Digital Speech ProcessingLecture 13

> Linear Predictive Coding (LPC)Introduction

LPC Methods

- for periodic signals with period N_{p}, it is obvious that

$$
s(n) \approx s\left(n-N_{p}\right)
$$

but that is not what LP is doing; it is estimating $s(n)$ from the $p\left(p \ll N_{p}\right)$ most recent values of $s(n)$ by linearly predicting its value

- for LP, the predictor coefficients (the $\alpha_{k}{ }^{\prime}$ s) are determined (computed) by minimizing the sum of squared differences (over a finite interval) between the actual speech samples and the linearly predicted ones

LPC Methods

- LP methods have been used in control and information theory-called methods of system estimation and system identification
- used extensively in speech under group of names including

1. covariance method
2. autocorrelation method
3. lattice method
4. inverse filter formulation
5. spectral estimation formulation
6. maximum likelihood method
7. inner product method

LPC Methods

- LPC methods are the most widely used in speech coding, speech synthesis, speech recognition, speaker recognition and verification and for speech storage
- LPC methods provide extremely accurate estimates of speech parameters, and does it extremely efficiently
- basic idea of Linear Prediction: current speech sample can be closely approximated as a linear combination of past samples, i.e.,

$$
s(n)=\sum_{k=1}^{p} \alpha_{k} s(n-k) \text { for some value of } p, \alpha_{k} \text { 's }
$$

LP Basic Equations

- a $p^{\text {th }}$ order linear predictor is a system of the form

$\tilde{s}(n)=\sum_{k=1}^{p} \alpha_{k} s(n-k) \Leftrightarrow P(z)=\sum_{k=1}^{p} \alpha_{k} z^{-k}=\frac{\tilde{S}(z)}{S(z)}$
- the prediction error, $e(n)$, is of the form

$$
e(n)=s(n)-\tilde{s}(n)=s(n)-\sum_{k=1}^{p} \alpha_{k} s(n-k)
$$

-the prediction error is the output of a system with transfer function
$A(z)=\frac{E(z)}{S(z)}=1-P(z)=1-\sum_{k=1}^{p} \alpha_{k} z^{-k}$

- if the speech signal obeys the production model exactly, and if $\alpha_{k}=a_{k}, 1 \leq k \leq p$ $\Rightarrow e(n)=G u(n)$ and $A(z)$ is an inverse filter for $H(z)$, i.e.,
$H(z)=\frac{1}{A(z)}$

Solution for $\left\{\alpha_{k}\right\}$

- short-time average prediction squared-error is defined as

$$
\begin{aligned}
E_{\hat{n}} & =\sum_{m} e_{\hat{n}}^{2}(m)=\sum_{m}\left(s_{\hat{n}}(m)-\tilde{s}_{\hat{n}}(m)\right)^{2} \\
& =\sum_{m}\left(s_{\hat{n}}(m)-\sum_{k=1}^{p} \alpha_{k} s_{\hat{n}}(m-k)\right)^{2}
\end{aligned}
$$

- select segment of speech $s_{\hat{n}}(m)=s(m+\hat{n})$ in the vicinity of sample \hat{n}
- the key issue to resolve is the range of m for summation (to be discussed later)

Solution for $\left\{\alpha_{k}\right\}$

- defining

$$
\phi_{\hat{n}}(i, k)=\sum_{m} s_{\hat{n}}(m-i) s_{\hat{n}}(m-k)
$$

- we get

$$
\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(i, k)=\phi_{\hat{n}}(i, 0), \quad i=1,2, \ldots, p
$$

- leading to a set of p equations in p unknowns that can be solved in an efficient manner for the $\left\{\alpha_{k}\right\}$

LP Estimation Issues

- need to determine $\left\{\alpha_{k}\right\}$ directly from speech such that they give good estimates of the time-varying spectrum
- need to estimate $\left\{\alpha_{k}\right\}$ from short segments of speech
- need to minimize mean-squared prediction error over short segments of speech
- resulting $\left\{\alpha_{k}\right\}$ assumed to be the actual $\left\{a_{k}\right\}$ in the speech production model
=> intend to show that all of this can be done efficiently, reliably, and accurately for speech

Solution for $\left\{a_{k}\right\}$

- can find values of α_{k} that minimize $E_{\hat{n}}$ by setting:

$$
\frac{\partial E_{\hat{n}}}{\partial \alpha_{i}}=0, \quad i=1,2, \ldots, p
$$

- giving the set of equations

$$
\begin{aligned}
& -2 \sum_{m} s_{\hat{n}}(m-i)\left[s_{\hat{n}}(m)-\sum_{k=1}^{p} \hat{\alpha}_{k} s_{\hat{n}}(m-k)\right]=0, \quad 1 \leq i \leq p \\
& -2 \sum_{m}^{m} s_{\hat{n}}(m-i) e_{\hat{n}}(m)=0, \quad 1 \leq i \leq p
\end{aligned}
$$

- where $\hat{\alpha}_{k}$ are the values of α_{k} that minimize $E_{\hat{n}}$ (from now on just use α_{k} rather than $\hat{\alpha}_{k}$ for the optimum values)
- prediction error $\left(e_{\hat{n}}(m)\right)$ is orthogonal to signal $\left(s_{\hat{n}}(m-i)\right)$ for delays (i) of 1 to p

Solution for $\left\{\alpha_{k}\right\}$

- minimum mean-squared prediction error has the form

$$
E_{\hat{n}}=\sum_{m} s_{\hat{n}}^{2}(m)-\sum_{k=1}^{p} \alpha_{k} \sum_{m} s_{\hat{n}}(m) s_{\hat{n}}(m-k)
$$

- which can be written in the form

$$
E_{\hat{n}}=\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(0, k)
$$

Process:

1. compute $\phi_{\hat{n}}(i, k)$ for $1 \leq i \leq p, 0 \leq k \leq p$
2. solve matrix equation for α_{k}

- need to specify range of m to compute $\phi_{\hat{n}}(i, k)$
- need to specify $s_{\hat{n}}(m)$

