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Basic Speech ModelBasic Speech Model
• short segment of speech can be modeled as 

having been generated by exciting an LTI systemhaving been generated by exciting an LTI system 
either by a quasi-periodic impulse train, or a 
random noise signal

• speech analysis => estimate parameters of the 
speech model, measure their variations (and 
perhaps even their statistical variabilites forperhaps even their statistical variabilites-for 
quantization) with time

• speech = excitation * system response• speech = excitation * system response
=> want to deconvolve speech into excitation and 

system response => do this using homomorphic
3

system response > do this using homomorphic
filtering methods



Superposition PrincipleSuperposition PrincipleSuperposition PrincipleSuperposition Principle
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Generalized Superposition for ConvolutionGeneralized Superposition for Convolution

**
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 for LTI systems we have the result
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Homomorphic FilterHomomorphic FilterHomomorphic FilterHomomorphic Filter
homomorphic filter => homomorphic system that⎡ ⎤• ⎣ ⎦H homomorphic filter  homomorphic system  that

passes the desired signal unaltered, while removing the
undesired signal

⎡ ⎤⎣ ⎦H

1 2 1
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Canonic Form for Canonic Form for HomomorphicHomomorphic
DeconvolutionDeconvolutionDeconvolutionDeconvolution

** + + + +
{ }∗D { }1−D{ }L[ ]x n ˆ[ ]x n ˆ[ ]y n [ ]y n

1 2[ ] [ ]x n x n∗ 1 2ˆ ˆ[ ] [ ]x n x n+ 1 2ˆ ˆ[ ] [ ]y n y n+ 1 2[ ] [ ]y n y n∗
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 any homomorphic system can be represented as a cascade
of three systems e g for convolution
•

1 2[ ] [ ] 1 2[ ] [ ] 1 2[ ] [ ]y y 1 2[ ] [ ]y n y n

of three systems, e.g., for convolution
    1. system takes inputs combined by convolution and transforms
them into additive outputsp
    2. system is a conventional linear system
    3. inverse of first system--takes additive inputs and transforms
th i t l ti l t t
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Canonic Form for Homomorphic ConvolutionCanonic Form for Homomorphic Convolution
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 design converted back to linear system, 
 - fixed (called the characteristic system for homomorphic deconvolution)

 - fixed (characteristic system for 
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Properties of Characteristic Properties of Characteristic 
SSSystemsSystems
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DiscreteDiscrete--Time Fourier Time Fourier 
Transform RepresentationsTransform Representations
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Canonic Form for Canonic Form for DeconvolutionDeconvolution Using DTFTsUsing DTFTs
d t fi d t th t t l ti t dditi
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1 2

 need to find a system that converts convolution to addition
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Characteristic System for Characteristic System for 
DeconvolutionDeconvolution Using DTFTsUsing DTFTs

∞
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Inverse Characteristic System for Inverse Characteristic System for DeconvolutionDeconvolution Using Using 
DTFTsDTFTsDTFTsDTFTs
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Issues with LogarithmsIssues with LogarithmsIssues with LogarithmsIssues with Logarithms
 it is essential that the logarithm obey the equation•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤j j j j
1 2 1 2

1 2

      log ( ) ( ) log ( ) log ( )

 this is trivial if ( ) and ( ) are real -- however usually
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 on the unit circle the complex log can be written in the form:
ω⎡ ⎤

•
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( ) | ( ) |
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 no problems with log magnitude term; uniq• ueness problems
arise in defining the imaginary part of the log; can show that
the imaginary part (the phase angle of the z-transform) needs
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the imaginary part (the phase angle of the z transform) needs
to be a continuous odd function of ω



Problems with arg FunctionProblems with arg Function
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Complex Complex CepstrumCepstrum PropertiesProperties
 Given a complex logarithm that satisfies the phase continuity 

condition, we have:
i

1ˆ[ ] (log | ( ) | arg{ ( )})
2

[ ] ( ) | arg{ ( )}

,
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Complex and Real CepstrumComplex and Real CepstrumComplex and Real CepstrumComplex and Real Cepstrum
ˆ define the inverse Fourier transform of ( ) asω

π

• jX e

1
2

ˆˆ[ ] ( )
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π
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TerminologyTerminologygygy
•• SpectrumSpectrum – Fourier transform of signal autocorrelation

C tC t i F i t f f l t•• CepstrumCepstrum – inverse Fourier transform of log spectrum
•• AnalysisAnalysis – determining the spectrum of a signal
•• AlanysisAlanysis determining the cepstr m of a signal•• AlanysisAlanysis – determining the cepstrum of a signal
•• FilteringFiltering – linear operation on time signal
•• LifteringLiftering linear operation on cepstrum•• LifteringLiftering – linear operation on cepstrum
•• FrequencyFrequency – independent variable of spectrum
•• QuefrencyQuefrency – independent variable of cepstrumQuefrencyQuefrency – independent variable of cepstrum
•• Harmonic Harmonic – integer multiple of fundamental frequency
•• RahmonicRahmonic – integer multiple of fundamental frequency
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zz--Transform RepresentationTransform Representationzz Transform RepresentationTransform Representation
[ ] [ ]* [ ]

 The transform of the signal:z
x n x n x n
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Characteristic System for Characteristic System for DeconvolutionDeconvolution

{ }arg ( )( ) [ ] ( )
∞
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= =∑ j X zn
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X z x n z X z e
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Inverse Characteristic System for Inverse Characteristic System for 
DeconvolutionDeconvolutionDeconvolutionDeconvolution

ˆ ˆ( ) [ ]
∞

−

=−∞
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zz--TransformTransform CepstrumCepstrum AlanysisAlanysiszz Transform Transform CepstrumCepstrum AlanysisAlanysis
 consider digital systems with rational z-transforms of the general type•
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∏ ∏

