MM74HC175 Quad D-Type Flip-Flop With Clear

General Description
The MM74HC175 high speed D-type flip-flop with complementary outputs utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.

Information at the D inputs of the MM74HC175 is transferred to the Q and Q' outputs on the positive going edge of the clock pulse. Both true and complement outputs from each flip flop are externally available. All four flip-flops are controlled by a common clock and a common CLEAR. Clearing is accomplished by a negative pulse at the CLEAR input. All four Q outputs are cleared to a logical “0” and all four Q’ outputs to a logical “1.”

The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to VCC and ground.

Features
- Typical propagation delay: 15 ns
- Wide operating supply voltage range: 2–6V
- Low input current: 1 μA maximum
- Low quiescent supply current: 80 μA maximum (74HC)
- High output drive current: 4 mA minimum (74HC)

Ordering Code:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM74HC175M</td>
<td>M16A</td>
<td>16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow</td>
</tr>
<tr>
<td>MM74HC175SJ</td>
<td>M16D</td>
<td>16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide</td>
</tr>
<tr>
<td>MM74HC175MTC</td>
<td>MTC16</td>
<td>16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide</td>
</tr>
<tr>
<td>MM74HC175N</td>
<td>N16E</td>
<td>16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide</td>
</tr>
</tbody>
</table>

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Connection Diagram

Truth Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Clock</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>↑</td>
</tr>
<tr>
<td>H</td>
<td>↑</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

H = HIGH Level (steady state)
L = LOW Level (steady state)
X = Irrelevant
↑ = Transition from LOW-to-HIGH level
Q0 = The level of Q before the indicated steady-state input conditions were established
Absolute Maximum Ratings (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V<sub>CC</sub>)</td>
<td></td>
<td>2</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>DC Input Voltage (V<sub>IN</sub>)</td>
<td></td>
<td>0</td>
<td>V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td>DC Output Voltage (V<sub>OUT</sub>)</td>
<td></td>
<td>0</td>
<td>V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td>Clamp Diode Current (I<sub>IK</sub>, I<sub>OK</sub>)</td>
<td>≤20 mA</td>
<td>≤25 mA</td>
<td>≤50 mA</td>
<td>mA</td>
</tr>
<tr>
<td>DC Output Current, per pin (I<sub>OUT</sub>)</td>
<td>≤250 mA</td>
<td>≤85 mA</td>
<td>≤150 mA</td>
<td>mA</td>
</tr>
<tr>
<td>DC V<sub>CC</sub> or GND Current, per pin (I<sub>G</sub>)</td>
<td>≤250 mA</td>
<td>≤85 mA</td>
<td>≤150 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Storage Temperature Range (T<sub>STG</sub>)</td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Power Dissipation (P<sub>D</sub>)</td>
<td>(Note 3) 600 mW</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>S.O. Package only</td>
<td>500 mW</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Lead Temperature (T<sub>L</sub>)</td>
<td>(Soldering 10 seconds) 260°C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ</th>
<th>Guaranteed Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V<sub>CC</sub>)</td>
<td></td>
<td>2</td>
<td>600 mW</td>
</tr>
<tr>
<td>DC Input or Output Voltage</td>
<td></td>
<td>0</td>
<td>V<sub>CC</sub></td>
</tr>
<tr>
<td>Operating Temperature Range (T<sub>A</sub>)</td>
<td>−40 to +85 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Rise or Fall Times</td>
<td>(t<sub>r</sub>, t<sub>f</sub>)</td>
<td>V<sub>CC</sub> = 2.0V 1000 ns</td>
<td>V<sub>CC</sub> = 4.5V 500 ns</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics (Note 4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>V<sub>CC</sub></th>
<th>T<sub>A</sub> = 25°C</th>
<th>T<sub>A</sub> = −40 to 85°C</th>
<th>T<sub>A</sub> = −55 to 125°C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>H</sub></td>
<td>Minimum HIGH Level Input Voltage</td>
<td>2.0V</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5V</td>
<td>3.15</td>
<td>3.15</td>
<td>3.15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0V</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>L</sub></td>
<td>Maximum LOW Level Input Voltage</td>
<td>2.0V</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5V</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0V</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>Minimum HIGH Level Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>IN</sub> = V<sub>H</sub> or V<sub>L</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Maximum LOW Level Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>IN</sub> = V<sub>H</sub> or V<sub>L</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Maximum Input Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>IN</sub> = V<sub>CC</sub> or GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>CC</sub></td>
<td>Maximum Quiescent Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>IN</sub> = V<sub>CC</sub> or GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: −12 mW/°C from 65°C to 85°C.

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IN} and V_{CC} occur at V_{CC} = 5.5V and 4.0V respectively. (The V_{IN} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.
AC Electrical Characteristics

V\(_{\text{CC}}\) = 5V, \(T_A = 25^\circ\text{C}\), \(C_L = 15\ pF\), \(t_r = t_f = 6\ ns\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ</th>
<th>Guaranteed Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{MAX}})</td>
<td>Maximum Operating Frequency</td>
<td></td>
<td>60</td>
<td>35</td>
<td>MHz</td>
</tr>
<tr>
<td>(t_{\text{PHL}}, t_{\text{PLH}})</td>
<td>Maximum Propagation Delay, Clock to (Q) or (\overline{Q})</td>
<td>2.0V</td>
<td>15</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{PHL}}, t_{\text{PLH}})</td>
<td>Maximum Propagation Delay, Reset to (Q) or (\overline{Q})</td>
<td>4.5V</td>
<td>13</td>
<td>21</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{REM}})</td>
<td>Minimum Removal Time, Clear to Clock</td>
<td>4.5V</td>
<td>100</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>(t_s)</td>
<td>Minimum Setup Time, Data to Clock</td>
<td>4.5V</td>
<td>100</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>(t_h)</td>
<td>Minimum Hold Time, Data from Clock</td>
<td>2.0V</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_w)</td>
<td>Minimum Pulse Width, Clock or Clear</td>
<td>2.0V</td>
<td>30</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>(t_RLH, t_{\text{THL}})</td>
<td>Maximum Output Rise and Fall Time</td>
<td>4.5V</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(C_{\text{PD}})</td>
<td>Power Dissipation Capacitance (Note 5)</td>
<td>per package</td>
<td>(per package)</td>
<td>150</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{\text{IN}})</td>
<td>Maximum Input Capacitance</td>
<td></td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Note 5:
- \(C_{\text{PD}}\) determines the no load dynamic power consumption, \(P_{\text{D}} = C_{\text{PD}} \cdot V_{\text{CC}}^2 \cdot t_r \cdot t_f\), and the no load dynamic current consumption, \(I_{\text{D}} = C_{\text{PD}} \cdot V_{\text{CC}} \cdot t_r \cdot t_f\).
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150° Narrow
Package Number M16A

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M16D
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC16
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

![Diagrams showing physical dimensions](image)

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.