Autocorrelation Method

assume $s_{\hat{n}}(m)$ exists for $0 \leq m \leq L-1$ and is exactly zero everywhere else (i.e., window of length L samples) (Assumption \#1) $s_{\hat{n}}(m)=s(m+\hat{n}) w(m), \quad 0 \leq m \leq L-1$
\square where $w(m)$ is a finite length window of length L samples

Autocorrelation Method

15

Autocorrelation Method

```
if \(s_{n}(m)\) is non-zero only for \(0 \leq m \leq L-1\) then
    \(e_{\hat{n}}(m)=s_{\hat{n}}(m)-\sum_{k=1}^{p} \alpha_{k} s_{\hat{n}}(m-k)\)
is non-zero only over the interval \(0 \leq m \leq L-1+p\), giving
\[
E_{\hat{n}}=\sum_{m=-\infty}^{\infty} e_{\tilde{n}}^{2}(m)=\sum_{m=0}^{L-1+p} e_{\hat{n}}^{2}(m)
\]
```

at values of m near 0 (i.e., $m=0,1 \ldots, p-1$) we are predicting signal from zero-valued samples outside the window range $=>e_{\hat{n}}(m)$ will be (relatively) large
\square at values near $m=L$ (i.e., $m=L, L+1, \ldots, L+p-1$) we are predicting zero-valued samples
(outside window range) from non-zero samples $=>\mathrm{e}_{\hat{n}}(m)$ will be (relatively) large

- for these reasons, normally use windows that taper the segment to zero (e.g., Hamming window)

The "Autocorrelation Method"

$$
R_{\hat{n}}[k]=\sum_{m=0}^{L-1-k} s_{n}[m] s_{n}[m+k] \quad k=1,2, \ldots, p
$$

16

The "Autocorrelation Method"

Autocorrelation Method

- for calculation of $\phi_{\hat{n}}(i, k)$ since $s_{\hat{n}}(m)=0$ outside the range $0 \leq m \leq L-1$, then $\phi_{\hat{n}}(i, k)=\sum_{m=0}^{L-1+p} s_{\hat{n}}(m-i) s_{\hat{n}}(m-k), 1 \leq i \leq p, 0 \leq k \leq p$
- which is equivalent to the form

$$
\phi_{\hat{n}}(i, k)=\sum_{m=0}^{L-1+(i-k)} s_{\hat{n}}(m) s_{\hat{n}}(m+i-k), \quad 1 \leq i \leq p, 0 \leq k \leq p
$$

- there are $L-|i-k|$ non-zero terms in the computation of $\phi_{\hat{n}}(i, k)$ for each value of i and k; can easily show that

$$
\phi_{\hat{n}}(i, k)=f(i-k)=R_{\hat{n}}(i-k), \quad 1 \leq i \leq p, 0 \leq k \leq p
$$

- where $R_{\hat{n}}(i-k)$ is the short-time autocorrelation of $s_{\hat{n}}(m)$ evaluated at $i-k$ where

$$
R_{\hat{n}}(k)=\sum_{m=0}^{L-1-k} s_{\hat{n}}(m) s_{\hat{n}}(m+k)
$$

Autocorrelation Method

- since $R_{\hat{n}}(k)$ is even, then

$$
\phi_{\hat{n}}(i, k)=R_{\hat{n}}(|i-k|), 1 \leq i \leq p, 0 \leq k \leq p
$$

- thus the basic equation becomes

$$
\begin{aligned}
& \sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(i-k)=\phi_{\hat{n}}(i, 0), \quad 1 \leq i \leq p \\
& \sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(|i-k|)=R_{\hat{n}}(i), \quad 1 \leq i \leq p
\end{aligned}
$$

- with the minimum mean-squared prediction error of the form

$$
\begin{aligned}
E_{\hat{n}} & =\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(0, k) \\
& =R_{\hat{n}}(0)-\sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(k)
\end{aligned}
$$

Autocorrelation Method

- as expressed in matrix form
$\left[\begin{array}{ccccc}R_{\hat{n}}(0) & R_{\hat{n}}(1) & \cdot & R_{\hat{n}}(p-1) \\ R_{\hat{n}}(1) & R_{\hat{n}}(0) & \cdot & \cdot & R_{\hat{n}}(p-2) \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ R_{\hat{n}}(p-1) & R_{\hat{n}}(p-2) & \cdot & \cdot & R_{\hat{n}}(0)\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \cdot \\ \cdot \\ \alpha_{p}\end{array}\right]=\left[\begin{array}{c}R_{\hat{n}}(1) \\ R_{\hat{n}}(2) \\ \cdot \\ \cdot \\ R_{\hat{n}}(p)\end{array}\right]$
$\mathfrak{R} \boldsymbol{\alpha}=\boldsymbol{r}$
with solution
$\alpha=\Re^{-1} \boldsymbol{r}$
- \mathfrak{R} is a $p \times p$ Toeplitz Matrix => symmetric with all diagonal elements equal $=>$ there exist more efficient algorithms to solve for $\left\{\alpha_{k}\right\}$ than simple matrix inversion

Covariance Method

- there is a second basic approach to defining the speech segment $s_{\hat{n}}(m)$ and the limits on the sums, namely fix the interval over which the mean-squared error is computed, giving
(Assumption \#2):

$$
\begin{aligned}
& E_{\hat{n}}=\sum_{m=0}^{L-1} e_{\hat{n}}^{2}(m)=\sum_{m=0}^{L-1}\left[s_{\hat{n}}(m)-\sum_{k=1}^{p} \alpha_{k} s_{\hat{n}}(m-k)\right]^{2} \\
& \phi_{\hat{n}}(i, k)=\sum_{m=0}^{L-1} s_{\hat{n}}(m-i) s_{\hat{n}}(m-k), \quad 1 \leq i \leq p, 0 \leq k \leq p
\end{aligned}
$$