∏
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 we can express the above equation as:
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zz--TransformTransform CepstrumCepstrum AlanysisAlanysiszz Transform Transform CepstrumCepstrum AlanysisAlanysis
( ) express  as product of minimum-phase and

maximum phase signals i e
X zi

0
min max( ) ( ) ( )

maximum-phase signals, i.e.,

where

MX z X z z X z−= ⋅
i

( )1

1

1
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 all poles and zeros inside unit circle
i

k

M
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iM
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1k= 1
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k=
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zz--TransformTransform CepstrumCepstrum AlanysisAlanysiszz Transform Transform CepstrumCepstrum AlanysisAlanysis
[ ] can express  as the convolution:x ni

min max 0[ ] [ ] [ ]
 minimum-phase component is causal

x n x n x n M= ∗ −

i

min[ ] 0, 0
p p

maximum-phase component is anti-causal
x n n= <

i

0

max[ ] 0, 0
 maximum phase component is anti causal

factor is the shift in time oriM

x n n

z−
= >

i gin by M0 factor  is the shift in time orizi 0

[ ]

gin by 
samples required so that the overall sequence,

be causal

M
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zz--Transform CepstrumTransform Cepstrum AlanysisAlanysiszz Transform Cepstrum Transform Cepstrum AlanysisAlanysis

the complex logarithm of ( ) is• X z
0

01

1

 the complex logarithm of ( ) is

ˆ        ( ) log ( ) log | | log | | log[ ]−−
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M

M
k

k

X z

X z X z A b z

( ) ( ) ( )
0

1

1 1

1 1 1

1 1 1log log log

=

− −

= = =

− + − − −∑ ∑ ∑
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ˆ evaluating ( ) on the unit circle we can ignore the ter
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•
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  related to log  (as this contributes only to the imaginaryω⎡ ⎤
⎣ ⎦

j Me

  part and is a linear phase shift)
⎣ ⎦
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zz--TransformTransform CepstrumCepstrum AlanysisAlanysiszz Transform Transform CepstrumCepstrum AlanysisAlanysis
 we can then evaluate the remaining terms, use power series•

expansion for logarithmic terms (and take the inverse
transform to give the complex cepstrum) giving:

π
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2
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π
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= ∫ j j nx n X e e d

0M

1

log(1 ) , | | 1
n

n

ZZ Z
n

∞

=

− = − <∑
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∑ ∑
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CepstrumCepstrum PropertiesProperties
1.

[ ]
( )

complex cepstrum is non-zero and of infinite extent for
both positive and negative , even though  may be
causal, or even of finite duration ( has only zeros).

n x n
X z( )causal, or even of finite duration (  has only zeros).

2. complex cepstrum is a decaying
X z

| |

ˆ| [ ] | , | |
| |

 sequence that is bounded by:

for 
n

x n n
n
αβ< →∞
| |

ˆ[0] 0

3. zero-quefrency value of complex cepstrum (and the cepstrum)
depends on the gain constant and the zeros outside the unit circle.
Setting

n

[0] 0(and therefore ) is equivalent to normalizing[0] 0Setting  x =

0
1

[0] 0

( ) 1

(and therefore ) is equivalent to normalizing
the log magnitude spectrum to a gain constant of:
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k
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− =∏
1
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( ) 0),
ˆ[ ] 0, 0

4. If  has no zeros outside the unit circle (all  then:
(minimum

k
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k
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X z b
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=
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∏

-phase signals)
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5. If  has no poles or zeros inside the unit circle (all  then:
(maximum-phase signals)
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zz--Transform CepstrumTransform Cepstrum AlanysisAlanysiszz Transform Cepstrum Transform Cepstrum AlanysisAlanysis
 The main z-transform formula for cepstrum alanysis is based on
h i i

i

( ) 11
1 1

  the power series expansion:

         log( )
+∞ −

+ = <∑
n

nx x x
1
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 --Apply this formula to the exponential sequence
=
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=
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zz--Transform CepstrumTransform Cepstrum AlanysisAlanysiszz Transform Cepstrum Transform Cepstrum AlanysisAlanysis

--consider the case of a digital system with a• Example 2

1

1

 consider the case of a digital system with a 

   single zero outside the unit circle ( )
( ) ( ) ( )δ δ

<

+ +
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[ ] ( )
2

1
1 1

1

2( ) ( ) ( )
        ( ) (zero at / )

ˆ ( ) l ( ) l

δ δ= + +
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= ∑
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∑
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis for 2 Pulsesfor 2 Pulses

3 0 1

 --an input sequence of two pulses of the form

( ) ( ) ( ) ( )δ αδ α

•

= + − < <x n n n N
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∞
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 the cepstrum is an impulse train with impulses spaced at   samples• pN
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Cepstrum for Train of ImpulsesCepstrum for Train of ImpulsesCepstrum for Train of ImpulsesCepstrum for Train of Impulses
 an important special case is a train of impulses 
of the form:

•
   of the form:

      ( ) ( )α δ= −∑
M

r px n n rN
0

      ( ) α

=

−= ∑ p

r
M

rN
rX z z

0

1 clearly ( ) is a polynomial in  rather than ;  
thus ( ) can be expressed

=
− −• p

r
NX z z z

X z as a product of factors   thus ( ) can be expressed X z

1 1

as a product of factors 

   of the form ( ) and ( ),  giving a complex 
ˆcepstrum, ( ), that is non-zero only at integer multiples of

−− −p pN N

p

az bz
x n N
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zz--Transform Cepstrum Alanysis for Transform Cepstrum Alanysis for 
C l ti f 2 SC l ti f 2 SConvolution of 2 SequencesConvolution of 2 Sequences

consider the convolution of sequences 1 and 3 i ei Example 4

4 1 3

 --consider the convolution of sequences 1 and 3, i.e., 

          ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

δ αδ
−

⎡ ⎤ ⎡ ⎤= ∗ = ∗ + −⎣ ⎦⎣ ⎦

i
n

p

n Nn

x n x n x n a u n n n N

N

Example 4

( ) ( )

