Final Exam, ECE 137A

(V4)

b

Thursday March 17, 12 - 3 p.m.

Name: _____ Solution.

J

Closed Book Exam:

Class Crib-Sheet and 4 pages (4 surfaces) of student notes permitted Do not open this exam until instructed to do so. Use any and all reasonable

approximations (5% accuracy), after stating & justifying them.

Show your work:

Full credit will not be given for correct answers if supporting work is missing. Good luck

Part	Points	Points	Part	Points	Points
	Received	Possible		Received	Possible
1a		6	2c		10
1b		5	2d		10
1c		4	3a		10
1d		10	3b		10
1e		10	3c		10
2a		10			
2b		5			
total		100			

Problem 1, 35 points

This is an Op-Amp---analyze the bias under the assumption that DC output voltage is zero volts, that the positive input Vi+ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this.

All the transistors have the same (matched) I_s , have $\beta = 100$, and $V_A = *infinity*$ Volts. $V_{CE(sat)} = 0.5$ V. V_{be} is approximately 0.7 V, but use $V_{be} = (kT/q)\ln(I_E/I_s)$ when necessary or appropriate. The supplies are +3 Volts and -3 Volts. All transistors have the same I_s .

The resistors RE5 and RE18 have a 300mV DC voltage drop acoss them. Re67=100 Ohms, RL=1000 Ohms.

DC bias currents: Ic6=Ic7=Ic9=Ic12=Ic18=0.1 mA. Ic3=Ic8=Ic11=0.2mA

Part a, 6 points

DC bias---to simplify ,assume $\beta = \infty$ for the DC analysis only.

Analyze the bias under the assumption that DC output voltage is zero volts, that the positive input Vi+ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this. (Hint, this should give Vi- = 0V)

Find the value of the following resistors: Re4= $\frac{1.4 \text{ km}}{1.4 \text{ km}}$, Re5= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Re9= $\frac{160 \text{ km}}{1.4 \text{ km}}$, Re12= $\frac{160 \text{ km}}{1.4 \text{ km}}$, Re14= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Re15= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Re16= $\frac{1.4 \text{ km}}{1.4 \text{ km}}$, Re18= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Res= $\frac{160 \text{ km}}{1.4 \text{ km}}$, Re14= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Re15= $\frac{3 \text{ km}}{1.4 \text{ km}}$, Re14= $\frac{3 \text{ k$

1/2 RE14 = REIS = REIS = 0.3V 100AD = 362 $V_{5216} = V_{6e17} = V_{6s18} + V_{7} \ln \frac{200 \text{ mA}}{100 \text{ mA}}$ $= V_{6018} + 18 \text{ mV}$ So the Voltage drops across $R_{616} \& R_{617}$ Cre ZoomV - 18 mV = Z82 mV1 Rois = Roiz = 282MV = 1.41 KR 200MA Some calculation for Ro4 -> 1.41 KA Similar Calculation for Ros = 300ml = 3401. 1 [Req = Reiz = Ut /4 (200m) = 1841 = 180.0 100ml = 0.14A = 180.0 $\frac{1}{2}R_{cs} = \frac{2(1.3V)}{0.1mA} = \frac{2.6V}{0.1mA} = \frac{2.6V}{0.1mA}$

Part b, 5 points

for yellow Find the value of the following resistors: $Re4= \frac{1.44}{4}$, $Re5= \frac{344}{6}$, $Re9=\frac{160}{6}$, $Re12=\frac{1400}{6}$, $Re14=\frac{3460}{6}$, $Re15=\frac{3460}{6}$, $Re16=\frac{1.446}{6}$, $Re17=\frac{1.446}{6}$, $Re18=\frac{3460}{6}$, $Res=\frac{2646}{6}$

On the circuit diagram above, label the DC voltages at ALL nodes, and the DC collector currents of all transistors. Label the values of all resistors.

