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Classification Methods: 
Bayesian Classification

READING
Ch 10 from Hand
Ch 7 from Han

Paper by Wang et. al. on Protein sequence analysis
Handout from D&H on belief nets

Ack: Slides from Ch 7 (Han)+Figures from Duda&Hart, Turk
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Classification Algorithms

! Linear discriminants and Perceptrons
! Decision tree induction
! Bayesian Classification
! Perceptrons revisited: Multilayered networks

! Application study: paper by Wang et. Al., 
New Techniques for extracting features from 
protein sequences
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Bayesian Classification: Why?

! Probabilistic learning:  Calculate explicit probabilities for 
hypothesis, among the more practical approaches to certain 
types of learning problems

! Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct.  Prior knowledge can be combined with observed 
data.

! Probabilistic prediction:  Predict multiple hypotheses, 
weighted by their probabilities

! Standard: Even when Bayesian methods are 
computationally intractable, they can provide a standard of 
optimal decision making against which other methods can 
be measured
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Bayesian Theorem

! Given training data D, posteriori probability of a 
hypothesis h, P(h|D) follows the Bayes theorem

! MAP (maximum posteriori) hypothesis
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Bayes Model

! Practical difficulty: require initial knowledge of many 
probabilities, significant computational cost

! O(kp) for p k-valued variables
! E.g. p=30, and binary variables (k=2) we would 

need to estimate on the order of 230 ~109

probaibilities.
! Assuming (as a rule of thumb) we need at least 10 

data points for every parameter we estimate (here 
the parameters in our model are the proabilities
specifying the joint distribution), we would need on 
the order of 1010 data points for estimation

! For m classes, m>2, m times this number
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Naïve Bayes Classifier

! A simplified assumption: attributes are conditionally 
independent (m classes):

! Greatly reduces the computation cost, only count the 
class distribution.

! This is often referred to as the Naïve Bayes or first 
order Bayes assumption

! Requires O(kp) probabilities per class�linear in the 
number of variables p rather than exponential
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Naïve Bayes Assumption (2)

! Note the strong independence assumption
! May not be realistic
! However, still permits acurate classification in 

many practical applications
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Example: Playing tennis

! Given a training set, we can compute the probabilities 
(P=Play, N=no play)

Outlook P N Hum idity P N
sunny 2/9 3 /5 high 3/9 4/5
overcast 4/9 0 normal 6/9 1/5
rain 3/9 2 /5
Tempreature W indy
hot 2/9 2 /5 true 3/9 3/5
m ild 4/9 2 /5 false 6/9 2/5
cool 3/9 1 /5
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Bayesian classification

! The classification problem may be formalized 
using a-posteriori probabilities:

! P(C|X)  = prob. that the sample tuple 
X=<x1,�,xp> is of class C.

! E.g. P(class=N | outlook=sunny,windy=true,�)

! Idea: assign to sample X the class label C such 
that P(C|X) is maximal
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Estimating a-posteriori probabilities

! Bayes theorem:

P(C|X) = P(X|C)·P(C) / P(X)

! P(X) is constant for all classes

! P(C) = relative freq of class C samples

! C such that P(C|X) is maximum = 

C such that P(X|C)·P(C) is maximum

! Problem: computing P(X|C) is not feasible!
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Naïve Bayesian Classification

! Naïve assumption: attribute independence
P(x1,�,xp|C) = P(x1|C)·�·P(xp|C)

! If i-th attribute is categorical:
P(xi|C) is estimated as the relative freq of 
samples having value xi as i-th attribute in class 
C

! If i-th attribute is continuous:
P(xi|C) is estimated thru a Gaussian density 
function

! Computationally easy in both cases
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Play-tennis example: estimating P(xi|C)
Outlook Temperature Humidity Windy Class
sunny hot high false N
sunny hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

P(true|n) = 3/5P(true|p) = 3/9

P(false|n) = 2/5P(false|p) = 6/9

P(high|n) = 4/5P(high|p) = 3/9

P(normal|n) = 2/5P(normal|p) = 6/9

P(hot|n) = 2/5P(hot|p) = 2/9

P(mild|n) = 2/5P(mild|p) = 4/9

P(cool|n) = 1/5P(cool|p) = 3/9

P(rain|n) = 2/5P(rain|p) = 3/9

P(overcast|n) = 0P(overcast|p) = 4/9

P(sunny|n) = 3/5P(sunny|p) = 2/9

windy

humidity

temperature

outlook

P(n) = 5/14

P(p) = 9/14
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Play-tennis example: classifying X

