

Data Mining: Concepts and Tech

1

Examples			
	CART	BP	A Priori
Task	Classification/ regression	Regression	Rule pattern discovery
Structure	Decision tree	NN	Association rules
Score function	Cross-validated loss function	Squared error	Support/ accuracy
Search	Greedy search	Gradient descent	Breadth-first with pruning
DM Method			Linear scans
4/9/2003 Data Mining: Concepts and Techniques			

Data Mining: Concepts and Tex

MLP "weights" are updated using learning methods such as *Back-propagation*. No widely accepted procedure for determining the structure of the MLP (mostly ad-hoc rules) CART structure is automatically learnt Training can be computationally expensive

Data Mining: Concepts and Tech

A Priori algorithm for Association Rule Learning

- An association rule is a simple probabilistic statement about the co-occurrence of certain events in a database
- Eg: IF A=1 AND B=1 THEN C=1 with probability p.
- The conditional probability *p* is referred to as the *accuracy* or *confidence* of the rule

Data Mining: Concepts and Tech

Prob (A=1, B=1, C=1) is the support

Data Mining: Concepts and Tect

Regression models with linear
structure
$$\hat{Y} = a_0 + \sum_{j=1}^{p} a_j X_j$$
 $\theta = \{a_0, ..., a_p\}$ • Geometrically, this model describes a p-dim
hyperplane embedded in a (p+1)-dim space with the
slope determined by the a_js and intercept by a_0.• Goal of parameter estimation is to choose the "a"
values to locate and angle this hyperplane so as to
provide the best fit to the data {x(i), y(i)}.

Data Mining: Concepts and Tec

Score functions: Predictive Models

Let $D = \{(x(1), y(1)), ..., (x(n), y(n))\}$; Let $\hat{f}(x(i), \theta)$ be the prediction generated by the model, using parameter values θ .

Sum of squared errors:
$$S_s$$

 $S_{SSE} = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{f}(x(i); \theta) - y(i) \right)^2$ $S_{0/1}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} I\left(\hat{f}(\boldsymbol{x}(i); \boldsymbol{\theta}), \boldsymbol{y}(i)\right)$

Misclassification rate

I(a,b) = 1 if $a \neq b$; =0 otherwise

