals, teleconferencing

Lossy

Data Redundancy

• CODING: Fewer bits to represent frequent symbols.

• **INTERPIXEL / INTERFRAME**: Neighboring pixels have similar values.

• **PSYCHOVISUAL**: Human visual system can not simultaneously distinguish all colors.

Coding Redundancy

Fewer number of bits to represent frequently occurring symbols. Let $p_r(r_k) = n_k / n$, k = 0, 1, 2, ..., L-1; L # of gray levels.

Let r_k be represented by I (r_k) bits. Therefore average # of bits required to represent each pixel is

$$L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k) \longrightarrow (A)$$

Usually $I(r_k) = m$ bits (constant). $\Rightarrow L_{avg} = \sum_k m p_r(r_k) = m$

Coding Redundancy (contd.)

Consider equation (A): It makes sense to assign fewer bits to those r_k for which $p_r(r_k)$ are large in order to reduce the sum.

this achieves data compression and results in a variable length code.

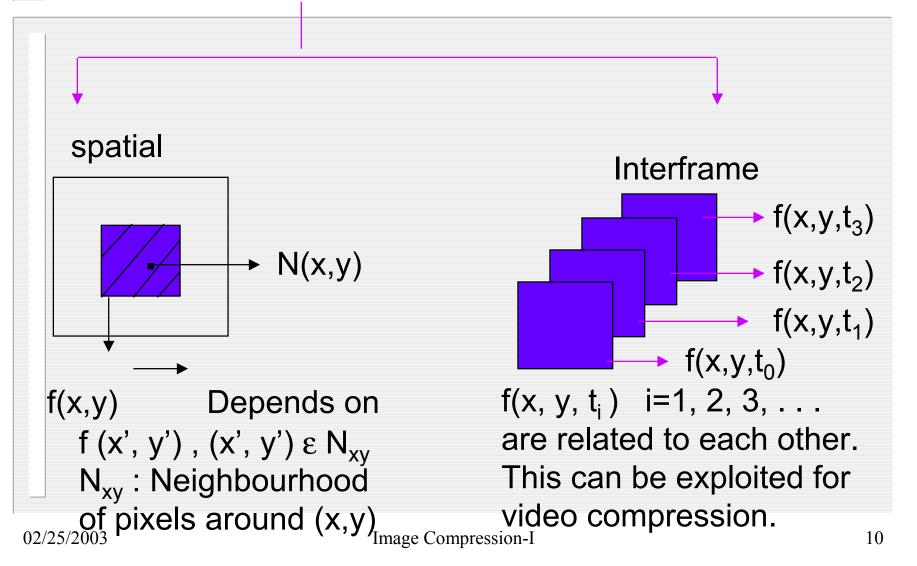
More probable gray levels will have fewer #
 of bits.

$$L_{avg} = \sum_{k=0} l(r_k) p_r(r_k) \rightarrow (A)$$

Coding: Example

Examp	le (From tex	xt)		
r_k	$p_r(r_k)$	Code	$l(r_k)$	
$r_0 = 0$	0.19	11	2	L _{avg}
$r_1 = \frac{1}{7}$	0.25	01	2	$=\sum \rho(r_k) l(r_k)$
$r_2 = \frac{2}{7}$	0.21	10	2	= 2.7 Bits
$r_3 = \frac{3}{7}$	0.16	001	3	10% less code
$r_4 = \frac{4}{7}$	0.08	0001	4	
$r_5 = \frac{5}{7}$	0.06	00001	5	
$r_6 = \frac{6}{7}$	0.03	000001	6	
$r_7 = 1$	0.02	000000	6	

