

Data Mining: Concepts and Technig

Major issues in data mining

Data Mining: Concept

Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining

Data Warehouse—Integrated Constructed by integrating multiple, heterogeneous data sources relational databases, flat files, on-line transaction records Data cleaning and data integration techniques are applied. Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources E.g., Hotel price: currency, tax, breakfast covered, etc.

Data Mining: Concepts and Technique

 When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

03 Data Mining: Concepts and Techniqu

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.

Data Mining: Concepts and Tech

Data Warehouse vs. Heterogeneous DBMS Traditional heterogeneous DB integration: Build wrappers/mediators on top of heterogeneous databases Query driven approach When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set Complex information filtering, compete for resources

- Data warehouse: update-driven, high performance
- Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

Data Mining: Concepts and Technique

OLTP v	rs. Olap	
	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Why Separate Data Warehouse? High performance for both systems DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation. Different functions and different data: missing data: Decision support requires historical data which operational DBs do not typically maintain data consolidation: DS requires consolidation (aggregation, summarization) of data from

heterogeneous sources
 data quality: different sources typically use inconsistent data representations, codes and formats

Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining

which have to be reconciled

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Data Mining: Concepts and Techniq

A Data Mining Query Language, DMQL: Language Primitives

- Cube Definition (Fact Table) define cube <cube_name> [<dimension_list>]: <measure_list>
- Dimension Definition (Dimension Table) define dimension <dimension_name> as (<attribute_or_subdimension_list>)
- Special Case (Shared Dimension Tables)
 First time as "cube definition"
 - define dimension <dimension_name> as
 <dimension_name_first_time> in cube
 <cube_name_first_time>

Data Mining: Concepts and Tech

Enterprise warehouse

- collects all of the information about subjects spanning the entire organization
- Data Mart
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 Independent vs. dependent (directly from warehouse) data mart

Virtual warehouse

- A set of views over operational databases
- Only some of the possible summary views may be materialized

Data Mining: Concepts and Technique

Multi-Way Array Aggregation for Cube Computation (Cont.)

- Method: the planes should be sorted and computed according to their size in ascending order.
 - See the details of Example 2.12 (pp. 75-78)
 - Idea: keep the smallest plane in the main memory, fetch and compute only one chunk at a time for the largest plane
- Limitation of the method: computing well only for a small number of dimensions
 - If there are a large number of dimensions, "bottomup computation" and iceberg cube computation methods can be explored

ng: Concepts and Tech Data Min

	Ind	exing	g Ol	_AP	Data	a: Bitm	nap I	nde>	(
	The len The <i>i</i> -t for the	ilue in tl gth of t	he colu he bit v set if th	imn ha vector ne <i>i</i> -th	as a bit ve : # of rec	ector: bit-o cords in the che base ta	base ta	ble	ie
B	not suit ase table		5		ality doma		Index	c on Ty	pe
			Inde	ex on	Region				
	ase table		Inde	ex on	Region			c on Ty Retail	
Cust	ase table Region	Type	Inde	ex on	Region				
<mark>Cust</mark> C1	ase table <mark>Region</mark> Asia	<mark>Type</mark> Retail	Inde ReciD 1 2	ex on <mark>Asia</mark> 1	Region	America 0	RecID 1	Retail	
Cust C1 C2	ase table Region Asia Europe	Type Retail Dealer Dealer	Inde ReciD 1 2	ex on <mark>Asia</mark> 1 0	Region Europe 0 1	America 0 0	RecID 1 2	Retail 1 0	

Efficient Processing OLAP Queries Determine which operations should be performed on the available cuboids: transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g, dice = selection + projection Determine to which materialized cuboid(s) the relevant operations should be applied. Exploring indexing structures and compressed vs. dense

Data Mining: Concepts and Technique

array structures in MOLAP

Data Warehouse Back-End Tools and Utilities Data extraction: get data from multiple, heterogeneous, and external sources Data cleaning: detect errors in the data and rectify them when possible Data transformation: convert data from legacy or host format to warehouse format Load: sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions Refresh propagate the updates from the data sources to the warehouse Data Mining: Concepts and Techniqu

- Why online analytical mining?
 - High quality of data in data warehouses
 - DW contains integrated, consistent, cleaned data
 - Available information processing structure surrounding data
 - warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 - OLAP-based exploratory data analysis
 - mining with drilling, dicing, pivoting, etc.
 - On-line selection of data mining functions
 - integration and swapping of multiple mining functions, algorithms, and tasks.
- Architecture of OLAM

Data Mining: Concepts and Technique