! An unseen sample X = <rain, hot, high, false>

! P(X|p)·P(p) = 
P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 
3/9·2/9·3/9·6/9·9/14 = 0.010582

! P(X|n)·P(n) = 
P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 
2/5·2/5·4/5·2/5·5/14 = 0.018286

! Sample X is classified in class n (don�t play)
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The independence hypothesis�

! � makes computation possible

! � yields optimal classifiers when satisfied

! � but is seldom satisfied in practice, as attributes 
(variables) are often correlated.

! Attempts to overcome this limitation:

! Bayesian networks, that combine Bayesian reasoning 
with causal relationships between attributes

! Decision trees, that reason on one attribute at the 
time, considering most important attributes first
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Bayesian Belief Networks
Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S)(~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table 
for the variable LungCancer
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Bayesian Belief Networks

! A graphical model of causal relationships

! Also called causal networks, belief nets

! Toplogical form: directed acyclic graph (DAC)�each link is 
directional, and no loops (in general)

! Each node represents one of the system variables, and the links 
joining the nodes represent conditional probabilities

! Several cases of learning Bayesian belief networks

! Given both network structure and all the variables: easy

! When the network structure is not known in advance

4/21/2003 Data Mining: Concepts and Techniques 17

Example

I�m at work and my neighbor John calls to say my home alarm is 
ringing, but my neighbor Mary doesn�t call.  The alarm is 
sometimes triggered by minor earthquakes.  Was there a burglar 
at my house?

! Random variables:
! JohnCalls, MaryCalls, Earthquake, Burglar, Alarm (all boolean)

! Draw the belief net, showing the causal links

! This defines the joint probability
! P(JohnCalls, MaryCalls, Earthquake, Burglar, Alarm)

! For a belief net:
! P(var1, �, varN) = P(var1|Parents(var1)) � 

P(varN|Parents(varN))

Turk
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Example

Links and probabilities?

Turk
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Example

Joint probability?  P(J, ¬M, A, B, ¬ E)?

Turk
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Example

! Conditional independence is seen here
! P(JohnCalls|MaryCalls, Alarm, Earthquake, Burglary) 

= P(JohnCalls|Alarm)
! So JohnCalls is independent of MaryCalls, 

Earthquake, and Burglary, given Alarm

! Does this mean that an earthquake or a burglary do not 
influence whether or not John calls?
! No, but the influence is already accounted for in the 

Alarm variable
! JohnCalls is conditionally independent of 

Earthquake, but not absolutely independent of it

Turk
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Parent of E

Bayesian Belief Networks

P(b)

Children of E

A B

C D

E

F G

P(a)

P(c/a)
P(d/b)

P(c/d)

P(e/c)

P(g/e)P(f/e)

P(g/f)

Need to specify: 
P(A), P(B), P(D|B), 
P(C|A,D), P(E|C), 
P(F|E), P(G|E,F)
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Bayes� rule
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Probabilities 
conditioned on 
a context c:

Likelihood of b 
given a

( | ) ( | , )P A B P A B C=Conditional 
independence

A is independent of C given B
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P(x|e):  belief probability

( | , ) ( | ) ( | )C CP P PΡ Ρ∝x e e e x x e

The belief of a set of propositions x =(x1, x2,..) on 
node X describes the relative probabilities of the 
variables given all the evidence e in the entire 
network, i.e., P(x|e)

:  evidence on the parent nodes
:  evidence on the children nodesC

Pe
e

4/21/2003 Data Mining: Concepts and Techniques 24

Evidence from Child nodes
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Child nodes are conditionally 
independent given x.
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Parent nodes
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Evidence from the parent nodes: 