Covariance Method

Covariance Method

- changing the summation index gives

$$
\begin{aligned}
& \phi_{\hat{n}}(i, k)=\sum_{m=-i}^{L-i-1} s_{\hat{n}}(m) s_{\hat{n}}(m+i-k), 1 \leq i \leq p, 0 \leq k \leq p \\
& \phi_{\hat{n}}(i, k)=\sum_{m=-k}^{L-k-1} s_{\hat{n}}(m) s_{\hat{n}}(m+k-i), 1 \leq i \leq p, 0 \leq k \leq p
\end{aligned}
$$

- key difference from Autocorrelation Method is that limits of summation include terms before $m=0=>$ window extends p samples backwards from $s(\hat{n}-p)$ to $s(\hat{n}+L-1)$
- since we are extending window backwards, don't need to taper it using a HW- since there is no transition at window edges

Covariance Method

- cannot use autocorrelation formulation $=>$ this is a true cross correlation - need to solve set of equations of the form

$$
\begin{aligned}
& \sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(i, k)=\phi_{\hat{n}}(i, 0), \quad i=1,2, \ldots, p, \\
& E_{\hat{n}}=\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(0, k) \\
& {\left[\begin{array}{ccccc}
\phi_{\hat{n}}(1,1) & \phi_{\hat{n}}(1,2) & . & \phi_{\hat{n}}(1, p) \\
\phi_{\hat{n}}(2,1) & \phi_{\hat{n}}(2,2) & . & . & \phi_{\hat{n}}(2, p) \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\phi_{\hat{n}}(p, 1) & \phi_{\hat{n}}(p, 2) & . & \cdot & \phi_{\hat{n}}(p, p)
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\cdot \\
\cdot \\
\alpha_{p}
\end{array}\right]=\left[\begin{array}{c}
\phi_{\hat{n}}(1,0) \\
\phi_{\hat{n}}(2,0) \\
\cdot \\
\cdot \\
\phi_{\hat{n}}(p, 0)
\end{array}\right]}
\end{aligned}
$$

Covariance Method

- we have $\phi_{\hat{n}}(i, k)=\phi_{\hat{n}}(k, i)=>$ symmetric but not Toeplitz matrix whose diagonal elements are related as $\phi_{\hat{n}}(i+1, k+1)=\phi_{\hat{n}}(i, k)+s_{\hat{n}}(-i-1) s_{\hat{n}}(-k-1)-s_{\hat{n}}(L-1-i) s_{\hat{n}}(L-1-k)$ $\phi_{\hat{n}}(2,2)=\phi_{\hat{n}}(1,1)+s_{\hat{n}}(-2) s_{\hat{n}}(-2)-s_{\hat{n}}(L-2) s_{\hat{n}}(L-2)$
- all terms $\phi_{\hat{n}}(i, k)$ have a fixed number of terms contributing to the computed values (L terms)
- $\phi_{\hat{r}}(i, k)$ is a covariance matrix $=>$ specialized solution for $\left\{\alpha_{k}\right\}$ called the Covariance Method

Summary of LP

- use $p^{\text {th }}$ order linear predictor to predict $s(\hat{n})$ from p previous samples - minimize mean-squared error, $E_{\hat{n}}$, over analysis window of duration L-samples
- solution for optimum predictor coefficients, $\left\{\alpha_{k}\right\}$, is based on solving a matrix equation => two solutions have evolved
-autocorrelation method => signal is windowed by a tapering window in order to minimize discontinuities at beginning (predicting speech from zero-valued samples) and end (predicting zero-valued samples from speech samples) of the interval; the matrix $\phi_{n}(i, k)$ is shown to be an autocorrelation function; the resulting autocorrelation matrix is Toeplitz and can be readily solved using standard matrix solutions covariance method => the signal is extended by p samples outside the normal range of $0 \leq m \leq L-1$ to include p samples occurring prior to $m=0$; this eliminates large error in computing the signal from values prior to $m=0$ (they are available) and eliminates the need for a tapering window; resulting matrix of correlations is symmetric but not Toeplitz => different method of solution with somewhat different set of optimal prediction coefficients, $\left\{\alpha_{k}\right\}$

LPC Summary

1. Speech Production Model:

$$
\begin{aligned}
& s(n)=\sum_{k=1}^{p} a_{k} s(n-k)+G u(n) \\
& H(z)=\frac{S(z)}{G U(z)}=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-k}}
\end{aligned}
$$

2. Linear Prediction Model:

$$
\begin{aligned}
& \tilde{s}(\hat{n})=\sum_{k=1}^{p} \alpha_{k} s(\hat{n}-k) \\
& P(z)=\frac{\tilde{S}(z)}{S(z)}=\sum_{k=1}^{p} \alpha_{k} z^{-k} \\
& e(\hat{n})=s(\hat{n})-\tilde{s}(\hat{n})=s(\hat{n})-\sum_{k=1}^{p} \alpha_{k} s(\hat{n}-k) \\
& A(z)=\frac{E(z)}{S(z)}=1-\sum_{k=1}^{p} \alpha_{k} z^{-k}
\end{aligned}
$$

LPC Summary

3. LPC Minimization:

$$
\begin{aligned}
& E_{\hat{n}}=\sum_{m} e_{n}^{2}(m)=\sum_{m}\left[s_{n}(m)-\tilde{s}_{n}(m)\right]^{-2} \\
& \quad=\sum_{m}\left[s_{\hat{n}}(m)-\sum_{k=1}^{p} \alpha_{k} s_{n}(m-k)\right]^{2} \\
& \frac{\partial E_{\hat{n}}}{\partial \alpha_{i}}=0, \quad i=1,2, \ldots, p \\
& \sum_{m} s_{n}(m-i) s_{n}(m)=\sum_{k=1}^{p} \alpha_{k} \sum_{m} s_{n}(m-i) s_{\hat{n}}(m-k) \\
& \phi_{\hat{n}}(i, k)=\sum_{m} s_{\hat{n}}(m-i) s_{\hat{n}}(m-k) \\
& \sum_{k=1}^{p} \alpha_{k} \phi_{n}(i, k)=\phi_{\hat{n}}(i, 0), \quad i=1,2, \ldots, p \\
& E_{\hat{n}}=\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{n}(0, k)
\end{aligned}
$$