Inter-pixel/Inter-frame



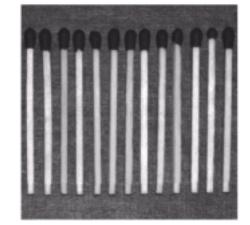
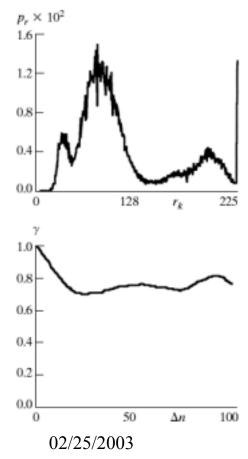
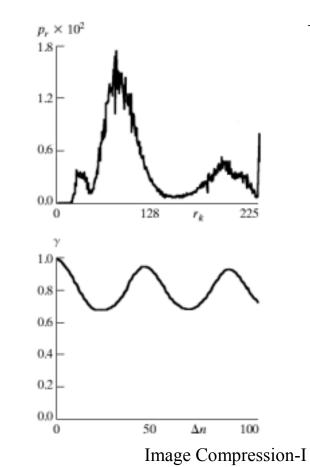
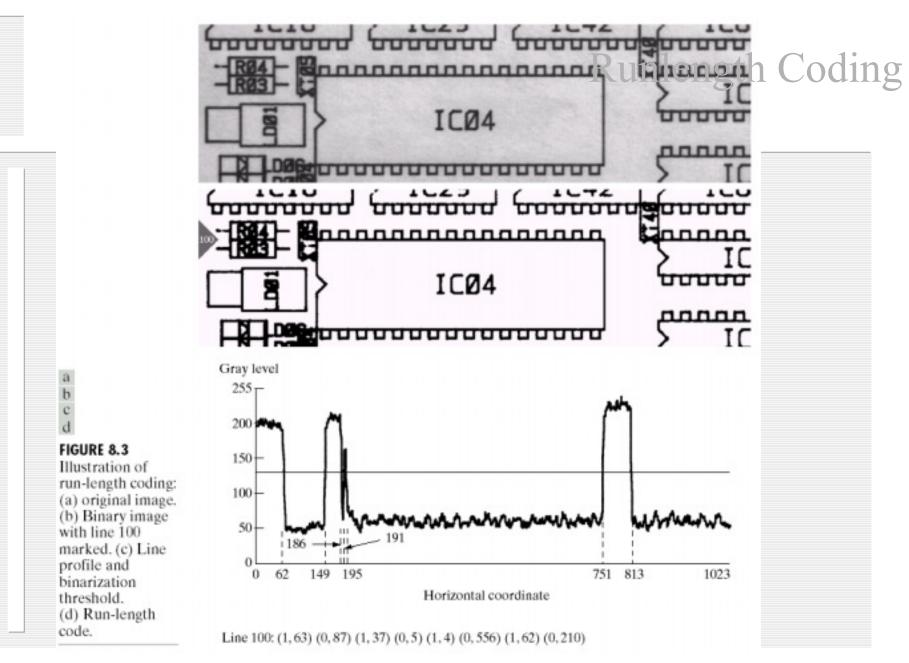


FIGURE 8.2 Two images and their gray-level histograms and normalized autocorrelation coefficients along one line.

Pixel Correlations







02/25/2003

Image Compression-I

Psychovisual

Human visual system has limitations ; good example is quantization. conveys infromation but requires much less memory/space.

(Example: Figure 8.4 in text; matlab)

Quantization

a b c

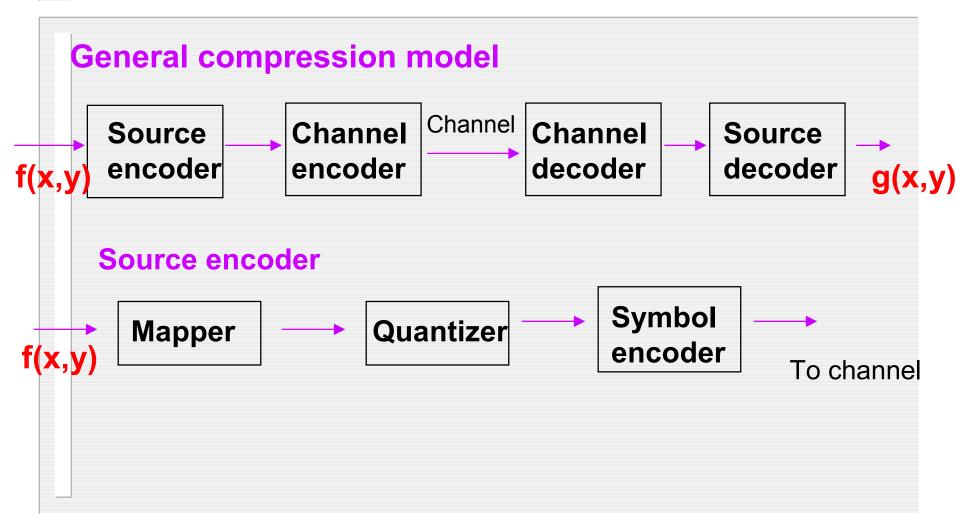
FIGURE 8.4 (a) Original image. (b) Uniform quantization to 16 levels. (c) IGS quantization to 16 levels.

IGS Code(Table 8.2)

1 N/A 0000 0000 N/A 0110 1100 0110 1100 011 1 1000 1011 1001 0111 100
1 10001011 10010111 100
2 1000 0111 1000 1110 100
3 1111 0100 1111 0100 111

TABLE 8.2 IGS quantization procedure.