 The complex cepstrum is therefore the sum of the comple

α= + −

i

pn Nn
pa u n a u n N

x cepstra
of the two sequences (since convolution in the time domain is

4 1 3

  of the two sequences (since convolution in the time domain is 
  converted to addition in the cepstral domain)

ˆ ˆ ˆ          ( ) ( ) ( )= +x n x n x n
1

1

11 ( )( ) ( )α δ
+∞

=

−
= − + −∑

n k k

p
k

a u n n kN
n k
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zz--Transform Cepstrum Alanysis for Transform Cepstrum Alanysis for 
C l ti f 3 SC l ti f 3 SConvolution of 3 SequencesConvolution of 3 Sequences

[ ]
5 1 2 3

1

 --consider the convolution of sequences 1, 2 and 3, i.e., 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )δ δ δ δ

= ∗ ∗

⎡ ⎤ ⎡ ⎤∗ + + ∗ +⎣ ⎦⎣ ⎦

i

n

x n x n x n x n

a u n n b n n n N

Example 5

[ ]
1

1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

The complex

δ δ δ αδ

α α− − +

⎡ ⎤ ⎡ ⎤= ∗ + + ∗ + −⎣ ⎦⎣ ⎦

= + − + + + − +

i

p p

n
p

n N n Nn n
p p

a u n n b n n n N

a u n a u n N ba u n ba u n N

cepstrum is therefore the sum of the complex cepstra The complex i

5 1 2 3

cepstrum is therefore the sum of the complex cepstra
  of the three sequences 

ˆ ˆ ˆ ˆ          ( ) ( ) ( ) ( )= + +x n x n x n x n
1 1

1

1 11 1( ) ( )( ) ( ) ( )α δ
+ +∞

=

− −
= − + − + − −∑

n k k n n

p
k

a bu n n kN u n
n k n
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Example: a=.9, b=.8, a=.7, Np=15

( )1

1 1
1
( )( )

( )
α −

−

+
= + pNbzX z z

az ( )1( )− az

11( ) +− n nb 11( ) [ ]α δ
+∞ −

−∑
k k

pn kN
kn

an

1=k k

34n
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HomomorphicHomomorphic Analysis of Analysis of 
Speech ModelSpeech Model

35



HomomorphicHomomorphic Analysis of Speech ModelAnalysis of Speech Model

 the transfer function for voiced speech is of the form
        ( ) ( ) ( ) ( )

ith ff ti i l f i d h

•
= ⋅V VH z A G z V z R z

 with effective impulse response for voiced speech
[ ] [ ] [ ] [ ]

similarly for unvoiced speech we have
= ⋅ ∗ ∗

•

i

V Vh n A g n v n r n
 similarly for unvoiced speech we have•

UH ( ) ( ) ( )
with effective impulse response for unvoiced speech

= ⋅

i
Uz A V z R z

 with effective impulse response for unvoiced speech
[ ] [ ] [ ]= ⋅ ∗U Uh n A v n r n
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Complex Cepstrum for SpeechComplex Cepstrum for SpeechComplex Cepstrum for SpeechComplex Cepstrum for Speech
0

1

 the models for the speech components are as follows:•

∏ ∏
i MM

M 1

1 1

1

1 1

1

( ) ( )
1. vocal tract:  ( )

( )

− −

= =

−

− −

=

−

∏ ∏

∏
i

M
k k

k k
N

k

Az a z b z
V z

c z
1

0--for voiced speech, only poles => ,  all 
--unvoiced speech and nasals

=

= =

∏
k

k ka b k
, need pole-zero model but all poles are

1inside the unit circle => 
--all speech has complex poles and zeros that occur in complex conjugate
pairs

<kc

112. radiation model: ( )  (high frequency emphas−≈ −R z z

0
1

is)
3. glottal pulse model: finite duration pulse with transform

( ) ( ) ( )∏ ∏
i LL

G B

37

1

1 1

1 1    ( ) ( ) ( )

with zeros both inside and outside the unit circle

α β−

= =

= − −∏ ∏k k
k k

G z B z z



Complex Cepstrum for Voiced Complex Cepstrum for Voiced 
S hS hSpeechSpeech

• combination of vocal tract, glottal pulse and 
radiation will be non-minimum phase => p
complex cepstrum exists for all values of n

• the complex cepstrum will decay rapidly forthe complex cepstrum will decay rapidly for 
large n (due to polynomial terms in expansion 
of complex cepstrum))

• effect of the voiced source is a periodic pulse 
train for multiples of the pitch period

38
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Simplified Speech ModelSimplified Speech ModelSimplified Speech ModelSimplified Speech Model

[ ]
 short-time speech model

[ ] [ ] [ ] [ ] [ ] [ ]
•

= ⋅ ∗ ∗ ∗x n w n p n g n v n r n[ ]        [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

∗ ∗ ∗

≈ ∗w v

x n w n p n g n v n r n
p n h n

 short-time complex cepstrum
ˆ ˆ ˆˆ ˆ[ ] [ ] [ ] [ ] [ ]

•
= + + +x n p n g n v n r n        [ ] [ ] [ ] [ ] [ ]= + + +wx n p n g n v n r n
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Analysis of Model for Voiced SpeechAnalysis of Model for Voiced Speechy py p
 Assume sustained /AE/ vowel with fundamental frequency of 125 Hz
 Use glottal pulse model of the form:
i
i

1 1

1 2 1 1 2

0.5 [1 cos( ( 1) / )] 0 1
[ ] cos(0.5 ( 1 ) / ) 2

0
     

otherwise

n N n N
g n n N N N n N N

π
π

− + ≤ ≤ −⎧
⎪= + − ≤ ≤ + −⎨
⎪
⎩

1 225, 1N N= =
33 33

33 1

1 1

0 34

( ) ( ) (1 )

 sample impulse response, with transform

   all roots outside unit circle  maximum phasek k
k k

G z z b b z− −

= =

⇒

= − − ⇒ ⇒∏ ∏
  Vocal tract system specified by 5 formants (frequencies and bandwidthi