Summation is over all possible configurations of values on 
different parent nodes;Pmn denotes a parameter value for 
state n on the parent node Pm. Again the assumption is 
that (unconnected) parent nodes are statistically 
independent
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Belief Probability 
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� first term is due to the children (product of their independent
likelihoods).
� second is the sum over all possible configurations of states on the 
prior probabilities of their values and the conditional probabilities of 
the x variables given those parent values
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Example: fish classification
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Classification Algorithms

! Linear discriminants and Perceptrons
! Decision tree induction
! Bayesian Classification
! Perceptron revisited: Multilayered networks
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A  �Neuron�

! The n-dimensional input vector x is mapped into  
variable y by means of the scalar product and a 
nonlinear function mapping

µk-

f

weighted 
sum

Input
vector x

output y

Activation
function

weight
vector w

∑

w0
w1

wn

x0

x1

xn
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Multi-Layer Perceptron

Output nodes

Input nodes

Hidden nodes

Output vector

Input vector: xi

wij
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Perceptrons vs MLP

! Percepton: Linear decision boundaries only
! MLP (multi-layered perceptron)

! Can implement arbitrary decision boundaries�
! Decision regions need not be convex or 

simply connected
! Credit assignment problem: how do you update 

the weights connected to the hidden units? 
! No explicit teacher to state what the hidden 

unit�s output should be
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Neural Networks 

! Advantages
! prediction accuracy is generally high
! robust, works when training examples contain errors
! output may be discrete, real-valued, or a vector of 

several discrete or real-valued attributes
! fast evaluation of the learned target function

! Criticism
! long training time
! difficult to understand the learned function (weights)
! not easy to incorporate domain knowledge
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Network Training

! The ultimate objective of training 
! obtain a set of weights that makes almost all the 

tuples in the training data classified correctly 
! Steps

! Initialize weights with random values 
! Feed the input tuples into the network one by one
! For each unit

! Compute the net input to the unit as a linear combination 
of all the inputs to the unit

! Compute the output value using the activation function
! Compute the error
! Update the weights and the bias
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Multi-Layer Perceptron

wij

0j ij i j
i

I wO w= +∑

1
1 jj IO
e−=

+

Total input:

e.g.: Output:

2

output units 

1( ) ( )
2 j j

j
J T O≡ −∑w

Tj: desired output
Oj: actual output

Transfer function could be linear, 
sigmoid, hyperbolic�

4/21/2003 Data Mining: Concepts and Techniques 35

Backpropagation Learning

(1 )( )j j j j jO O T Oδ = − −

(1 )j j j k kj
k

O O wδ δ= − ∑

kj k jw Oηδ∆ =
: learning rate
: sensitivity or "error"
:  input connected to the weight

k

jO

η
δ

Wkj

Oj

Hidden-to-output weights:
(sigmoid activation)

Ok

Hidden Unit: 
(backpropagating the 
�errors�)
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Network Pruning and Rule Extraction

! Network pruning
! Fully connected network will be hard to articulate
! N input nodes, h hidden nodes and m output nodes lead to 

h(m+N) weights
! Pruning: Remove some of the links without affecting classification 

accuracy of the network
! Extracting rules from a trained network

! Discretize activation values; replace individual activation value by 
the cluster average maintaining the network accuracy

! Enumerate the output from the discretized activation values to 
find rules between activation value and output

! Find the relationship between the input and activation value 
! Combine the above two to have rules relating the output to input
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Summary

! Classification is an extensively studied problem (mainly in 

statistics, machine learning & neural networks)

! Classification is probably one of the most widely used

data mining techniques with a lot of extensions

! Scalability is still an important issue for database 

applications:  thus combining classification with database 

techniques should be a promising topic

! Research directions: classification of non-relational data, 

e.g., text, spatial, multimedia, etc..
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Course outline

! Introduction* (1)
! Data Warehouse (1)
! Data Preprocessing (2)
! Classification Methods (4)
! Clustering Methods 
! Pattern finding (2)

! Applications (1-2)
! Multimedia Mining (2)
! Survey of recent 

research (2)
! Presentations 

! Course project (2)
! Presentations
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Clustering methods

! Chapter 8 (Han)
! Chapter 9 (Hand)
! Topics

! Distance based methods
! Hierarchical methods
! Probabilistic model based clustering, mixture 

models, EM algorithm
! Application examples


