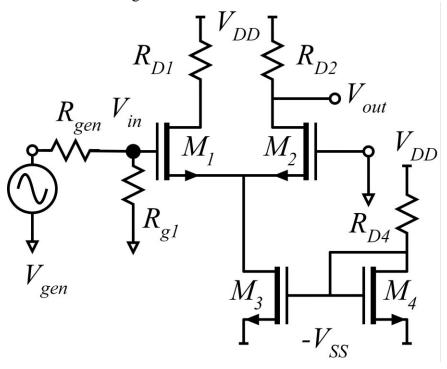
ECE 137 A Mid-Term Exam

Tuesday February 9, 2021

Closed book: Class crib sheet and 1 page personal notes permitted.


There are 2 problems on this exam, and you have 75 minutes.

Use any and all reasonable approximations (5% accuracy is fine.), AFTER STATING and approximately Justifying them.

Part	Points	Points
	Received	Possible
1a		9
1b		5
1c		6
1d		15
1e		15
1f		6
1g		14
2a		12
2b		13
2c		5
TOTAL		100

Problem 1, 70 points

You will be working on the circuit below:

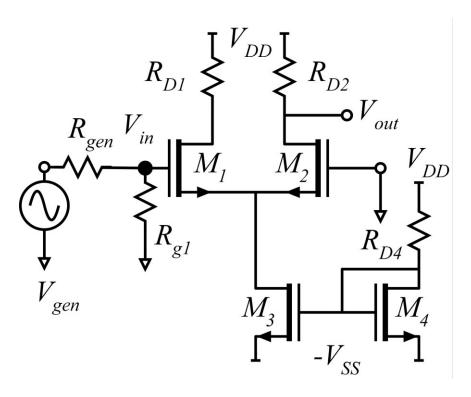
The transistors all have:
$$K_{\mu} = \mu c_{gs} W_g / 2L_g = 10 \text{mA/V}^2 \cdot (W_g / 1 \mu \text{m})$$

$$K_{\nu} = c_{gs} v_{inj} W_g = 2 \text{mA/V} \cdot (W_g / 1 \mu \text{m})$$

$$\Delta V = v_{inj} L_g / \mu = 0.1 \text{V} , \ V_{th} = 0.3 \text{V}, \ 1/\lambda = 10 \text{V}$$

The supplies are +1V and -1V Rgen=100 kOhms, Rg1=1 MOhms,

Part a, 9 points DC bias.


The sources of M1 and M2 are to be biased at -0.35 Volts. The drains of M1 and M2 are to be biased at +0.5 volts. The gates of M3 and M4 are to be biased at -0.65 Volts. M1 and M2 are to be biased at 0.1 mA drain current M4 is to be biased at 0.2 mA drain current.

	_		
Find	the	fall	lowing
1 1114	uic	1011	LO WILLE

RD1=	RD2=	RD4=	
$W_{\alpha}1=$	Wσ2=	Wσ3=	$W\sigma A=$

Part b, 5 points

DC bias

On the circuit diagram above (or on a hand-redrawing of the figure), label the DC voltages at ALL nodes and the DC currents through ALL resistors. Also label all resistor values, and the width of all MOSFETs.

Part c, 6 points

Find the small signal parameters of all FETs

Transistor	M1	M2	M3	M4
gm				
R_{DS}				

Part	d,	15	points.

Find the small signal voltage gain	(Vd2/Vs2) of M2	and M2's small-signal input
resistance.		
Vd2/Vs2=		

Rin,m2=____

Part e, 15 points

Find the small signal voltage gain (Vs1/Vg1) of M1 and	the *** amplifier *** input
resistance.	

Vs1/Vg1=____

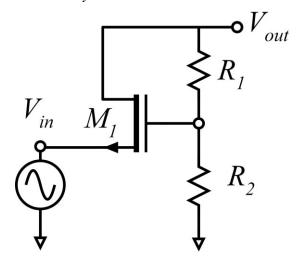
Rin,amplifier =

Part f, 6 points

Find (Vout/Vin), (Vin/Vgen) and (Vout/Vgen)

(Vout/Vin) = _____

(Vin/Vgen) = _____


(Vout/Vgen) = _____

Part g, 14 points
Now you must find the maximum signal swings. Give the sign (+ or -) in your answers below.
Cutoff of M1; Maximum ΔVout resulting =
Knee voltage of M1; Maximum Δ Vout resulting =
Cutoff of M2; Maximum ΔVout resulting =

Knee of M2; Maximum ΔVout resulting =

Problem 2, 30 points

nodal analysis

Part a, 12 points

Draw the small-signal equivalent circuit

You will be working on the circuit to the left

Ignore DC bias analysis. You don't need it.

The transistor has transconductance gm1. The drain-source resistance Rds is infinity (so you don't need to draw it!)

Part b,13 points
Find, by nodal analysis, a small-signal expression for Vout/Vin
Vout/Vin=

Part c, 5 points

gm= 1 mS , R1=90kOhm, R2=10kOhm Give a numerical value for Vout/Vin.

Vout/Vin=____