5
2 41 2

1( )
(1 2 cos(2 ) )

s)

   
k kT T

V z
e F T z e zπσ πσπ− −− −

=
+∏

1

(1 2 cos(2 ) )

{ , } [(660,60), (1720,100), (2410,120), (3500,175), (4500,250)]
 Radiation load is simple first difference

k
k

k k

e F T z e z

F

π

σ
=

− +

=

∏

i
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Time Domain AnalysisTime Domain AnalysisTime Domain AnalysisTime Domain Analysis
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PolePole--Zero Analysis of Model Zero Analysis of Model 
CCComponentsComponents
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Spectral Analysis of ModelSpectral Analysis of ModelSpectral Analysis of ModelSpectral Analysis of Model
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Speech Model OutputSpeech Model OutputSpeech Model OutputSpeech Model Output
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Complex Cepstrum of ModelComplex Cepstrum of ModelComplex Cepstrum of ModelComplex Cepstrum of Model

[ ] [ ] [ ] [ ] [ ]
 The voiced speech signal is modeled as:

A
i

[ ] [ ] [ ] [ ] [ ]

ˆ ˆ ˆ ˆ ˆ[ ] log | | [ ] [ ] [ ] [ ] [ ]

     
 with complex cepstrum:

Vx n A g n v n r n p n

s n A n g n v n r n p nδ

= ⋅ ∗ ∗ ∗

= + + + +
i

[ ] log | | [ ] [ ] [ ] [ ] [ ]
ˆ[ ] 0, 0

     
 glottal pulse is maximum phase  
 vocal tra

Vs n A n g n v n r n p n
g n n

δ= + + + +

⇒ = >i
i ct and radiation systems are minimum phase

ˆ ˆ[ ] 0, 0, [ ] 0, 0

ˆ( ) log(1 )

y p
 

p p

k
N kN

v n n r n n

P z z zββ
∞

− −

⇒ = < = <

= =∑
1

( ) log(1 )

ˆ[ ] [ ]

p p

k
k

p

P z z z
k

p n n kN

β

β δ

=

∞

= − − =

= −

∑

∑
45
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[ ] [ ]p

k
p

k=
∑



Cepstral Analysis of ModelCepstral Analysis of ModelCepstral Analysis of ModelCepstral Analysis of Model
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Resulting Complex and Real Resulting Complex and Real 
CCCepstraCepstra
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Frequency Domain RepresentationsFrequency Domain RepresentationsFrequency Domain RepresentationsFrequency Domain Representations
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FrequencyFrequency--Domain Representation of Domain Representation of 
C l C tC l C tComplex CepstrumComplex Cepstrum
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The Complex The Complex CepstrumCepstrum--DFT ImplementationDFT Implementation

2 2π π∞j k j kn
0 1 1[ ] ( ) [ ] , ,..., ,

[ ] is the  point DFT corresponding to ( )ω

−

=−∞

= = = −∑
i

j k j kn
N N

n
j

p

X k X e x n e k N

X k N X e

{ } { }2

211

/

[ ] p p g ( )
ˆ ˆ[ ] ( ) log [ ] log [ ] arg [ ]

ˆˆ ˆ

π

π− ∞

= = = +

∑ ∑�

p

j k N

N j kn

X k X e X k X k j X k

0

1 0 1 1ˆ ˆ[ ] [ ] [ ] , ,...,

ˆ [
= =−∞

= = + = −

•

∑ ∑
�

j kn
N

k r
x n X k e x n rN n N

N

x ˆ] is an aliased version of [ ]n x n
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use as large a value of  as possible to minimize aliasing⇒ N



Inverse SystemInverse System-- DFT ImplementationDFT Implementationyy pp
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The The CepstrumCepstrum--DFT ImplementationDFT Implementation

1[ ] log | ( ) |
π

ω ω ω= −∞ < < ∞∫ j j nc n X e e d n

2 2

2

0 1 1

[ ] log | ( ) |

  Approximation to cepstrum using DFT:

[ ] ( ) [ ] , ,..., ,

π

π π

ω
π −

∞ −

∞ < < ∞

= = = −

∫

∑

i
j k j kn
N N

c n X e e d n

X k X e x n e k N

1
2

0

0 1 1

1 0 1/

[ ] ( ) [ ] , ,..., ,

[ ] log | [ ] | ,π

=−∞

−

=

∞

= ≤ ≤ −

∑

∑�

n
N

j kn N

k

X k X e x n e k N

c n X k e n N
N

0 1 1( ) [ ] , ,...,

 [ ]

∞

=−∞

= + = −

•

∑�

�
r

c n c n rN n N

c n  is an aliased version of [ ] use as large a value of  
as possible to minimize aliasing

⇒c n N
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  as possible to minimize aliasing

ˆ ˆ[ ] [ ]( ) + −
=
� �

� x n x nc n



Cepstral Computation AliasingCepstral Computation AliasingCepstral Computation AliasingCepstral Computation Aliasing

N=256, NN=256, Npp=75, =75, 
αα=0 8=0 8αα=0.8=0.8

Circle dots are Circle dots are 
cepstrum cepstrum 
values invalues invalues in values in 
correct correct 

locations;  all locations;  all 
other dots are other dots are 

results of results of 
aliasing due to aliasing due to 

finite range finite range 
computationscomputations

53
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SummarySummary

x[n]x[n] y[n]y[n]X(z)X(z) X(z)X(z)^̂ Y(z)Y(z)^̂ Y(z)Y(z)

1. Homomorphic System for Convolution:

z(   )z(   ) log(   )log(   ) L(   )L(   ) exp(   )exp(   ) zz--11(   )(   )
x[n]x[n] y[n]y[n]X(z)X(z) X(z)X(z) Y(z)Y(z) Y(z)Y(z)

