Final Exam, ECE 137A

Thursday March 17, 12 - 3 p.m.

Name: \qquad
Closed Book Exam:
Class Crib-Sheet and 4 pages (4 surfaces) of student notes permitted Do not open this exam until instructed to do so. Use any and all reasonable approximations (5\% accuracy), after stating \& justifying them.
Show your work:
Full credit will not be given for correct answers if supporting work is missing. Good luck

Part	Points Received	Points Possible	Part	Points Received	Points Possible	
la		6	Cc		10	
Ib		5	Cd		10	
Ic		4	3 a		10	
Id		10	3 b		10	
Ie		10	3 c		10	
Ca		10				
Lb		5				
total		100				

Problem 1, 35 points

This is an Op-Amp---analyze the bias under the assumption that DC output voltage is zero volts, that the positive input $\mathrm{Vi}+$ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this.

All the transistors have the same (matched) I_{S}, have $\beta=100$, and $V_{A}=*$ infinity $*$ Volts .
$V_{C E(s a t)}=0.5 \mathrm{~V} . V_{b e}$ is approximately 0.7 V , but use $V_{b e}=(k T / q) \ln \left(I_{E} / I_{S}\right)$ when necessary or appropriate. The supplies are +3 Volts and -3 Volts.
All transistors have the same I_{S}.
The resistors RE5 and RE18 have a 300 mV DC voltage drop acoss them.
Re67=100 Ohms, RL=1000 Ohms.
DC bias currents: $\mathrm{Ic} 6=\mathrm{Ic} 7=\mathrm{Ic} 9=\mathrm{Ic} 12=\mathrm{Ic} 18=0.1 \mathrm{~mA}$. Ic3 $=\mathrm{Ic} 8=\mathrm{Ic} 11=0.2 \mathrm{~mA}$

Part a, 6 points
DC bias---to simplify , assume $\beta=\infty$ for the DC analysis only.
Analyze the bias under the assumption that DC output voltage is zero volts, that the positive input $\mathrm{Vi}+$ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this.
(Hint, this should give Vi- $=0 \mathrm{~V}$)

$$
1 / 2\left[F_{E 14}=R_{E 15}=R_{610}=\frac{0.3 V}{10010}=3 k R\right.
$$

$$
\begin{aligned}
\sqrt{\text { self }}=V_{\text {bel 7 }} & =\text { Vols }+ \text { Nr ln } \frac{200 \text { ins }}{106 \mu p} \\
& =V 6510
\end{aligned}
$$

$$
1 \text { so the voltage drops across R R }
$$

$$
\text { Gre } 300 \mathrm{mV}-18 \mathrm{mV} \Rightarrow 282 \mathrm{mV}
$$

$$
\text { I Some calculation ton } 184 \longrightarrow 1 \text { 1ulkn }
$$

$$
\text { I Similar calculator for R os }=\frac{300 \mathrm{mv}}{100_{1}}=3 \mathrm{kn} \text {. }
$$

$$
7 / \rho_{c s}=\frac{2(1.3 V)}{0.1 \mathrm{~ms}}=\frac{2.6 V}{0.1 \mathrm{~ms}}=2 . \operatorname{kl}
$$

$$
\begin{aligned}
& \text { Find the value of the following resistors: } \\
& \operatorname{Re} 4=1.4 \mathrm{KN}, \operatorname{Re} 5=3 \mathrm{Kl}, \operatorname{Re} 9=180 \mathrm{~N}, \operatorname{Re} 12=180 \mathrm{M}, \operatorname{Re} 14=3 \mathrm{len},
\end{aligned}
$$

Part b, 5 points
ll pt each
fer yellow

$$
\begin{aligned}
& B=100 \\
& V_{s}=\cos V
\end{aligned}
$$

Find the value of the following resistors:
$\operatorname{Re} 4=1.4 \mathrm{KN}, \operatorname{Re} 5=3 \mathrm{Kic}, \operatorname{Re} 9=180 \mathrm{~N}, \operatorname{Re} 12=180 \mathrm{R}, \operatorname{Re} 14=3 \mathrm{KCN}$