 $\frac{1}{5} = \frac{1}{5} \frac{1}{6} \frac{1}{7} + \frac{1}{5} \frac{1}{6} \frac{1}{5} + \frac{1}{5} \frac{1}{7} + \frac{1}{5} \frac{1}{7} \frac{1}$

8=100 Vs = ceV

Part c, 4 points

find the following

11110# 0110	10 He H Ing							
device	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
gm, mS	3.85	3.85	7.7	7.7	3.85	3.85	3. 3	7.7

device	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
gm, mS	3.85	don't bother*	7.7	3.85	don't bother*	3.85	3.85	7.7

device	Q17	Q18
gm, mS	7.7	3.85

*don't bother calculating these

2 IL = 100 MA for Q1, 2, 6, 7, 14, 15, 9, 12, 5, 18 9 m = 2002 = 3.85m5,

2 IL = 200 M for Q3, 16, 4, 6, 11, 17 9m = 130 N = 7.7 MS

Note that all Ree are col

Part d, 10 points.

Find the following, using the actual value of β , i.e. $\beta = 100$

	Voltage Gain	Input impedance
Q9 or Q12	0.694	144 La
Q8 or Q11	0.999 N 1	14.4MSL
Q3	-111,000	1342.
Q1,2,6,7 combination.	-41.9	62kr
Overall differential	2216	GZKA
Vout/Vin	3.2.10	

ASSUME that Either Q9 or Q12 is ou; LERE I aSSUME Q9

 $1/2 R_{LEGG} = (R_{EG} + R_L) = 1.18kn$ $1/2 R_{LEGG} = 2.60n$ Norg = 1ka 1ka + 1800 = 0.694 Ika + 1800 1ka + 1800 + 2600 | Ring = B(16a+180a+260a) = 144 ka. 3100

QS: GF

Q9: 6F

1/2 Risg & = Ring = 144 KS2

Q3: CE REg3 = RIN8= 14.4MS No-3 = - 9m3 Rieg3 = - Rieg3 = 14.4MR E3 130R = -111,000 1 Ring = 1819m3 = 100.130R = 13kR. $Q_{1}, 2, 6, 7$ $K_{2} = R_{in3} = 136R.$ $A \sigma = \frac{R_{LE}g7}{50n + 1/qm7} \qquad Ud = \frac{13kn}{2} = -41.9 \qquad Ud = \frac{13kn}{VG}$ D: fferential input impedance between $V^{\dagger}dV^{-}$ Rind. $ff = \beta \left(R_{EE67} + \frac{1}{9m6} + \frac{1}{9m7} \right)$ $= 100 \left(100R + 260R + 260R \right)$ $= 100 \cdot 620R = 62RR$

Part e, 10 points

Maximum peak-peak output voltage (*show all your work*)

For this, you must use the full circuit diagram, not the half circuit diagram.

	magnitude and sign of	magnitude and sign of
	maximum output signal	maximum output signal
	swing due to <i>cutoff</i>	swing due to <i>saturation</i>
Transistor Q9	not relevant	+2,121
Transistor Q12	not relevant	-2,120 6
Transistor Q8	+20VA	-2.2V B
Transistor Q11	-2016	+ 2,21 7
Transistor Q4	hot relevant	+1.04V +
Transistor Q17	not relevant	-1.04V t

Be warned: In some cases a limit is not relevant at all. Mark those answers "not relevant". But, give a 1-sentence statement below as to why it is not relevant. Q9/12 form a push pull stage, so be careful about your answer there.

Q12, Q9 cutoff - not relevant - push-pull [Q9 cutination: 1800. Q12 Soturation Relizion -2.5V Q12 Soturation Ian Sot I Ian BLAS MAD = MAD - U- U-

Q8 Scturction. 6.73 = 0.77 Sot -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -1.87 = -2.57. -37 = -2.57. QII scturction. This is +/- symmetric with Q8 scturction -> & Vout = +2.20

Catat Oms -5 0.694 Nova = 201A $U_{\text{Em.HEr}} = 260 \text{ mA} \cdot \text{Risg} 8$ $= 200 \text{ mA} \cdot \text{Risg} 8$ $= 200 \text{ mA} \cdot \text{Risg} 8$ $= 200 \text{ mA} \cdot \text{Risg} 8$