11( )( ) LinearLinear ( )( )
X(z)X(z)^̂ Y(z)Y(z)^̂x[n]x[n] y[n]y[n]^̂ ^̂

2. Practical Case:

zz--11(   )(   ) Linear Linear 
SystemSystem

z(   )z(   )[ ][ ] y[ ]y[ ]

1

2. Practical Case:
          ( )

( )
z DFT
z IDFT−

→

→
{ }arg ( )

( )

( ) ( )
jj X ej j

z IDFT

X e X e e
ω

ω ω

→

=
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SummarySummarySummarySummary
3. Complex Cepstrum:

1
2

ˆˆ          [ ] ( )
π

ω ω ω
π

= ∫ j j nx n X e e d
2

4. Cepstrum:
ππ −

1
2

          [ ] log ( )
π

ω ω ω
π

= ∫ j j nc n X e e d

2
ˆ ˆ[ ] [ ] ˆ[ ] even part of [ ]

π−

+ −
= =
x n x nc n x n
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SummarySummary

DFTDFT Complex LogComplex Log IDFTIDFT
x(n)x(n) X(kX(k)) X(kX(k)) x(nx(n))^̂ ^̂~

( ) ( )2 2/ /

5. Practical Implementation of Complex Cepstrum:

[ ] ( ) [ ] )π π
∞

−∑j N k j N knX k X ( ) ( )

{ } { }

2 2

1

/ /          [ ] ( ) [ ] )

ˆ [ ] log ( ) log ( ) arg ( )

π π

=−∞

= =

= = +

∑j N k j N kn

n

p p p

N

X k X e x n e

X k X k X k j X k

( )
1

2

0

1 /ˆˆ ˆ[ ] [ ] [ ] aliasing

ˆ[ ] aliased versi

π
− ∞

= =−∞

= = + ⇒

=

∑ ∑�

�

N
j N kn

k r
x n X k e x n rN

N

x n ˆon of [ ]x n

1
1

1
1

6. Examples:

ˆ( ) [ ] [ ]δ
∞

−
=

= ⇔ = −
− ∑

r

r

aX z x n n r
az r
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1 ˆ( ) [ ] [ ]δ

∞

=

= − ⇔ = − +∑
r

r

r
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Complex Complex CepstrumCepstrum Without Phase Without Phase 
UnwrappingUnwrappingUnwrappingUnwrapping

[ ] short-time analysis uses finite-length windowed segments,
M

h

x n

∑

i

0

0
( ) [ ] , -order polynomial

Find polynomial roots
i

n th

n

M M

X z x n z M−

=

= ∑
i

0
1 1 1

1 1

( ) [0] (1 ) (1 )

roots are inside unit circle (min

iM M

m m
m m

m

X z x a z b z

a

− − −

= =

= − −∏ ∏
i imum-phase part)

t t id it i l ( i h t)b

0
0

1 1

1( ) (1 ) (1 )

 roots are outside unit circle (maximum-phase part)
 Factor out terms of form  giving:

i

m

m
M M

M

b

b z

X A a b

− −

− −

−

∏ ∏

i
i

0

0
0

1 1

1

1

( ) (1 ) (1 )

[0]( 1)

m m
m m

M
M

m
m

X z Az a z b z

A x b

= =

−

=

= − −

= −

∏ ∏

∏
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 Use polynomial root finde
m=

i
ˆ[ ]

r to find the zeros that lie inside
and outside the unit circle and solve directly for .x n



Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

 for minimum phase signals (no poles or zeros outside unit circle) the complex cepstrum 
can be completely represented by the real part of the Fourier transforms
•
can be completely represented by the real part of the Fourier transforms
 this means we can represent the compl• ex cepstrum of minimum phase signals by the log 

of the magnitude of the FT alone
 since the real part of the FT is the FT of the even part of the sequence•

2
ˆ ˆ( ) ( )ˆRe ( )

( )

ω ⎡ + − ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

=⎡ ⎤⎣ ⎦

j x n x nX e FT

FT c n log ( )ωjX e⎣ ⎦

2
ˆ ˆ( ) ( )( )

 giving

+ −
=

•

x n x nc n

0 0
0

2 0

ˆ          ( )
( )
( )

thus the complex cepstrum (for minimum phase signals) can be computed by computing

= <
= =
= >

•

x n n
c n n
c n n
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 thus the complex cepstrum (for minimum phase signals) can be computed by computing 
the cepstrum and using the equation above
•



Recursive Relation for Complex Recursive Relation for Complex 
C t f Mi i Ph Si lC t f Mi i Ph Si lCepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

th l t f i i h i l the complex cepstrum for minimum phase signals 
can be computed recursively from the input signal, 
•

0 0
( ) using the relation

ˆ( ) = <

x n
x n n

1

0 0log ( )

( ) ( )−

= =⎡ ⎤⎣ ⎦

⎛ ⎞n

x n

x n k x n k

0

0
0 0

( ) ( )ˆ( )
( ) ( )=

−⎛ ⎞= − >⎜ ⎟
⎝ ⎠

∑
k

x n k x n kx k n
x n x
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Recursive Relation for Complex Recursive Relation for Complex 
C t f Mi i Ph Si lC t f Mi i Ph Si lCepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

( ) ( ) 1. basic -transform
( )

←⎯→x n X z z
dX z

[ ]

( )( ) ( ) 2. scale by  rule

ˆˆ( ) ( ) log ( ) 3. definition of complex cepstrum

′←⎯→ − = −

←⎯→ =

dX znx n z zX z n
dz

x n X z X z

[ ]
ˆ ( ) ( )log[ ( )] 4. differentiation of -transform

( )
ˆ ( )

′
= =

dX z d X zX z z
dz dz X z

dX z( )
−
dX zz ( ) ( ) 5. multiply both sides of equation′= −X z zX z
dz
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Recursive Relation for Complex Recursive Relation for Complex 
C t f Mi i Ph Si lC t f Mi i Ph Si lCepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