On the circuit diagram above, label the DC voltages at ALL nodes, and the DC collector currents of all transistors. Label the values of all resistors.

$$
\begin{aligned}
& \Sigma_{513}=\frac{\sqrt{2 C 14}+\sqrt{C 15}+\sqrt{\text { EC16}}+\overline{R C 17}+\overline{L C} 16}{3} \\
& =\frac{7000 \infty}{100}=7 \mu \infty \\
& I_{\sigma 10}=\frac{T_{4}+I_{C 5}}{\infty}=\frac{304 \mu \infty}{100} \rightarrow 3,40
\end{aligned}
$$

Part c, 4 points
find the following

device	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6	Q 7	Q 8
gm, mS	3.85	3.85	7.7	7.7	3.85	3.85	3.85	7.7

device	Q 9	Q 10	Q 11	Q 12	Q 13	Q 14	Q 15	Q 16
gm, mS	3.85	don't bother*	7.7	3.85	don't bother*	3.85	3.85	7.7

device	Q 17	Q 18
gm,	7.7	3.85
mS	7.7	3.8

*don't bother calculating these

$$
\begin{aligned}
& 2\left[\begin{array}{l}
I_{c} \\
g_{m}=\log s \text { for } Q 1,2,6,7,14,15,9,12,5,18 \\
2 \operatorname{con}
\end{array}=3.8 \sin 5,\right. \\
& 2\left[I_{c}=2 \operatorname{cop} s \text { for } Q 3,16,4,6,11,17\right.
\end{aligned}
$$

Note
that all Pee are

Part d, 10 points.
Find the following, using the actual value of β, ie. $\beta=100$

Assume that either $Q 9$ or $Q 12$ is on; here I assume Qq

Q9: FF
180 に l un

$$
\begin{aligned}
& 1 / 2\left[\text { Pigs }_{1}=\left(P_{E q}+R_{c}\right)=1.18 \mathrm{kN}\right. \\
& 1 \mathrm{cmq}=260 \mathrm{n} \\
& 1\left[\text { Surg } \frac{1 \mathrm{kn}}{14 n+182 n} \frac{14 n+180 \mathrm{n}}{14 \pi+150 n+260 n}=0.694\right.
\end{aligned}
$$

Q8: $6 E$

$$
\begin{aligned}
& 1 / 2\left[\operatorname{Resg~}_{8}=\text { Ping } 0144 \mathrm{~kg}\right. \\
& 1[\text { Nus }=144 \mathrm{k} \Omega /(144 \mathrm{ks} \Omega+1 / 948)=0.999 \triangleq 1
\end{aligned}
$$

Q3: CE $H_{L E q 3}^{1 / 2}=R_{\text {In }} 8=14.4 \mathrm{~m} \Omega$

$$
Q_{1,2,6,7}^{1 / 2}\left[\operatorname{lo}_{2 g 7}=\operatorname{Rin} 3=13 \mathrm{kn} .\right.
$$

$$
\begin{aligned}
1\left[A_{v}\right. & =\frac{\text { PLsqn}}{50 n+1 / 9 m^{7}} \\
& =\frac{13 \mu n}{50 n+260 n}=-41.9
\end{aligned}
$$

Differential input imped ane between $V^{+} d V^{-}$

$$
\begin{aligned}
\text { Pindift } & =\beta\left(1 P_{6 E 67}+1\left(g_{m b}+1 / g_{m}\right)\right. \\
& =100(100 \Omega+260 \Omega+260 \Omega) \\
& =100 \cdot 620 \Omega=62 k R
\end{aligned}
$$

$$
\begin{aligned}
& 1\left[\operatorname{Now}_{3}=-\operatorname{gm}_{\mathrm{m}} R_{\text {leq3 }}=-\frac{P_{\text {cep }}}{r_{\text {E3 }}}=\frac{14.4 \mathrm{MR}}{130 R}=-111,000\right. \\
& 1\left[\text { Rins }=\beta 1 \ln _{3}=100 \cdot 1300=13 \mathrm{kR}\right. \text {. }
\end{aligned}
$$

Part e, 10 points
Maximum peak-peak output voltage (show all your work)
For this, you must use the full circuit diagram, not the half circuit diagram.