LPC Summary

4. Autocorrelation Method:
$s_{\hat{n}}(m)=s(m+\hat{n}) w(m), \quad 0 \leq m \leq L-1$

$$
e_{n}(m)=s_{n}(m)-\sum_{k=1}^{p} \alpha_{k} s_{n}(m-k), \quad 0 \leq m \leq L-1+p
$$

$\square s_{\hat{n}}(m)$ defined for $0 \leq m \leq L-1 ; e_{\hat{n}}(m)$ defined for $0 \leq m \leq L-1+p$ \Rightarrow large errors for $0 \leq m \leq p-1$ and for $L \leq m \leq L+p-1$

$$
\begin{aligned}
& E_{\hat{n}}=\sum_{m=0}^{L-1+p} e_{n}^{2}(m) \\
& \phi_{\hat{n}}(i, k)=R_{\hat{n}}(i-k)=\sum_{m=0}^{L-1-1 i-k)} s_{n}(m) s_{n}(m+i-k)=R_{\hat{n}}(|i-k|) \\
& \sum_{k=1}^{p} \alpha_{k} R_{n}(i-k \mid)=R_{\hat{n}}(i), 1 \leq i \leq p \\
& E_{\hat{n}}=R_{\hat{n}}(0)-\sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(k)
\end{aligned}
$$

LPC Summary

4. Autocorrelation Method:
resulting matrix equation:

[^0]
LPC Summary

5. Covariance Method

\square fix interval for error signal

$$
E_{\hat{n}}=\sum_{m=0}^{L-1} e_{\hat{n}}^{2}(m)=\sum_{m=0}^{L-1}\left[s_{\hat{n}}(m)-\sum_{k=1}^{p} \alpha_{k} s_{\hat{n}}(m-k)\right]^{2}
$$

\square need signal for from $s(\hat{n}-p)$ to $s(\hat{n}+L-1) \Rightarrow L+p$ samples
$\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(i, k)=\phi_{\hat{n}}(i, 0), i=1,2, \ldots, p$
$E_{\hat{n}}=\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(0, k)$
\square expressed as a matrix equation:
$\phi \alpha=\psi$ or $\alpha=\phi^{-1} \psi, \phi$ symmetric matrix
$\left[\begin{array}{cccc}\phi_{\hat{n}}(1,1) & \phi_{\hat{n}}(1,2) & \cdot & \phi_{\hat{n}}(1, p) \\ \phi_{n}(2,1) & \phi_{\hat{n}}(2,2) & \cdot & \cdot \\ \cdot & \phi_{n}(2, p) \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \phi_{n}(p, 1) & \phi_{n}(p, 2) & \cdot & \cdot \\ \phi_{\hat{n}}(p, p)\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \cdot \\ \cdot \\ \alpha_{\rho}\end{array}\right]=\left[\begin{array}{c}\phi_{\hat{n}}(1,0) \\ \phi_{\hat{n}}(2,0) \\ \cdot \\ \cdot \\ \phi_{\hat{n}}(p, 0)\end{array}\right]$

31

Gain Assumptions

- assumptions about excitation to solve for G
- voiced speech-- $u(n)=\delta(n) \Rightarrow L$ order of a single pitch period; predictor order, p, large enough to model glottal pulse shape, vocal tract IR, and radiation
- unvoiced speech--u(n)-zero mean, unity variance, stationary white noise process

Solution for Gain (Voiced)

- Since $\tilde{R}(m)$ and $R_{n}(m)$ have the identical form, it follows that

$$
\tilde{R}(m)=c \cdot R_{\tilde{n}}(m), \quad 0 \leq m \leq p
$$

where c is a constant to be determined.

- Since the total energies in the signal $(R(0))$ and the impulse response $(\tilde{R}(0))$ must be equal, the constant c must be 1 , and we obtain the relation

$$
G^{2}=R_{\hat{n}}(0)-\sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(k)=E_{\hat{n}}
$$

- since $\tilde{R}(m)=R_{\hat{n}}(m), 0 \leq m \leq p$, and the energy of the impulse response=energy of the signal $=>$ first $p+1$ coefficients of the autocorrelation of the impulse response of the model are identical to the first $p+1$ coefficients of the autocorrelation function of the speech signal. This condition called the autocorrelation matching property of the autocorrelation method.

Computation of Model Gain

- it is reasonable to expect the model gain, G, to be determined by matching the signal energy with the energy of the linearly predicted samples - from the basic model equations we have

$$
G u(n)=s(n)-\sum_{k=1}^{p} a_{k} s(n-k) \Rightarrow \text { model }
$$

- whereas for the prediction error we have

$$
e(n)=s(n)-\sum_{k=1}^{p} \alpha_{k} s(n-k) \Rightarrow \text { best fit to model }
$$

- when $\alpha_{k}=a_{k}$ (i.e., perfect match to model), then $e(n)=G u(n)$
- since it is virtually impossible to guarantee that $\alpha_{k}=a_{k}$, cannot use this simple matching property for determining the gain; instead use energy matching criterion (energy in error signal=energy in excitation)

$$
G^{2} \sum_{m=0}^{L-1+p} u^{2}(m)=\sum_{m=0}^{L-1+p} e^{2}(m)=E_{\hat{n}}
$$

Solution for Gain (Voiced)

- for voiced speech the excitation is $G \delta(n)$ with output $\tilde{h}(n)$ (since it is the IR of the system),

$$
\tilde{h}(n)=\sum_{k=1}^{p} \alpha_{k} \tilde{h}(n-k)+G \delta(n) ; \quad \tilde{H}(z)=\frac{G}{A(z)}=\frac{G}{1-\sum_{k=1}^{p} \alpha_{k} z^{-k}}
$$

- with autocorrelation $\tilde{R}(m)$ (of the impulse response) satisfying the relation shown below

$$
\begin{aligned}
& \tilde{R}(m)=\sum_{n=0}^{\infty} \tilde{h}(n) \tilde{h}(m+n)=\tilde{R}[-m], \quad 0 \leq m<\infty \\
& \tilde{R}(m)=\sum_{k=1}^{p} \alpha_{k} \tilde{R}(|m-k|), \quad 1 \leq m<\infty \\
& \tilde{R}(0)=\sum_{k=1}^{p} \alpha_{k} \tilde{R}(k)+G^{2}, \quad m=0
\end{aligned}
$$