ˆ ( )ˆ( ) ( ) ( ) ( ) ( )′∗ ←⎯→ − = − ←⎯→
dX znx n x n z X z zX z nx n
d

( )

( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
∞

=−∞

= −∑
k

dz

nx n x k x n k k

0 0
0 0

ˆ for minimum phase systems we have ( ) for ,
( ) for ,  giving:

ˆ( ) ( ) ( )

= <
= <

⎛ ⎞
⎜ ⎟∑

i

n

x n n
x n n

kx n x k x n k
0

( ) ( ) ( )

 separating out the term for 
=

= − ⎜ ⎟
⎝ ⎠

∑
i

k
x n x k x n k

n

1

 we get:
−

=

⎛ ⎞n

k n
k

0

1

0

0
0 0

ˆ ˆ( ) ( ) ( ) ( ) ( )

( ) ( )ˆ ˆ( ) ( ) ,
( ) ( )

=

−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

− ⎛ ⎞= − >⎜ ⎟
⎝ ⎠

∑

∑
k

n

kx n x k x n k x x n
n

x n x n k kx n x k n

61[ ]
00 0

0 0 0 0

( ) ( ) ,
( ) ( )

ˆ ˆ( ) log ( ) , ( ) ,
=

⎜ ⎟
⎝ ⎠

= = <

∑
kx x n

x x x n n



Recursive Relation for Complex Recursive Relation for Complex 
C t f Mi i Ph Si lC t f Mi i Ph Si lCepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

0 0
0 1 1

ˆ why is ( ) log[ ( )]?
assume we have a finite sequence ( )

x x
x n n N

=i
0 1 1

0 1 1 1 1

1 1

 assume we have a finite sequence ( ), , ,...,
 we can write ( ) as:

           ( ) ( ) ( ) ( ) ( ) ... ( ) ( )
( ) ( )

x n n N
x n

x n x n x n x N N

x x N

δ δ δ

= −

= + − + + − −

⎡

i
i

⎤1 10 1 1
0 0
( ) ( )( ) ( ) ( ) ... ( )
( ) ( )
x x Nx n n N
x x

δ δ δ⎡ −
= + − + + −

⎣

1 21

taking transforms, we get:
NZ NZN

z
−

⎤
⎢ ⎥

⎦
−i

1

0 1 1

1 1

0

          ( ) ( ) ( ) ( )

 where the first term is the gain, ( ), and the two product terms are the 
  zeros inside and outside t

n
k k

n k k

X z x n z G a z b z

G x

− −

= = =

= = − −

=

∑ ∏ ∏
i

he unit circle.

0 0 0 0

 for minimum phase systems we have all zeros inside the unit circle so the 
  second product term is gone, and we have the result that

ˆ ˆ           ( ) log[ ] log[ ( )]; ( ) ,x G x x n n= = = <

i
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( ) g[ ] g[ ( )] ( )

ˆ( )x n = 0
NZ1

k=1

ank n
n

⎛ ⎞
− >⎜ ⎟

⎝ ⎠
∑



Cepstrum for Maximum Phase SignalsCepstrum for Maximum Phase Signalsp gp g

 for maximum phase signals (no poles or 
i id it i l )

•

2

zeros inside unit circle) 
ˆ ˆ( ) ( )( ) + −

=
x n x nc n

2

0 0
 giving

ˆ( )
•

= >x n n0 0
0

2 0

          ( )
( )
( )

>
= =
= <

x n n
c n n
c n n( )

 thus the complex cepstrum (for maximum 
phase signals) can be compute
•

d by computing 
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the cepstrum and using the equation above



Recursive Relation for Complex Recursive Relation for Complex 
C t f M i Ph Si lC t f M i Ph Si lCepstrum for Maximum Phase SignalsCepstrum for Maximum Phase Signals

 the complex cepstrum for maximum phase signals 
can be computed recursively from the input signal
•

0 0

can be computed recursively from the input signal, 
( ) using the relation

ˆ( ) = >

x n
x n n

0

0 0
0 0

( )
log ( )
= >

= =⎡ ⎤⎣ ⎦

x n n
x n

0

1

0
0 0

( ) ( )ˆ( )
( ) ( )= +

−⎛ ⎞= − <⎜ ⎟
⎝ ⎠

∑
k n

x n k x n kx k n
x n x
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Computing ShortComputing Short--Time Time 
CepstrumsCepstrums from Speechfrom SpeechCepstrumsCepstrums from Speech from Speech 
Using Polynomial RootsUsing Polynomial Roots
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CepstrumCepstrum From Polynomial RootsFrom Polynomial Roots
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CepstrumCepstrum From Polynomial RootsFrom Polynomial RootsCepstrumCepstrum From Polynomial RootsFrom Polynomial Roots
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Computing ShortComputing Short--Time Time 
CepstrumsCepstrums from Speechfrom SpeechCepstrumsCepstrums from Speech from Speech 

Using the DFTUsing the DFTgg
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Practical ConsiderationsPractical ConsiderationsPractical ConsiderationsPractical Considerations

• window to define short-time analysiswindow to define short time analysis
• window duration (should be several pitch 

periods long)periods long)
• size of FFT (to minimize aliasing)
• elimination of linear phase components 

(positioning signals within frames)
• cutoff quefrency of lifter
• type of lifter (low/high quefrency)

69

type of lifter (low/high quefrency)



Computational ConsiderationsComputational Considerations

70



Voiced Speech ExampleVoiced Speech Example

Hamming window

40 msec duration

(section beginning 
at sample 13000 

in filein file 
test_16k.wav)
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Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example

wrapped phase

unwrapped 
phase
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Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example
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Characteristic System for Characteristic System for 
H hi C l iH hi C l iHomomorphic ConvolutionHomomorphic Convolution

• still need to define (and design) the L
operator part (the linear system p p ( y
component) of the system to completely 
define the characteristic system for y
homomorphic convolution for speech
– to do this properly and correctly, need to look p p y y,

at the properties of the complex cepstrum for 
speech signals
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Complex Cepstrum of SpeechComplex Cepstrum of SpeechComplex Cepstrum of SpeechComplex Cepstrum of Speech

