## ECE137A Problem set \#2

Problem 1. Simple common-emitter amplifier

b) Find the following small signal transistor parameters:
gm, re, Rbe, Rce
a) The transistor has beta $=150$.

Vcc is +15.0 Volts. RL=2000 Ohm. Rgen $=1$
kOhm. The transistor has $\mathrm{Va}=50 \mathrm{~V}$ and
Vcesat $=0.5$ volts
We want the emitter to be biased at +1.0 volts and the collector to be biased at +5.0 volts. The DC collector current is to be 1 mA , and the DC current through Rb 2 is to be 0.1 mA .

Find Rb1, Rb2, Rc, Ree
c) draw the small-signal equivalent circuit of the amplifier, taking all capacitors as AC shorts and supplies as AC ground.
e) find the maximum AC peak-peak amplifier output before clipping.
d) find the ac small signal input impedance, and the AC voltage
gains Vout/Vin, Vin/Vgen and Vout/Vgen.
Problem 2. Simple common-source amplifier
$+V d d$

a) The MOSFET has $v_{t h}=0.3$ Volt, $K_{\mu}=0.55 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$, $K_{v}=0.69 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$\Delta V=0.625 \mathrm{~V}$
and $1 / \lambda=10$ Volts
Find the gate width necessary to carry 0.3 mA drain current at $\mathrm{Vgs}=0.5 \mathrm{~V}$.

Vdd is +1.5 volts. Rgen $=25 \mathrm{kOhm}, \mathrm{RL}=100$ kOhm
Find the drain resistance Rd necessary to obtain $\mathrm{Vd}=1 \mathrm{~V}$.

We want the *input impedance to be 1 MOhm.
Find Rg1, Rg2
b) Find the following small signal transistor parameters: gm, Rds
d) find the ac small signal input
c) draw the small-signal equivalent circuit of the amplifier, taking all capacitors as AC shorts and supplies as AC ground.
e) find the maximum AC peak-peak amplifier
impedance, and the AC voltage gains Vout/Vin, Vin/Vgen and Vout/Vgen.

Problem 3. Nodal Analysis

output before clipping.

We will frequently need to analyze circuits with resistance in the emitter or source lead.

So, this problem is both a tutorial in how these word, and an exercise in nodal analysis, for which much practice is needed.

The overall circuit and the transistor smallsignal model are as indicated on the right....
but the problem can be broken into the units below, which is what you must work this week
a) with the network to the left, derive $\boldsymbol{b} \boldsymbol{y}$

## nodal analysis

...the input impedance Vin/Iin
...the *extrinsic* transconductance Iout/Vin
b) with the network to the left, derive $\boldsymbol{b} \boldsymbol{y}$ nodal analysis
...the output resistance Vout/Iout