General Model

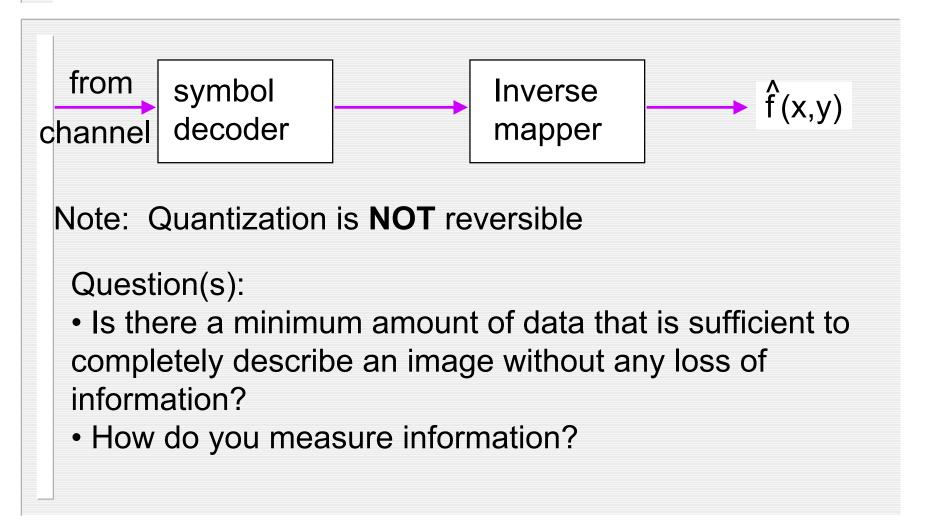


Source Encoder

Mapper: Designed to reduce interpixel redundancy. example:

- Run length encoding results in compression.
- Transfrom to another domain where the coefficients are less correlated then the original. Ex: Fourier transfrom.
- **Quantizer:** reduces psychovisual redundancies in the image should be left out if error-free encoding is desired.
- **Symbol encoder:** creates a fixed/variable length code reduces coding redundancies.

Source Decoder



Self-Information

- Suppose an event E occurs with probability P(E); then it is said to contain I (E) = -log P(E) units of information.
- P(e) = 1 [always happens] => I(e) = 0 [conveys no information]
- If the base of the logarithm is 2, then the unit of information is called a "bit".

If P(E) = 1/2, I(E) = -log₂(1/2) = 1 bit. Example: Flipping of a coin; outcome of this experiment requires one bit to convey the information.

Self-Information (contd.)

Assume an information source which generates the symbols $\{a_0, a_1, a_2, ..., a_{L-1}\}$ with *prob* $\{a_i\} = p(a_i)$; $\sum p(a_i) = 1$ i=0 $I(a_i) = -\log_2 p(a_i)$ bits.

ENTROPY

Average information per source output is

$$H = -\sum_{i=0}^{L-1} p(a_i) \log_2 p(a_i) \quad \text{bits / symbol}$$

H is called the **uncertainity** or the **entropy** of the source.

If all the source symbols are equally probable then the source has a maximum entropy.

H gives the lower bound on the number of bits required to <u>code a signal.</u>

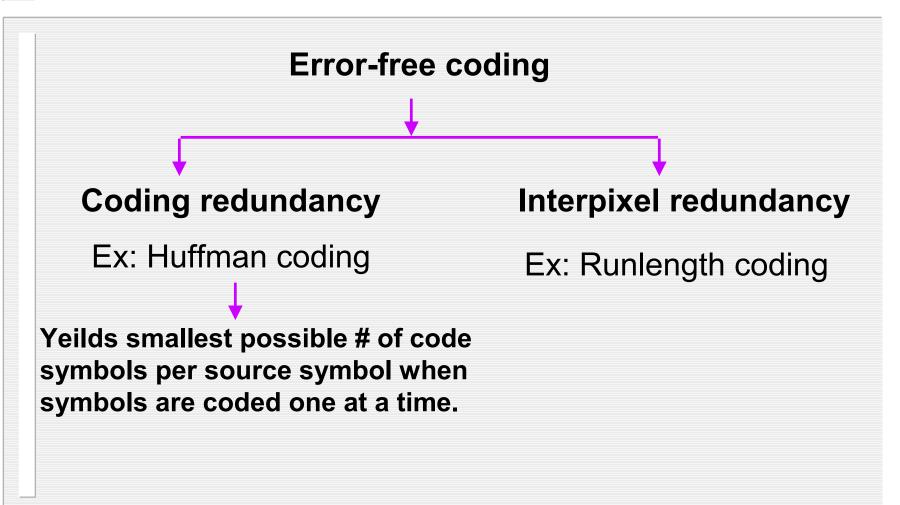
Noiseless coding theorem

(Shannon)

It is possible to code, without any loss of information, a source signal with entropy H bits/symbol, using H + ϵ bits/symbol where ϵ is an arbitrary small quantity.

 ϵ can be made arbitrarily small by considering increasingly larger blocks of symbols to be coded.