• model of speech:model of speech:
– voiced speech produced by a quasi-periodic 

pulse train exciting slowly time-varying linearpulse train exciting slowly time varying linear 
system => p[n] convolved with hv[n]

– unvoiced speech produced by random noiseunvoiced speech produced by random noise 
exciting slowly time-varying linear system => 
u[n] convolved with hv[n]

• time to examine full model and see what 
the complex cepstrum of speech looks like
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Homomorphic Filtering of Voiced Homomorphic Filtering of Voiced 
S hS hSpeechSpeech

• goal is to separate out the• goal is to separate out the 
excitation impulses from the 
remaining components of the 
complex cepstrum

• use cepstral window, l(n), touse cepstral window, l(n), to 
separate excitation pulses from 
combined vocal tract

– l(n)=1 for |n|<n0<Np
– l(n)=0 for |n|≥n0 ˆ ˆ( ) ( ) ( )y n n x n= ⋅A( ) | | 0
– this window removes excitation 

pulses
– l(n)=0 for |n|<n0<Np
– l(n)=1 for |n|≥n0

( )1
2

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )jj j

y n n x n

Y e X e L e d
π

ω θω θ θ
π

−

=

= ∫

A

– this window removes combined 
vocal tract

• the filtered signal is processed by 
the inverse characteristic system 
to recover the combined vocal

π−
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to recover the combined vocal 
tract component



Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example
CepstrallyCepstrally

smoothed log 
magnitude, 50 

quefrencies
cutoff

Cepstrally
unwrapped 
phase, 50 

quefrencies
cutoff
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Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example

CombinedCombined 
impulse 

response of 
glottal pulse, 
vocal tract 

system, and 
radiation system

78



Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example

High quefrency
liftering; cutoff 
quefrency=50; 
log magnitudelog magnitude 

and unwrapped 
phase
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Voiced Speech ExampleVoiced Speech ExampleVoiced Speech ExampleVoiced Speech Example

Estimated 
excitation 

function forfunction for 
voiced speech 

(Hamming 
window 

i ht d)weighted)
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Unvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech Example

Hamming window

40 msec duration

(section beginning 
at sample 3200 in 
file test 16k.wav)file test_16k.wav)
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Unvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech Example

wrapped phase

unwrapped 
phase
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Unvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech Example
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Unvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech Example
CepstrallyCepstrally

smoothed log 
magnitude, 50 

quefrencies
cutoff

Cepstrally
unwrapped 
phase, 50 

quefrencies
cutoff
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cutoff



Unvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech ExampleUnvoiced Speech Example

Estimated 
excitation source 

for unvoiced 
speech section 

(Hamming(Hamming 
window 

weighted)
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ShortShort--Time Homomorphic AnalysisTime Homomorphic Analysis

STFTSTFT

86



Review of Cepstral CalculationReview of Cepstral CalculationReview of Cepstral CalculationReview of Cepstral Calculation

• 3 potential methods for computing cepstral3 potential methods for computing cepstral 
coefficients,      , of sequence x[n]
– analytical method; assuming X(z) is a rational 

ˆ[ ]x n

function; find poles and zeros and expand using log 
power series
recursion method; assuming X(z) is either a minimum– recursion method; assuming X(z) is either a minimum 
phase (all poles and zeros inside unit circle) or 
maximum phase (all poles and zeros outside unit 
circle) sequence

– DFT implementation; using windows, with phase 
unwrapping (for complex cepstra)

87

unwrapping (for complex cepstra)



Example 1Example 1——single pole sequence single pole sequence 
( t d i ll 3 th d )( t d i ll 3 th d )(computed using all 3 methods)(computed using all 3 methods)

[ ] [ ]= nx n a u n

1ˆ[ ] [ ]
nax n u n 1[ ] [ ]= −x n u n
n
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Cepstral Computation AliasingCepstral Computation Aliasing

[ ] [ ] [ ]
 Effect of quefrency aliasing via a simple example

x n n n Nδ αδ+
i

( )

[ ] [ ] [ ]      
 with discrete-time Fourier transform

p

j Nj

x n n n N

ω

δ αδ= + −

i

( ) 1     

 We can express the complex logarithm as

pj NjX e e ωω α −= +

i

ˆ ( ) log{1 }     pj NjX e e ωω α −= +
1

1

( 1) p

m m
j mN

m
e

m
ωα+∞

−

=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑

1( 1)ˆ[ ] [ ]

 giving a complex cepstrum in the form
m m

x n n mNα δ
+∞ ⎛ ⎞−

= ⎜ ⎟∑

i
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[ ] [ ]     p
m

x n n mN
m

δ
=

= −⎜ ⎟
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Example 2Example 2——voiced speech framevoiced speech frameExample 2Example 2 voiced speech framevoiced speech frame
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Example 3Example 3——low quefrency lifteringlow quefrency liftering
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Example 3Example 3——high quefrency lifteringhigh quefrency liftering
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Example 4Example 4——effects of low quefrency liftereffects of low quefrency lifter
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Example 5Example 5——phase unwrappingphase unwrapping
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Example 6Example 6——phase unwrappingphase unwrapping
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Homomorphic Spectrum SmoothingHomomorphic Spectrum SmoothingHomomorphic Spectrum SmoothingHomomorphic Spectrum Smoothing
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RunningRunning CepstrumCepstrumRunning Running CepstrumCepstrum
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RunningRunning CepstrumCepstrumRunning Running CepstrumCepstrum
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Running Running CepstrumsCepstrums
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CepstrumCepstrum ApplicationsApplicationsCepstrumCepstrum ApplicationsApplications
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CepstrumCepstrum Distance MeasuresDistance MeasuresCepstrumCepstrum Distance MeasuresDistance Measures
 The cepstrum forms a natural basis for comparing

patterns in speech recognition or vector quantization
i

because of its stable mathematical characterization
for speech signals
 A typical "cepstral distani ce measure" is of the form:

2

1
( [ ] [ ])

[ ] [ ]

        

where  and  are cepstral sequences corresponding

con

n
D c n c n

c n c n
=

= −∑
[ ] [ ] p q p g

to frames of signal, and  is the cepstral distance between
the pair of sequences.