Solution for Gain (Unvoiced)

- for $m=0$ we get

$$
\begin{aligned}
\tilde{R}(0) & =\sum_{k=1}^{p} \alpha_{k} \tilde{R}(k)+G E[u(n) \tilde{g}(n)] \\
& =\sum_{k=1}^{p} \alpha_{k} \tilde{R}(k)+G^{2}
\end{aligned}
$$

- since $E[u(n) \tilde{g}(n)]=E\left[u(n)(G u(n)+\right.$ terms prior to $n]=G^{2}$
- since the energy in the signal must equal the energy in the response to $G u(n)$ we get

$$
\tilde{R}(m)=R_{\hat{n}}(m)
$$

$$
G^{2}=R_{\hat{n}}(0)-\sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(k)=E_{\hat{n}}
$$

The Resulting LPC Model

\square The final LPC model consists of the LPC parameters, $\left\{\alpha_{k}\right\}, k=1,2, \ldots, p$, and the gain, G, which together define the system function

$$
\tilde{H}(z)=\frac{G}{1-\sum_{k=1}^{p} \alpha_{k} z^{-k}}
$$

\square with frequency response

$$
\tilde{H}\left(e^{j \omega}\right)=\frac{G}{1-\sum_{k=1}^{p} \alpha_{k} e^{-j \omega k}}=\frac{G}{A\left(e^{j \omega}\right)}
$$

\square with the gain determined by matching the energy of the model to the short-time energy of the speech signal, i.e.,

$$
G^{2}=E_{\hat{n}}=\sum_{m}\left(e_{\hat{n}}(m)\right)^{2}=R_{\hat{n}}(0)-\sum_{k=1}^{p} \alpha_{k} R_{\hat{n}}(k)
$$

LP Short-Time Spectrum Analysis

- Defined speech segment as:

$$
S_{\hat{n}}[m]=S[m+\hat{n}] w[m]
$$

- The discrete-time Fourier transform of this windowed segment is:

$$
S_{\hat{n}}\left(e^{j \omega}\right)=\sum_{m=-\infty}^{\infty} s[m+\hat{n}] w[m] e^{-j \omega m}
$$

- Short-time FT and the LP spectrum are linked via short-time autocorrelation

LP Short-Time Spectrum Analysis

(a) Unvoiced speech segment obtained using a Hamming window
(b) Corresponding shorttime autocorrelation function used in LP unalysis (heavy line shows values used in LP shows val
analysis)
(c) Corresponding shorttime log magnitude Fourier transform and LPC spectrum ($F_{S}=16$ kHz)

Frequency Domain Interpretation of Mean-Squared Prediction Error

\square The LP spectrum provides a basis for examining the properties of the prediction error (or equivalently the excitation of the VT) \square The mean-squared prediction error at sample \hat{n} is:

$$
E_{\hat{n}}=\sum_{m=0}^{L+p-1} e_{\tilde{n}}^{2}[m]
$$

which, by Parseval's Theorem, can be expressed as:

$$
E_{\hat{n}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\mathbf{E}_{\hat{n}}\left(e^{j \omega}\right)\right|^{2} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}\left|A\left(e^{j \omega}\right)\right|^{2} d \omega=G^{2}
$$

\square where $S_{\hat{n}}\left(e^{j \omega}\right)$ is the FT of $S_{\hat{n}}[m]$ and $A\left(e^{j \omega}\right)$ is the corresponding prediction error frequency response

$$
A\left(e^{j \omega}\right)=1-\sum_{k=1}^{p} \alpha_{k} e^{-j \omega k}
$$

Frequency Domain Interpretation of Mean-Squared Prediction Error

\square The LP spectrum is of the form:

$$
\tilde{H}\left(e^{j \omega}\right)=\frac{G}{A\left(e^{j \omega}\right)}
$$

\square Thus we can express the mean-squared error as:

$$
E_{\hat{n}}=\frac{G^{2}}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}}{\left|\tilde{H}\left(e^{j \omega}\right)\right|^{2}} d \omega=G^{2}
$$

\square We see that minimizing total squared prediction error is equivalent to finding gain and predictor coefficients such that the integral of the ratio of the energy spectrum of the speech segment to the magnitude squared of the frequency response of the model linear system is unity.
\square Thus $\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}$ can be interpreted as a frequency-domain weighting function $\Rightarrow \mathrm{LP}$ weights frequencies where $\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}$ is large more heavily than when $\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}$ is small.

LP Interpretation Example2

Effects of Model Order

\square The AC function, $R_{\hat{n}}[\mathrm{~m}]$ of the speech segment, $s_{\hat{n}}[\mathrm{~m}]$, and the AC function, $\tilde{R}[m]$, of the impulse response, $\tilde{h}[m]$, corresponding to the system function, $\tilde{H}(z)$, are equal for the first $(p+1)$ values. Thus, as $p \rightarrow \infty$, the AC functions are equal for all values and thus:

$$
\lim _{p \rightarrow \infty}\left|\tilde{H}\left(e^{j \omega}\right)\right|^{2}=\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2}
$$

Thus if p is large enough, the FR of the all-pole model, $\tilde{H}\left(e^{j \omega}\right)$, can approximate the signal spectrum with arbitrarily small error.

49

Effects of Model Order

Linear Prediction Spectrogram

Speech spectrogram previously defined as

$20 \log \left|S_{r}[k]\right|=20 \log \left|\sum_{m=0}^{l-1} s[r R+m] w[m] e^{-j(2 \pi / N) k m}\right|$
for set of times, $t_{r}=r R T$, and set of frequencies, $F_{k}=k F_{s} / N, \quad k=1,2, \ldots, N / 2$
where R is the time shift (in samples) between adjacent STFTs,
T is the sampling period, $F_{S}=1 / T$ is the sampling frequency, and N is the size of the discrete Fourier transform used to compute each STFT estimate.
Similarly we can define the LP spectrogram as an image plot of
$20 \log \left|\tilde{H}_{r}[k]\right|=20 \log \left|\frac{G_{r}}{A_{r}\left(e^{j(2 \pi / N) k}\right)}\right|$
where G_{r} and $A_{r}\left(e^{j(2 \pi / N) k}\right)$ are the gain and prediction error polynomial
at analysis time $r R$.