Be warned: In some cases a limit is not relevant at all. Mark those answers "not relevant".
But, give a 1-sentence statement below as to why it is not relevant. Q9/12 form a push pull stage, so be careful about your answer there. .

W8 scturetion.
sot -2.5V

$$
b,-d_{s} \quad 0.7 v
$$

$$
-\sqrt{K_{8}^{+}+0.54}
$$

$$
2,20
$$

$$
U V_{\text {emat }} H E=-3.2 V \quad \Delta V_{c} u t=-3.2 v \cdot \text { Nwa }=-2.2 v .
$$

[Qll soturetion.
This is $+1-$ symmetrie with $Q 8$ soturetion

$$
\rightarrow \Delta V_{\text {out }}=+2.20
$$

ClI cutott
This is t/- symmetrie with $Q^{8} 8$ antoff

$$
\rightarrow \Delta V \text { out }=-20 V
$$

IG4 and QII Cutoff- not rilevanti Fe not modulated.

Qu setaration
1

$$
U V_{C O} \| \varepsilon c t e r=1.544
$$

$$
\text { sat } 1 / 20
$$

$$
\Delta V_{c} C t=1.5 \mathrm{~V} \cdot \text { Nora }=+1.04 \mathrm{~V}
$$

1
Q17 scturetion.
This is t/- symmetrie with d4 soturetion

$$
\rightarrow \Delta V \text { out }=-1.04 \mathrm{~V}
$$

Problem 2, 35 points

This is an NOT an Op-Amp: Analyze under the assumption that the differential and common mode input voltages are at zero volts

The NMOSFETs have $K_{\mu}=\mu c_{g s} W_{g} / 2 L_{g}=10 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$K_{v}=c_{g s} v_{i n j} W_{g}=2.0 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right), \Delta V=v_{i n j} L_{g} / \mu=0.10 \mathrm{~V}, V_{t h}=0.3 \mathrm{~V}$,
$1 / \lambda=5 \mathrm{~V}$
The PMOS have identical parameters, except, of course, $V_{t h}$ is negative.
$V_{D D}=+0.8 \mathrm{~V},-V_{S S}=-0.8 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{kOhm}$
All transistors have $\left|\mathrm{V}_{\mathrm{gs}}\right|=0.4 \mathrm{~V}$
M7,8 are biased at $I_{D}=50 \mu \mathrm{~A}$.
M5,6,9,10, 11 are biased at $I_{D}=200 \mu \mathrm{~A}$

Part a, 10 points
DC bias.

Find the Gate widths, in $\mu \mathrm{m}$, of
M1 c.43 $\mu \mathrm{m}$, MT $0.43 \mu \mathrm{~m}$
Note that, by using the mobility-limited formula $g_{m}=2 I_{D} /\left(V_{g s}-V_{t h}\right)$, we can solve the exam without calculating any of the FET widths. So, there's no reason to spend time calculating other FET widths.

$$
\begin{aligned}
& \text { NETS MT \& mf: } \\
& {\left[L_{65}=0.8 V, V_{55}=0.4 V\right] 2}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{3}\left[\rightarrow w_{y}=0.431 \mathrm{~mm}\right.
\end{aligned}
$$

Part b, 5 points
DC bias

On the circuit diagram above, label the DC voltages at ALL nodes, the drain currents of ALL transistors

Part c, 10 points.
This amplifier has *two* signal paths between input and output. One is the path (M7 and M8, M9, M3, M4, M6, output).
The other is the path (M7 and M8, M10, output).
You will now compute the differential gain for the path (M7 and M8, M10, output). Find the following