Error-free coding



Huffman code: example

Huffman code: Consider a 6 symbol source a_1 a_2 a_3 a_4 a_5 a_6 p(a_i) 0.1 0.4 0.06 0.1 0.04 0.3

Huffman coding: example (contd.)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ₂	0.4(1)	0.4(1)	0.4 ⁽¹⁾	0.4(1)	0.6(0)
$\begin{array}{c} a_{4} & 0.1^{(0100)} & 0.1_{(0100)} & 0.1_{(011)} \\ a_{3} & 0.06^{(01010)} & 0.1_{(0101)} \end{array}$	a ₆	0.3(00)	0.3(00)	0.3(00)	0.3(00)	0.4(1)
$a_3 0.06^{(01010)} 0.1_{(0101)}$	a ₁	0.1 ⁽⁰¹¹⁾	0.1(011)	►0.2 ⁽⁰¹⁰⁾	• 0.3 ₍₀₁₎	
	a ₄	0.1 ⁽⁰¹⁰⁰⁾	0.1 ₍₀₁₀₀₎	0.1 ₍₀₁₁₎		
$a_5 0.04_{(01011)}$	a ₃	0.06 ⁽⁰¹⁰¹⁰⁾	0.1 ₍₀₁₀₁)		
	a ₅	0.04 ₍₀₁₀₁₁₎				

Example (contd.)

Average length: (0.4) (1) + 0.3 (2) + 0.1 X 3 + 0.1 X 4 + (0.06 + 0.04) 5 = 2.2 bits/symbol

 $-\Sigma p_i \log p_i = 2.14 \text{ bits/symbol}$ (Entropy)

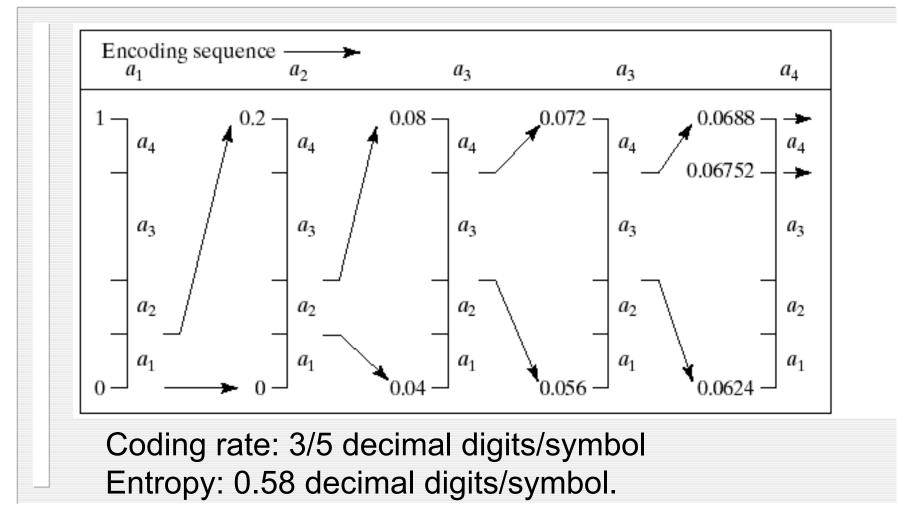
Huffman code: Steps

- Arrange symbol probabilities p_i in decreasing order
- While there is more than one node
 - Merge the two nodes with the smallest probabilities to form a new node with probabilities equal to their sum.
 - Arbitrarily assign 1 and 0 to each pair of branches
 - merging in to a node.
- Read sequentially from the root node to the leaf node where the symbol is located.

Huffman code (final slide)

Lossless code
Block code
Uniquely decodable
Instantaneous (no future referencing is needed)

Fig. 8.13: Arithmetic Coding



Lempel-Ziv-Welch (LZW) coding

- Uses a dictionary
- Dictionary is adaptive to the data
- Decoder constructs the matching dictionary based on the codewords received.
- used in GIF, TIFF and PDF file formats.

LZW-an example

Consider a 4x4, 8-bits per pixel image

The dictionary values 0-255 correspond to the pixel values 0-255. Assume a 512 word dictionary.

LZW-dictionary construction

Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry	TABLE 8.7 LZW codir example.
	39				
39	39	39	256	39-39	
39	126	39	257	39-126	
126	126	126	258	126-126	
126	39	126	259	126-39	
39	39				
39-39	126	256	260	39-39-126	
126	126				
126-126	39	258	261	126-126-39	
39	39				
39-39	126				
39-39-126	126	260	262	39-39-126-126	
126	39				
126-39	39	259	263	126-39-39	
39	126				
39-126	126	257	264	39-126-126	
126		126			

Run-length Coding

Run-length encoding (Binary images)

0000111111000111100

4 6 3 3

Lengths of 0's and 1's is encoded. Each of the bit planes in a gray scale image can be run length - encoded.

2

One can combine run-length encoding with variable length coding of the run-lengths to get better compression.