

Let C1,..Ck be the clusters of the database D wrt the parameters Eps and MinPts(j), j=1,..,k. Then we define noise as the set of points in the database D not belonging to any cluster Cj.

Data Mining: Clustering Method

Mixture ex	ample	
Let $\varphi_{\theta}(y) \sim N$	$N(\theta) = N(\mu, \sigma^2)$	
Density of Y g	$\varphi_{Y}(y) = (1-\pi)\varphi_{\theta_{1}}(y) + \pi\varphi_{\theta_{2}}(y)$	<i>י</i>)
$\theta = (\pi, \theta_1, \theta_2)$	$=(\pi,\mu_1,\sigma_1^2,\mu_2,\sigma_2^2)$	
log-likelihood:	$\ell(\boldsymbol{\theta}; \mathbf{Z}) = \sum_{i=1}^{N} \log \left[(1 - \pi) \varphi_{\theta_{i}}(y_{i}) + \pi \varphi_{\theta_{i}}(y_{i}) \right]$	$_{\theta_2}(y_i)$
May 14, 2003	Data Mining: Clustering Methods	33

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Summary

May 14, 2003

Data Mining: Clustering Meth

Problems and Challenges Considerable progress has been made in scalable clustering methods Partitioning: k-means, k-medoids, CLARANS Hierarchical: BIRCH, CURE Density-based: DBSCAN, CLIQUE, OPTICS Grid-based: STING, WaveCluster Model-based: Autoclass, Denclue, Cobweb, EM Current clustering techniques do not <u>address</u> all the requirements adequately Constraint-based clustering analysis: Constraints exist in data space (bridges and highways) or in user queries

References (2)

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.

- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
 R. Ng and J. Han. Efficient and effective clustering method for spatial data mining.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mi VLDB'94.
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition, 101-105.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGHOD96.
 My 14, 2003 Data Mining: Clustering Methods

Next: Pattern finding and retrieval by content

Association Rules

14.2003

 Selected topics in Text, Image and Video Retrieval

Data Mining: Cluste