

2D FT: Properties

Separability of the FT

$$
\begin{aligned}
F(u, v) & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} d x\right] e^{-j 2 \pi v y} d y \\
& =\int_{-\infty}^{\infty} F(u, y) e^{-j 2 \pi v y} d y
\end{aligned}
$$

2D FT: Properties		
Linearity: $\mathrm{af}(\mathrm{x}, \mathrm{y})+\mathrm{bg}(\mathrm{x}, \mathrm{y}) \longleftrightarrow \mathrm{aF}(\mathrm{u}, \mathrm{v})+\mathrm{bG}(\mathrm{u}, \mathrm{v})$		
Convolution: $f(x, y)$ * $g(x, y)=F(u, v) G(u, v)$		
Multiplication: $f(x, y) g(x, y)=F(u, v) \quad$ ¢ $G(u, v)$		
Separable functions: Suppose $f(x, y)=g(x) h(y)$, Then $F(u, v)=G(u) H(v)$		
Shifting: $f\left(x \pm x_{0}, y \pm y_{0}\right) \longleftrightarrow \exp \left[2 \pi\left(x_{0} u \pm y_{0} \mathrm{v}\right)\right] \mathrm{F}(\mathrm{u}, \mathrm{v})$		
01127/2003	2D Fourier Transtorm	3

Separability (contd.)
 f(x,y) $\longrightarrow F(u, y) \longrightarrow F(u, v)$ | Fourier Transform |
| :--- |
| along Y. |

We can implement the 2D Fourier transform as a sequence of 1-D Fourier transform operations.

Eigenfunctions of LSI Systems

A function $f(x, y)$ is an Eigenfunction of a system T if $T[f(x, y)]=\alpha f(x, y)$ for some constant (Possibly complex) α.

For LSI systems, complex exponentials of the form $\exp \{j 2 \pi(u x+v y)\}$, for any (u,v), are the Eigenfunctions.

Impulse Response and Eigenfunctions

Consider a LSI system with impulse response $h(x, y)$. Its output to the complex exponential is

$$
\begin{aligned}
& g(x, y)=\iint_{-\infty}^{\infty} h(x-s, y-t) e^{j 2 \pi(u s+v t)} d s d t \\
&=\iint h(\bar{x}, \bar{y}) e^{j 2 \pi(u x+v y)} e^{-j 2 \pi(u \bar{x}+v \bar{y})} d \bar{x} d \bar{y} \\
&=H(u, v) e^{j 2 \pi(u x+v y)} \\
& \text { 01/27/2003 }
\end{aligned}
$$

Example (contd.)

Example2

Discrete Fourier Transform

Consider a sequence $\{u(n), n=0,1,2, \ldots . ., N-1\}$. The DFT of $u(n)$ is
$v(k)=\sum_{n=0}^{N-1} u(n) W_{N}{ }^{k n}, \quad k=0,1, \ldots \ldots, N-1$
Where $W_{N}=e^{-j \frac{2 \pi}{N}}$, and the inverse is given by
$u(n)=\frac{1}{N} \sum_{k=0}^{N-1} v(k) W_{N}^{-k n}, \quad n=0,1, \ldots, N-1$
01/27/2003

2-D DFT

Often it is convenient to consider a symmetric transform:

$$
\begin{aligned}
& v(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} u(n) W_{N}{ }^{k n} \quad \text { and } \\
& u(n)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} v(k) W_{N}{ }^{-k n}
\end{aligned}
$$

$$
\begin{aligned}
& v(k, l)=\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} u(m, n) W_{N}^{k m} W_{N}^{l n}, \\
& u(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} v(k, l) W_{N}^{-k m-l n}
\end{aligned}
$$

2D DFT -- PROPERTIES

- Separability
- Translation
- Scaling

■ Periodicity and Conjugate Symmetry

- Rotation
- convolution reversed.

For each ' m ', $v(m, I)$ is the 1-D DFT with frequency values I = 0,1, N-1

$$
\begin{aligned}
v(k, l) & =\frac{1}{N} \sum_{m=0}^{N-1} W_{N}{ }^{k m} \sum_{n=0}^{N-1} u(m, n) W_{N}{ }^{l n} \\
& =\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} v(m, l) W_{N}{ }^{k m}
\end{aligned}
$$

\square

Separability

The DFT of a 2-D array can be obtained by first taking the 1-D DFT of each row (or column) and then taking the 1-D DFT of each column (or row).