QII catoff This is +1- symmetric with Q8 autoff -> SVout = -20V

Q 4 seteration $V_{2.7V}$ V_{2

Q17 Scturction. This is +/- Symmetric with Q4 Scturction -> SVout = -1.041V

Problem 2, 35 points

This is an NOT an Op-Amp: Analyze under the assumption that the differential and common mode input voltages are at zero volts

The NMOSFETs have $K_{\mu} = \mu c_{gs} W_g / 2L_g = 10 \text{mA/V}^2 \cdot (W_g / 1\mu \text{m})$ $K_v = c_{gs} v_{inj} W_g = 2.0 \text{mA/V} \cdot (W_g / 1\mu \text{m}), \ \Delta V = v_{inj} L_g / \mu = 0.10 \text{V}, \ V_{th} = 0.3 \text{V},$ $1/\lambda = 5 \text{V}$

The PMOS have identical parameters, except, of course, V_{th} is negative.

 $V_{DD} = +0.8 \text{ V}, -V_{SS} = -0.8 \text{ V}, R_{L} = 10 \text{ kOhm}$

All transistors have |V_{gs}|=0.4V

M7,8 are biased at $I_D = 50 \ \mu$ A.

M5,6,9,10,11 are biased at I_D =200 µA

Part a, 10 points DC bias.

Find the Gate widths, in μm , of M1<u>0.43 μm </u>, M7<u>0.43 μm </u>

Note that, by using the mobility-limited formula $g_m = 2I_D / (V_{gs} - V_{th})$, we can solve the exam without calculating any of the FET widths. *So, there's no reason to spend time calculating other FET widths.*

1=575 M7 2 M8: [V45 = 0.8V, V95 = 0.4V] Z

 $5\left[\frac{Ib}{3} = \frac{10 \text{ ms}}{V^2}\left(\frac{Vq_5 - V6h}{5}\right)^2 \frac{Vq}{5}\left(\frac{1 + \frac{Vb5}{1}}{1}\right) \\ \frac{5q_m s}{5} = \frac{0.431 \text{ mm}}{3}$

1/01 pt Each

Part b, 5 points

DC bias

On the circuit diagram above, label the DC voltages at **ALL nodes**, the drain currents of **ALL transistors**

Part c, 10 points. This amplifier has *two* signal paths between input and output. One is the path (M7 and M8, M9, M3, M4, M6, output). The other is the path (M7 and M8, M10, output).

You will now compute the differential gain for the path (M7 and M8, M10, output). Find the following

	Voltage Gain	Input impedance
Transistor M10	ZED	3500
M7-M8 differential pair	011715	02
Overall differential Vout/Vin for this path	4.90	ar

	Rout	4 = tos =	1/1I0 = 5U/	200 m A = 25	lea
1	-	2 <u>Id</u>	= Z(0.2 MA)	= 0,4m2 =	4 M5 = 1
	9m6	[Vqs-V4L]	0.1V	0,1V	2500

Reat 6 = Ros 6 (1+ 9n6 Rady) = 2542 (1+25k2.4ms) = 25k2 (101) = 2.52 MS2 1 Riggio - R. 11Ralto = 10kn 1/2. 5MR 5 9.96 kn 2 10ke 1 [Halsio = Ros6 = 25ha; 9m10 = 9m6 = 4ms Rinco = 1/gaco (12 Risqu/Rosto) = 250 ~ (1 + 10ka (25ka) = 3500 1 AUIO = Regio / Risio = 10ka = 28,6 3.50 R RLEGS = RDS8 1/ RDS13 1/ RIN10 = 5V 1/ 50 // 350 R = 50 / 250 / 250 / 21 1 b

= 100ka || 2040 ||3500 = 343a

 $1 \qquad 9mg = \frac{2(50mA)}{0.1V} = \frac{0.1mA}{0.1V} = 1MS$ 1 Aver = ± · 9me · Riegs = 0,1715 1 / / /343.0 1.44 1.115

Z 8, 5 ×0:1715 = 4.90 e total gain

comment... In the limit of Poss Plethe acert gain is gm7, s. Ru = 5. for each path, giving a total alifornial gais of 10.0

Part d, 10 points

This amplifier has *two* signal paths between input and output. One is the path (M7 and M8, M9, M3, M4, M6, output). The other is the path (M7 and M8, M10, output).