Effects of Model Order

50

Selective Linear Prediction

- it is possible to apply LP methods to selected parts of spectrum $-0-4 \mathrm{kHz}$ for voiced sounds \Rightarrow use a predictor of order p_{1} $-4-8 \mathrm{kHz}$ for unvoiced sounds \Rightarrow use a predictor of order p_{2}
- the key idea is to map the frequency region $\left\{f_{A}, f_{B}\right\}$ linearly to $\{0, .5\}$ or, equivalently, the region $\left\{2 \pi f_{A}, 2 \pi f_{B}\right\}$ maps linearly to $\{0, \pi\}$ via the transformation

$$
\omega^{\prime}=\frac{\omega-2 \pi f_{A}}{2 \pi f_{B}-2 \pi f_{A}} \cdot 2 \pi f_{B}
$$

- we must modify the calculation for the autocorrelation to give:

$$
R^{\prime}(m)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{\hat{n}}\left(e^{j \omega^{\prime}}\right)\right|^{2} e^{j \omega^{\prime} m} d \omega^{\prime}
$$

Solutions of LPC Equations

Covariance Method (Cholesky

 Decomposition Method)
Comparison to Other Spectrum Analysis Methods

LPC Solutions-Covariance Method

- for the covariance method we need to solve the matrix equation

$$
\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(i, k)=\phi_{\hat{n}}(i, 0), \quad i=1,2, \ldots, p
$$

$\phi \alpha=\psi$ (in matrix notation)

- ϕ is a positive definite, symmetric matrix with (i, j) element $\phi_{\hat{n}}(i, j)$, and α and ψ are column vectors with elements α_{i} and $\phi_{\hat{n}}(i, 0)$
- the solution of the matrix equation is called the Cholesky decomposition, or square root method
$\phi=\mathrm{VDV}^{\mathrm{t}} ; \mathrm{V}=$ lower triangular matrix with 1 's on the main diagonal $\mathrm{D}=$ diagonal matrix

LPC Solutions-Covariance Method

- can readily determine elements of V and D by solving for (i, j) elements of the matrix equation, as follows

```
        \phi}\mp@subsup{\hat{n}}{(}{}(i,j)=\mp@subsup{\sum}{k=1}{j}\mp@subsup{V}{ik}{}\mp@subsup{d}{k}{}\mp@subsup{v}{jk}{},\quad1\leqj\leqi-
```

- giving
$V_{i j} d_{j}=\phi_{\hat{n}}(i, j)-\sum_{k=1}^{j-1} V_{i k} d_{k} V_{j k}, \quad 1 \leq j \leq i-1$
- and for the diagonal elements
$\phi_{\hat{n}}(i, i)=\sum_{k=1}^{i} V_{i k} d_{k} V_{i k}$
- giving
$d_{i}=\phi_{\hat{n}}(i, i)-\sum_{k=1}^{i-1} V^{2} d_{k}, \quad i \geq 2$
- with
$d_{1}=\phi_{\hat{n}}(1,1)$

Cholesky Decomposition Example

- consider example with $p=4$, and matrix elements $\phi_{\hat{n}}(i, j)=\phi_{i j}$

$$
\begin{gathered}
{\left[\begin{array}{llll}
\phi_{11} & \phi_{21} & \phi_{31} & \phi_{41} \\
\phi_{21} & \phi_{22} & \phi_{32} & \phi_{42} \\
\phi_{31} & \phi_{32} & \phi_{33} & \phi_{43} \\
\phi_{41} & \phi_{42} & \phi_{34} & \phi_{44}
\end{array}\right]=} \\
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
V_{21} & 1 & 0 & 0 \\
V_{31} & V_{32} & 1 & 0 \\
V_{41} & V_{42} & V_{43} & 1
\end{array}\right]\left[\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & V_{21} & V_{31} & V_{41} \\
0 & 1 & V_{32} & V_{42} \\
0 & 0 & 1 & V_{43} \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

LPC Solutions-Covariance Method

- now need to solve for α using a 2-step procedure

$$
\operatorname{VDV}^{\mathrm{t}} \alpha=\psi
$$

- writing this as

$$
\mathrm{VY}=\psi \text { with }
$$

$$
\mathrm{DV}^{\mathrm{t}} \alpha=Y \text { or }
$$

$$
\mathrm{V}^{\mathrm{t}} \alpha=\mathrm{D}^{-1} \mathrm{Y}
$$

- from V (which is now known) solve for column vector Y using a simple recursion of the form

$$
Y_{i}=\psi_{i}-\sum_{j=1}^{i-1} V_{i j} Y_{j}, \quad p \geq i \geq 2
$$

- with initial condition
$Y_{1}=\psi_{1}$

Cholesky Decomposition Example

- continuing the example we solve for Y

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
V_{21} & 1 & 0 & 0 \\
V_{31} & V_{32} & 1 & 0 \\
V_{41} & V_{42} & V_{43} & 1
\end{array}\right]\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4}
\end{array}\right]=\left[\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right]
$$

- first solving for $Y_{1}-Y_{4}$ we get

$$
\begin{aligned}
& Y_{1}=\psi_{1} \\
& Y_{2}=\psi_{2}-V_{21} Y_{1} \\
& Y_{3}=\psi_{3}-V_{31} Y_{1}-V_{32} Y_{2} \\
& Y_{4}=\psi_{4}-V_{41} Y_{1}-V_{42} Y_{2}-V_{43} Y_{3}
\end{aligned}
$$