It does not matter if the order of operation is , .

Translation

$$
u\left(m-m^{\prime}, n-n^{\prime}\right) \leftrightarrow v(k, l) e^{-j 2 \pi \frac{\left(k m^{\prime}+l n^{\prime}\right)}{N}}
$$

Displaying the DFT: Scaling

2D Fourier Transform

In MATLAB

$\mathrm{f}=\mathrm{zeros}(\mathbf{3 0 , 3 0})$;
f(5:24,13:17)=1;
imshow(f, 'notruesize');

In Matlab(2)

F =fft2(f);
$\mathrm{F} 2=\log (\mathrm{abs}(\mathrm{F}))$;
imshow(F2, [-1, 5], 'notruesize');
colormap(jet); colorbar;

Displaying (again) \& Shifting

$$
\begin{aligned}
& u(m, n) e^{\frac{j 2 \pi\left(k^{\prime} m+l^{\prime} n\right)}{N}} \leftrightarrow v\left(k-k^{\prime}, l-l\right) \text { and } \\
& u(m, n)(-1)^{m+n} \leftrightarrow \quad v\left(k-\frac{N}{2}, l-\frac{N}{2}\right)
\end{aligned}
$$

The origin of the $\mathrm{F}\{\mathrm{u}(\mathrm{m}, \mathrm{n})\}$ can be moved to the center of the array ($N \times N$ square) by first multiplying $u(m, n)$ by $(-1)^{m+n}$ and then taking the Fourier transform.
Note: Shifting does not affect the magnitude of the Fourier transform.

Displaying the DFT

Displaying DFT

$\left|v(k, l) e^{-j 2 \pi\left[k m^{\prime}+l n '\right] / N}\right|=|v(k, l)|$

Low frequency components

Another example

Original image

Its centered DFT magnitude

Periodicity \& Conjugate Symmetry

$\mathrm{u}(\mathrm{m}, \mathrm{n}) \stackrel{\mathrm{F}}{\longleftrightarrow} \mathrm{v}(\mathrm{k}, \mathrm{l})$
$\mathrm{v}(\mathrm{k}, \mathrm{l})=\mathrm{v}(\mathrm{k}+\mathrm{N}, \mathrm{l})=\mathrm{v}(\mathrm{k}, \mathrm{l}+\mathrm{N})=\mathrm{v}(\mathrm{k}+\mathrm{N}, \mathrm{l}+\mathrm{N})$
If $u(m, n)$ is real, $v(k, l)$ also exhibits conjugate symmetry $v(k, l)=v^{*}(-k,-l)$ or $|v(k, l)|=|v(-k,-l)|$

Rotation

Rotation

(continuous case)

If you rotate the image $u(m, n)$ by an angle θ, its F.T also gets rotated by the same angle.

Convolution (Revisited)

Consider 1-D continuous case

$$
f(x) * g(x)=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) g\left(x-x^{\prime}\right) d x^{\prime}
$$

Let $f(x) \leftrightarrow F(u), g(x) \leftrightarrow G(u)$
Then $f(x) * g(x) \leftrightarrow F(u) G(u)$

Convolution in Space

Multiplication in Frequency

Average Value

$\bar{u}=\frac{1}{N} \sum_{m} \sum_{n} u(m, n)=$ Average
$v(k, l)=\frac{1}{N} \sum_{m} \sum_{n} u(m, n) e^{-j 2 \pi \frac{k m+l n}{N}}$
$v(0,0)=\frac{1}{N} \sum_{m} \sum_{n} u(m, n)=N \bar{u}$
or $\bar{u}=\frac{v(0,0)}{N}$ (Scaled Average)

Discrete Convolution

Let us now assume that we discretize $f(x)$ and $g(x)$ into vectors $f(n)$ and $g(n)$ of lengths A and B
$\mathrm{f}(\mathrm{n}) \longrightarrow\{f(0), \mathrm{f}(1), \ldots \ldots \mathrm{f}(\mathrm{A}-1)\}$
$g(n) \longrightarrow\{g(0), g(1), g(2), \ldots . . g(B-1)\}$
(a) DFT and its inverse are periodic functions (b) Convolving two vectors of length A and B gives a vector of dimension $\mathrm{A}+\mathrm{B}-1$. (Linear convolution)