You will now compute the differential gain for the path (M7 and M8, M9, M3, M4, M6, output). Find the following

	Voltage Gain	Input impedance
Transistor M6	28.6	3500
Transistor M4	1.38	ORR
Transistor M9	1.0	250-2
M7-M8 differential pair	0,125	00
Overall differential	4.93	
Vout/Vin for this path	7.73	0.2

(the overall amplifier gain is the sum of the answers for parts c and d, but you are not asked to calculate this.

Rieg 6 5 Rill Roubic 2 Lolar but Radio >> Re 9mb = 2 to = 2(0.2mA) = 4MS 1/2 Rass = 1 20 - 50 = 2562 Ring = 19mg (1+ Rigg) = 250R(1+ 106R) Ross = 250R 1/2 [Aug = Rizgel Ring = 10kR = 28.6 1/2 [Kizg4 = Rasy || Ring = 2562 || 300 = 3452 1/2 AUG = - 9mg . REEgy = - 4MS . 3450 = -1.38

1/2 For MA, the FETS M3 & ms act as resister = 1/9m "h Theres a zil voltage duich botween M3 & M2 1/2 Ritgy = 1/9mB + 1/9m5 = 5000 1/2 [Rosq = 256R, 9mg = 4ms $I \begin{bmatrix} R_{15}q & 1/4kq \left(1 + R_{15}qq\right) & = 250n\left(1 + \frac{500n}{25kn}\right) \\ R_{05}q & = 250n \\ 12 \begin{bmatrix} Avq & = \frac{1}{2} & R_{12}q \\ q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & R_{12}q & = \frac{1}{2} & \frac{500n}{250e} & = 1.0 \\ R_{12}q & R_{12}q & R_{12}q & R_{12}q & R_{12}q \\ R_{12}q & R$

1 They 7, = = Rosy II Rosk // Ring= 34 // 54 // 2500 50pm 250ph // 250ph // 250ph // 250ph // 250ph 1/2 [947 = 948 = ZID = Z(Som A) = 9,1ml = 1MS 12 AUT, 8 = 2 9mm Rizgr = 1ms. 2500 = 4 = 0.125 1.A 28.6 X1.38 X1.0 X 0.125 = 4.93

Problem 3, 30 points

Nodal analysis: optical receiver preamplifier as real-world example.

Part a, 10 points

Compute, from nodal analysis, the small-signal gain Vout/Iin. This is called a transimpedance gain.

Vout/Iin = _____ / 0 & S Vin A.I.i DZgmVii 3 Zgulin = Iin 3 SVin = Fin/2gm 3 [Also InRy = Vin-Vant = In/2gn-Voot -> Iin (Re-1/2, gm) = - Vout 4 -> Vout 1/2gm - Re = 100002 - 11 UR = -10km

Part b, 10 points

Compute, from nodal analysis, the small-signal gain Vout/Vin. This is a voltage gain. Hint: you can save some work by using the result from part A.

=> Voit = 2. gm · 106 a = 1ms · 106 a = 10.

b

32

The NFETs and the PFETs all have transconductance gm. The NFETs and the PFETs have have output resistance Rds of infinity. gm=0.5 mS, Rf=11 kOhm, Rf2=1 kOhm.

Compute, from nodal analysis, the small-signal gain Vout/Iin. This is a transimpedance gain. Hint: you can save a great deal of work by using the results from parts A and B.

Vout/Iin = -960

2 bat IY = Iin -> Vin = ___in 10m5 2 and Vin - Vout a Zin Pfz In - Vout = Iin Rez 10MS $2 \frac{V_{out}}{\Sigma_{ih}} = \frac{1}{10ms} - \mathcal{R}_{F2}$ = 10002 - 1KA = -900_2