Cholesky Decomposition Example

$$
\begin{aligned}
& \text { • next solve for } \alpha \text { from equation } \\
& {\left[\begin{array}{cccc}
1 & V_{21} & V_{31} & V_{41} \\
0 & 1 & V_{32} & V_{42} \\
0 & 0 & 1 & V_{43} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right]=\left[\begin{array}{cccc}
1 / d_{1} & 0 & 0 & 0 \\
0 & 1 / d_{2} & 0 & 0 \\
0 & 0 & 1 / d_{3} & 0 \\
0 & 0 & 0 & 1 / d_{4}
\end{array}\right]\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4}
\end{array}\right]=\left[\begin{array}{l}
Y_{1} / d_{1} \\
Y_{2} / d_{2} \\
Y_{3} / d_{3} \\
Y_{4} / d_{4}
\end{array}\right]} \\
& \text { - giving the results } \\
& \quad \alpha_{4}=Y_{4} / d_{4} \\
& \alpha_{3}=Y_{3} / d_{3}-V_{43} \alpha_{4} \\
& \alpha_{2}=Y_{2} / d_{2}-V_{32} \alpha_{3}-V_{42} \alpha_{4} \\
& \alpha_{1}=Y_{1} / d_{1}-V_{21} \alpha_{2}-V_{31} \alpha_{3}-V_{41} \alpha_{4}
\end{aligned}
$$

- completing the solution

Covariance Method Minimum Error

- the minimum mean squared error can be written in the form

$$
\begin{aligned}
E_{\hat{n}} & =\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} \alpha_{k} \phi_{\hat{n}}(0, k) \\
& =\phi_{\hat{n}}(0,0)-\alpha^{t} \psi
\end{aligned}
$$

- since $\alpha^{t}=Y^{t} D^{-1} V^{-1}$ can write this as

$$
\begin{aligned}
E_{\hat{n}} & =\phi_{\hat{n}}(0,0)-Y^{t} D^{-1} Y \\
& =\phi_{\hat{n}}(0,0)-\sum_{k=1}^{p} Y_{k}^{2} / d_{k}
\end{aligned}
$$

- this computation for $E_{\hat{n}}$ can be used for all values of LP order from

1 to $p \Rightarrow$ can understand how LP order reduces mean-squared error

Solutions of LPC Equations

Autocorrelation Method via Levinson-Durbin Algorithm

Levinson-Durbin Algorithm 1

\square Autocorrelation equations (at each frame n̂): $\sum_{k=1}^{p} \alpha_{k} R[|i-k|]=R[i] \quad 1 \leq i \leq p$ $R \alpha=r$
$\square \mathbf{R}$ is a positive definite symmetric Toeplitz matrix
\square The set of optimum predictor coefficients satisfy:

$$
R[i]-\sum_{k=1}^{p} \alpha_{k} R[|i-k|]=0, \quad 1 \leq i \leq p
$$

\square with minimum mean-squared prediction error of:

$$
R[0]-\sum_{k=1}^{p} \alpha_{k} R[k]=E^{(p)}
$$

Levinson-Durbin Algorithm 2

\square By combining the last two equations we get a larger matrix equation of the form:
$\left[\begin{array}{ccccc}R[0] & R[1] & R[2] & \ldots & R[p] \\ R[1] & R[0] & R[1] & \ldots & R[p-1] \\ R[2] & R[1] & R[0] & \ldots & R[p-2] \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ R[p] & R[p-1] & R[p-2] & \ldots & R[0]\end{array}\right]\left[\begin{array}{c}1 \\ -\alpha_{1}^{(p)} \\ -\alpha_{2}^{(p)} \\ \cdot \\ -\alpha_{p}^{(p)}\end{array}\right]=\left[\begin{array}{c}E^{(p)} \\ 0 \\ 0 \\ \cdot \\ 0\end{array}\right]$
-expanded $(p+1) \times(p+1)$ matrix is still Toeplitz and can be solved iteratively by incorporating new correlation value at each iteration and solving for next higher order predictor in terms of new correlation value and previous predictor

Levinson-Durbin Algorithm 3

\square Show how $i^{\text {th }}$ order solution can be derived from ($\left.i-1\right)^{s t}$ order solution; i.e., given $\alpha^{(i-1)}$, the solution to $R^{(i-1)} \alpha^{(i-1)}=E^{(i-1)}$ we derive solution to $R^{(i)} \alpha^{(i)}=E^{(i)}$

The ($i-1)^{s t}$ solution can be expressed as:
$\left[\begin{array}{ccccc}R[0] & R[1] & R[2] & \ldots & R[i-1] \\ R[1] & R[0] & R[1] & \ldots & R[i-2] \\ R[2] & R[1] & R[0] & \ldots & R[i-3] \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ R[i-1] & R[i-2] & R[i-3] & \ldots & R[0]\end{array}\right]\left[\begin{array}{c}1 \\ -\alpha_{1}^{(i-1)} \\ -\alpha_{2}^{(i-1)} \\ \cdot \\ -\alpha_{i-1}^{(i-1)}\end{array}\right]=\left[\begin{array}{c}E^{(i-1)} \\ 0 \\ 0 \\ \cdot \\ 0\end{array}\right]$

Levinson-Durbin Algorithm 5

\square Key step is that since Toeplitz matrix has special symmetry we can reverse the order of the equations (first equation last, last equation first), giving:
$\left[\begin{array}{ccccc}R[0] & R[1] & R[2] & \ldots & R[i] \\ R[1] & R[0] & R[1] & \ldots & R[i-1] \\ R[2] & R[1] & R[0] & \ldots & R[i-2] \\ \cdot & \cdot & \cdot & \ldots & \cdot \\ R[i-1] & R[i-2] & R[i-3] & \ldots & R[1] \\ R[i] & R[i-1] & R[i-2] & \ldots & R[0]\end{array}\right]\left[\begin{array}{c}0 \\ -\alpha_{i-1}^{(i-1)} \\ -\alpha_{i-2}^{(i-1)} \\ \cdot \\ -\alpha_{1}^{(i-1)} \\ 1\end{array}\right]=\left[\begin{array}{c}\gamma^{(i-1)} \\ 0 \\ 0 \\ . \\ 0 \\ E^{(i-1)}\end{array}\right]$