	Voltage Gain	Input impedance
Transistor M10	28,6	350Ω
M7-M8 differential pair	0.1715	$0 \Omega \Omega$
Overall differential Vout/Vin for this path	4,90	$0 \Omega \Omega$

$$
1 \text { [Rosy } 10 \text { o RL } / 1 \text { Rout g }=10 \mathrm{kR} / 12.5 \mathrm{mR}=9.96 \mathrm{kR} \cong \text { coke }
$$

$$
1\left[\text { Holsic }=1 P_{056}=25 n R ; \quad q_{m 10}=q_{m 6}=4 \mathrm{~ms}\right.
$$

$$
1\left[R_{i n} 10 \Rightarrow 1 / \operatorname{maco}\left(1+R_{\text {eight }} / \operatorname{Roslo}^{2}\right)\right.
$$

$$
=250 \mathrm{n}(1+10 k n / 25 \mathrm{kn})=350 n
$$

1 [Soto o Region $R_{i 310}=\frac{10 \mathrm{kR}}{350 R}=28,6$

$$
\left[\begin{array}{rl}
P_{\text {Lg } 8} & =R_{D S 8} / / R_{0513} / / \operatorname{Rin} 10 \\
& =\frac{5 V}{5 \sigma_{\mu s}} / / \frac{5 V}{2500_{\mu 8}} / / 350 \Omega=
\end{array}\right.
$$

$$
\begin{aligned}
& 1\left[\text { out } 4=\Lambda_{D S}=1 / \lambda I_{D}=5 \mathrm{~V} / 20 \mathrm{mH}=25 \mathrm{kN}\right. \\
& 1\left[g_{m b}=\frac{2 \mathrm{Id}}{\left(v_{g 5}-V_{t h}\right)}=\frac{2(0.2 \mathrm{nd})}{0.1 \nu}=\frac{0.4 \mathrm{~ms}}{0.1 \nu}=4 \mathrm{~ms}=\frac{1}{25002}\right. \\
& 1 \begin{aligned}
\text { Pant } 6 & =\operatorname{Ros} 6\left(1+g_{n 6} P_{\text {adj }}\right) \\
& =25 k \Omega(1+25 \mathrm{ka} \cdot 4 \mathrm{~ms})=25 \mathrm{kR}(101) \\
& =2.52 \mathrm{mR}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =100 \mathrm{k} / / \text { zohon//350n }=343 \mathrm{n} \\
& 1\left[g_{m g}=\frac{2(\operatorname{son} A)}{0.1 v}=\frac{0.1 \mathrm{~ms}}{0.1 v}=1 \mathrm{~ms}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 28,6 \\
& \frac{x 0.1715}{=4.90} e \text { total gain }
\end{aligned}
$$

Comment... In the limit of Mos \rightarrow DR e. the overall gain is $\frac{g m \eta_{5} \cdot R_{L}}{2}=5$. fer sch path Giving a total olitferenticl gain af 10,0

Part d, 10 points
This amplifier has *two* signal paths between input and output.
One is the path (M7 and M8, M9, M3, M4, M6, output).
The other is the path (M7 and M8, M10, output).
You will now compute the differential gain for the path (M7 and M8, M9, M3, M4, M6, output). Find the following

	Voltage Gain	Input impedance
Transistor M6	28.6	350Ω
Transistor M4	1.38	00Ω
Transistor M9	1.0	250Ω
M7-M8 differential pair	0,125	00Ω
Overall differential Vout/Vin for this path	4.93	0Ω

(the overall amplifier gain is the sum of the answers for parts c and d , but you are not asked to calculate this.

$$
\begin{aligned}
& 1 / 2 \text { [Past }=\frac{1}{t z 0} 0 \frac{5 v}{0.2 n+1}=2 \sin
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2\left[\text { auG }=\text { Reign } / \text { Ring }=\frac{10 \mathrm{kaz}}{350 \mathrm{a}}=28,6\right.
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2[004=-9 \times 4 \cdot 12584=-445 \cdot 3450=-1,38
\end{aligned}
$$