$f_{e}(n) *_{c} g_{e}(n)=\sum_{m=0}^{M-1} f_{e}(m) g_{e}(n-m)_{c}$
where $(g(n))_{c}=g[n$ Modulo $M]$
Note: With n expressed as
$n=n_{1}+n_{2} N$ where $0 \leq n_{1} \leq N-1$ n modulo N equals n_{1}
$x \bmod y=x-y[x / y]$ if $y \neq 0$
$x \bmod 0=x$.
$\left[\frac{x}{y}\right]$ is the integer part of x / y

Zero Imbedding

In order to obtain a convolution theorem for the discrete case, and still be consistent with the periodicity property we need to assume that sequences $f()$ and $g()$ are periodic with some period M. From (b) it is clear that $M>A+B-1$ to avoid overlap.

Since this period is greater than A or B, the original sequence length must be increased and this is done by appending zeros at the end. Redefine the extended sequences as

$$
\begin{aligned}
& f_{e}(n)= \begin{cases}f(n) & 0 \leq n \leq A-1 \\
0 & A \leq n \leq M-1\end{cases} \\
& g_{e}(n)= \begin{cases}g(n) & 0 \leq n \leq B-1 \\
0 & B \leq n \leq M-1\end{cases}
\end{aligned}
$$

Theorem

The DFT of the circular convolution of two sequences of length \mathbf{N} is equal to the product of their DFTs.

$$
\begin{aligned}
& \text { If } y(n)=\sum_{m=0}^{N-1} f(n-m)_{c} g(n) \text { then } \\
& \operatorname{DFT}[y(n)]_{N}=\operatorname{DFT}[f(n)]_{N} \operatorname{DFT}[g(n)]_{N}
\end{aligned}
$$

A linear convolution of two sequences can be obtained via FFT by embedding it into a circular convolution.

2-D Convolution

These results can be similarly extended to 2-D signals.

Let $f(m, n): A \times B$ array
$g(m, n): C \times D$ array
Let $\quad M>=A+C-1$
$N>=B+D-1$
For linear convolution using DFT create the extended periodic sequences of period MxN in the 2-D.

Extended (periodic) Sequences

$$
\left.\begin{array}{ll}
& f_{e}(m, n)= \begin{cases}f(m, n) & 0 \leq m \leq A-1 \\
0 & 0 \leq n \leq B-1 \\
& A \leq m \leq M-1\end{cases} \\
\begin{array}{l}
\text { computing } \\
\text { convolution } \\
\text { is more } \\
\text { efficient } \\
\text { in the frequency } \\
\text { domain. }
\end{array} & g_{e}(m, n)= \begin{cases}g(m, n) & 0 \leq m \leq C-1 \\
0 & 0 \leq n \leq D-1\end{cases} \\
0 \leq m \leq M-1
\end{array}\right\}
$$

A note on convolution with images

Note: In many cases involving images, we deal with square arrays of size $\mathbf{N} \mathbf{X N}$. We normally would like to have the resulting convolved output also as an \mathbf{N} X N array.

Conv2 (.) in Matlab

CONV2 Two dimensional convolution.
$\mathrm{C}=\mathrm{CONV} 2(\mathrm{~A}, \mathrm{~B})$ performs the 2-D convolution of matrices A and B. If $[m a, n a]=\operatorname{size}(A)$ and $[m b, n b]=\operatorname{size}(B)$, then size $(C)=[m a+m b-1, n a+n b-1]$.
$C=C O N V 2(\ldots$,'shape') returns a subsection of the 2-D convolution with size specified by 'shape':

- 'full' - (default) returns the full 2-D convolution,
- 'same' - returns the central part of the convolution that is the same size as A.
- 'valid' - returns only those parts of the convolution that are computed without the zero-padded edges, $\operatorname{size}(C)=[m a-m b+1, n a-n b+1]$ when $\operatorname{size}(A)>\operatorname{size}(B)$.