Levinson-Durbin Algorithm 7

\square The first element of the right hand side vector is now:

$$
E^{(i)}=E^{(i-1)}-k_{i} \gamma^{(i-1)}=E^{(i-1)}\left(1-k_{i}^{2}\right)
$$

\square The k_{i} parameters are called PARCOR coefficients.
\square With this choice of $\gamma^{(i-1)}$, the vector of $i^{\text {th }}$ order predictor coefficients is:

\square yielding the updating procedure

$$
\alpha_{j}^{(i)}=\alpha_{j}^{(i-1)}-k_{i} \alpha_{i-j}^{(i-1)}, \quad j=1,2, \ldots, i
$$

$$
\alpha_{i}^{(i)}=k_{i}
$$

Levinson-Durbin Algorithm 4

\square Appending a 0 to vector $\alpha^{(i-1)}$ and multiplying by the matrix $R^{(i)}$ gives
a new set of $(i+1)$ equations of the form:
$\left[\begin{array}{ccccc}R[0] & R[1] & R[2] & \ldots & R[i] \\ R[1] & R[0] & R[1] & \ldots & R[i-1] \\ R[2] & R[1] & R[0] & \ldots & R[i-2] \\ \cdot & \cdot & . & \ldots & . \\ R[i-1] & R[i-2] & R[i-3] & \ldots & R[1] \\ R[i] & R[i-1] & R[i-2] & \ldots & R[0]\end{array}\right]\left[\begin{array}{c}1 \\ -\alpha_{1}^{(i-1)} \\ -\alpha_{2}^{(i-1)} \\ . \\ -\alpha_{i-1}^{(i-1)} \\ 0\end{array}\right]=\left[\begin{array}{c}E^{(i-1)} \\ 0 \\ 0 \\ . \\ 0 \\ \gamma^{(i-1)}\end{array}\right]$
\square where $\gamma^{(i-1)}=R[i]-\sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R[i-j]$ and $R[i]$ are introduced

Levinson-Durbin Algorithm 6

\square To get the equation into the desired form (a single component in the vector $E^{(i)}$) we combine the two sets of matrices (with a multiplicative factor k_{i}) giving:

\square Choose $\gamma^{(i-1)}$ so that vector on right has only a single non-zero entry, i.e.,

$$
k_{i}=\frac{\gamma^{(i-1)}}{E^{(i-1)}}=\frac{R[i]-\sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R[i-j]}{E^{(i-1)}}
$$

Levinson-Durbin Algorithm 7

The final solution for order p is:

$$
\alpha_{j}=\alpha_{j}^{(p)} \quad 1 \leq j \leq p
$$

\square with prediction error

$$
E^{(p)}=E[0] \prod_{m=1}^{p}\left(1-k_{m}^{2}\right)=R[0] \prod_{m=1}^{p}\left(1-k_{m}^{2}\right)
$$

\square If we use normalized autocorrelation coefficients:

$$
r[k]=R[k] / R[0]
$$

\square we get normalized errors of the form:

$$
v^{(i)}=\frac{E^{(i)}}{R[0]}=1-\sum_{k=1}^{i} \alpha_{k}^{(i)} r[k]=\prod_{m=1}^{i}\left(1-k_{m}^{2}\right)
$$

\square where $0<v^{(i)} \leq 1$ or $-1<k_{i}<1$

Levinson-Durbin Algorithm

```
Levinson-Durbin Algorithm
```

```
\(\mathcal{E}^{(0)}=R[0]\)
```

$\mathcal{E}^{(0)}=R[0]$
for $i=1,2, \ldots, p$
for $i=1,2, \ldots, p$
$k_{i}=\left(R[i]-\sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R[i-j]\right) / \mathcal{E}^{(i-1)}$
$k_{i}=\left(R[i]-\sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R[i-j]\right) / \mathcal{E}^{(i-1)}$
$\alpha_{i}^{(i)}=k_{i}$
$\alpha_{i}^{(i)}=k_{i}$
if $i>1$ then for $j=1,2, \ldots, i-1$
if $i>1$ then for $j=1,2, \ldots, i-1$
$\alpha_{j}^{(i)}=\alpha_{j}^{(i-1)}-k_{i} \alpha_{i-j}^{(i-1)}$
$\alpha_{j}^{(i)}=\alpha_{j}^{(i-1)}-k_{i} \alpha_{i-j}^{(i-1)}$
end
end
${ }_{\mathcal{E}}{ }^{\text {end }}=\left(1-k_{i}^{2}\right) \mathcal{E}^{(i-1)}$
${ }_{\mathcal{E}}{ }^{\text {end }}=\left(1-k_{i}^{2}\right) \mathcal{E}^{(i-1)}$
end
end
$\alpha_{j}=\alpha_{j}^{(p)} \quad j=1,2, \ldots, p$
$\alpha_{j}=\alpha_{j}^{(p)} \quad j=1,2, \ldots, p$
(9.97)

```
    (9.97)
```


Autocorrelation Example

- consider a simple $p=2$ solution of the form
$\left[\begin{array}{ll}R(0) & R(1) \\ R(1) & R(0)\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2}\end{array}\right]=\left[\begin{array}{l}R(1) \\ R(2)\end{array}\right]$
- with solution

$$
\begin{aligned}
& E^{(0)}=R(0) \\
& k_{1}=R(1) / R(0) \\
& \alpha_{1}^{(1)}=R(1) / R(0) \\
& E^{(1)}=\frac{R^{2}(0)-R^{2}(1)}{R(0)}
\end{aligned}
$$

Autocorrelation Method Properties

- mean-squared prediction error always non-zero - decreases monotonically with increasing model order
- autocorrelation matching property
- model and data match up to order p
- spectrum matching property
- favors peaks of short-time FT
- minimum-phase property
- zeros of $A(z)$ are inside the unit circle
- Levinson-Durbin recursion
- efficient algorithm for finding prediction coefficients
- PARCOR coefficients and MSE are by-products

[^0]: \square matrix equation solved using Levinson or Durbin method