1/L [For ma, the Fits m3 l ms act as ressites $=1 / 9 m$

$$
\begin{aligned}
& 1 / 2[\text { reigh }+1 / \mathrm{mm} / \mathrm{B}+1 / 9 \mathrm{~ms}=5000 \\
& 1 / 2\left[R_{b 5 q}=2 s a n, q_{m g} 04 \mathrm{~ms}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2\left[\text { Nung }=\frac{1}{2} \frac{\text { Rosg } 9}{R i j g}=\frac{1}{2} \frac{500 R}{250 \Omega}=1.0\right.
\end{aligned}
$$

dar to mulns resistive divider

$$
\begin{aligned}
& \text { litf } \\
& \qquad \begin{array}{l}
28.6 \\
\times 1.38 \\
x \\
x .0 .125 \\
=4.93
\end{array}
\end{aligned}
$$

Problem 3, 30 points
Nodal analysis: optical receiver preamplifier as real-world example.

Part a, 10 points
You will be working on the circuit
to the left
Ignore DC bias analysis. You don't
need it.
The NFET and the PFET each have
transconductance gm.
The NFET and the PFET each have
output resistance Rds of infinity...so
you don't need to include this
element in the circuit diagram !
gm=0.5 mS
Rf=11 kOhm

Compute, from nodal analysis, the small-signal gain Vout/Iin. This is called a transimpedance gain.

$$
\text { Vout/Iin }=-10 \& \Omega
$$

$$
3\left[\begin{array}{l}
\text { gaVin }=I_{i n} \\
\Rightarrow V_{i n}=I_{i n} / 2 g_{n}
\end{array}\right.
$$

$$
3 \text { [S150 In Rt }=\text { Vin-Vant }=\text { Iii } / 2 \text { Rn }_{t}-V_{\text {out }}
$$

$$
\rightarrow \operatorname{Iin}\left(P_{e}-1 / 2 g_{m}\right)=-V_{\text {ant }}
$$

Compute, from nodal analysis, the small-signal gain Vout/Vin. This is a voltage gain.
Hint: you can save some work by using the result from part A.
Vout/Vin $=+/ 0$
from part A,

$\Rightarrow\left[\frac{V_{\text {cut }}}{V_{h i}}=2 \cdot g_{m} \cdot 10 \mathrm{k} \Omega=1 \mathrm{~ms} \cdot 10 \mathrm{kR}=10\right.$.

Part c, 10 points

The NFETs and the PFETs all have transconductance gm. The NFETs and the PFETs have have output resistance Rds of infinity. $\mathrm{gm}=0.5 \mathrm{mS}, \mathrm{Rf}=11 \mathrm{kOhm}, \mathrm{Rf} 2=1 \mathrm{kOhm}$.

Compute, from nodal analysis, the small-signal gain Vout/Iin. This is a transimpedance gain. Hint: you can save a great deal of work by using the results from parts A and B.
Vout/Iin $=-900 \Omega$

2 [from part $13, \quad V x=10 \mathrm{~V}$ in.

$$
\begin{aligned}
& {\left[50 F_{y}=2 \mathrm{gm} \cdot \mathrm{~F}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{~ms} \cdot 10 \mathrm{~V} \cdot \mathrm{~h}\right.} \\
& =10 \mathrm{mS} \cdot \text { Vin } \\
& 2 \text { La, EGt }=\text { Iy in } \rightarrow V, n=\frac{\text { Iin }}{10 \mathrm{~ms} .} \\
& 2 \text { [and Vin - Vant } 0 \text { 2in } P_{2} \\
& \int \frac{\text { I.n }}{10 \mathrm{~ms}}-\text { Vout }=I_{\text {in }} \mathrm{Pf}_{2} \\
& 2 \quad \frac{\text { Kont }}{\frac{\text { In }}{\text { Ein }}}=\frac{1}{10 \mathrm{~ms}}-\text { Affe } \\
& =100 \Omega-1 K \Omega \\
& =-900 \Omega
\end{aligned}
$$