Using

D

i Parseval's theorem, we can express the cepstral Using 

21 (log | ( ) | log | ( ) |)
2

Parseval s theorem, we can express the cepstral 
distance in the frequency domain as:

       j jD H e H e d
π ω ω

π
ω

π −
= −∫
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2
 Thus we see that the cepstral distance is actually a log 

magnitude spe

π
i

ctral distance



Mel Frequency Mel Frequency CepstralCepstral CoefficientsCoefficients
 Basic idea is to compute a frequency analysis based on a filter 

bank with approximately critical band spacing of the filters and
bandwidths.  For 4 kHz bandwidth, approximately 20 filters are used.

i

, pp y
 i [ ], 0,1,..., / 2First perform a short-time Fourier analysis, giving 

where  is the frame number and  is the frequency index (1 to half
the size of the FFT)

mX k k NF
m k

=

the size of the FFT)
 Next the DFT values are grouped togetheri in critical bands and weighted

by triangular weighting functions.
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Mel Frequency Mel Frequency CepstralCepstral CoefficientsCoefficients
( 1,2,..., )

1

 The mel-spectrum of the  frame for the  filter 
is defined as:

r

th th

U

m r r R=i

21[ ] | [ ] [ ] |

[ ]

         MF

where  is the weighting function for the  filter, ranging from

r

r

m r m
k Lr

th
r

r V k X k
A

V k r
=

= ∑

DFT index

2| [ ] |

  to , and
r

r r
U

r r
k L

L U

A V k
=

= ∑
 is the normalizing factor for the  mel-filter.  (Normalization guarantees
that if the input spectrum is flat, the mel-spectrum is flat).

A discrete cosine transform

rk L

thr

of the log magnitude of the filter outputs is A discrete cosine transformi
[ ]

1 2 1[ ] log( [ ]) cos , 1, 2, , f

of the log magnitude of the filter outputs is
computed to form the function mfcc  as:

mfcc MF
R

n

n r r n n Nπ⎡ ⎤⎛ ⎞= + =⎜ ⎟⎢ ⎥∑
103

1

[ ] log( [ ]) cos , 1, 2,...,
2

13 24

mfcc

mfcc

        mfcc MF

 Typically  and  for 4 kHz

m m
r

n r r n n N
R R

N R
=

+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= =

∑
i  bandwidth speech signals.



Delta Delta CepstrumCepstrum
 The set of mel frequency cepstral coefficients provide perceptually

meaningful and smooth estimates of speech spectra, over time
 Since speech is inherently a dynamic signal, it is reasonable to seek

i

i
t ti th t i l d t f th d i t fa representation that includes some aspect of the dynamic nature of

the time derivatives (both first and second order derivatives) of the short-
term cepstrum

The resulting parameter sets are called thi e delta cepstrum (first derivative) The resulting parameter sets are called the delta cepstrum (first derivative)
and the delta-delta cepstrum (second derivative).
 The simplest method of computing delta cepstrum parameters is a first

difference of cepstral vectors, of the form:
i

 1[ ] [ ] [ ]       mfcc mfcc mfcc
 The simple difference is a poor approximation to the first derivative and is

not generally used.  Instead a least-squares approximation to the local slope

m m mn n n−Δ = −

i

(over a r

2

( [ ])
[ ]

egion around the current sample) is used, and is of the form:

mfcc
        mfcc

M

m k
k M

m M

k n
n

k

+
=−Δ =
∑

∑
104

2

where the region is  frames before and after the current frame
k M

k

M
=−
∑



Homomorphic VocoderHomomorphic VocoderHomomorphic VocoderHomomorphic Vocoder
• time-dependent complex cepstrum retains all the p p p

information of the time-dependent Fourier 
transform => exact representation of speech
i d d l l h• time dependent real cepstrum loses phase 

information -> not an exact representation of 
speechspeech

• quantization of cepstral parameters also loses 
information

• cepstrum gives good estimates of pitch, voicing, 
formants => can build homomorphic vocoder
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Homomorphic VocoderHomomorphic VocoderHomomorphic VocoderHomomorphic Vocoder
1. compute cepstrum every 10-20 msecp p y
2. estimate pitch period and 

voiced/unvoiced decision
3. quantize and encode low-time cepstral 

values
4 t th i t i ti t h ( )4. at synthesizer-get approximation to hv(n)

or hu(n) from low time quantized cepstral 
valuesvalues

5. convolve hv(n) or hu(n) with excitation 
created from pitch, voiced/unvoiced, and 

106

p , ,
amplitude information



Homomorphic VocoderHomomorphic Vocoder

l( ) i t i d th t l t l ti

107

• l(n) is cepstrum window that selects low-time 
values and is of length 26 samples homomorphic 

vocoder



Homomorphic Vocoder Impulse ResponsesHomomorphic Vocoder Impulse Responses
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SummarySummary
• Introduced the concept of the cepstrum of a signal, 

defined as the inverse Fourier transform of the log of the 
signal spectrumsignal spectrum

1ˆ[ ] log ( )jx n F X e ω− ⎡ ⎤= ⎣ ⎦
• Showed cepstrum reflected properties of both the 

excitation (high quefrency) and the vocal tract (low 
f )quefrency)

– short quefrency window filters out excitation; long quefrency 
window filters out vocal tract

• Mel-scale cepstral coefficients used as feature set for 
speech recognition
Delta and delta delta cepstral coefficients used as• Delta and delta-delta cepstral coefficients used as 
indicators of spectral change over time 109


