CD4013BM/CD4013BC Dual D Flip-Flop

General Description
The CD4013B dual D flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent data, set, reset, and clock inputs and "Q" and "Q\n" outputs. These devices can be used for shift register applications, and by connecting "Q\n" output to the data input, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line respectively.

Features
- Wide supply voltage range 3.0V to 15V
- High noise immunity 0.45 VDD (typ.)
- Low power TTL compatibility
- Fan out of 2 driving 74L or 1 driving 74LS

Applications
- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronics
- Remote metering
- Computers

Connection Diagram

Truth Table

<table>
<thead>
<tr>
<th>CL</th>
<th>D</th>
<th>R</th>
<th>S</th>
<th>Q</th>
<th>Q\n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

No change
† = Level change
x = Don’t care case
Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- DC Supply Voltage \((V_{DD})\)
 \(-0.5 \, V_{DD} \) to \(+18 \, V_{DD}\)
- Input Voltage \((V_{IN})\)
 \(-0.5 \, V_{DD} \) to \(V_{DD} + 0.5 \, V_{DD}\)
- Storage Temp. Range \((T_s)\)
 \(-65^\circ C \) to \(+150^\circ C\)
- Power Dissipation \((P_d)\)
 - Dual-In-Line: 700 mW
 - Small Outline: 500 mW
- Lead Temperature \((T_L)\)
 (Soldering, 10 seconds) 260°C

DC Electrical Characteristics \(\text{CD4013BM (Note 2)}\)

Symbol | Parameter | Conditions | \(-55^\circ C\) | \(+25^\circ C\) | \(+125^\circ C\) | Units |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD})</td>
<td>Quiescent Device Current</td>
<td>(V_{DD} = 5V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>2.0</td>
<td>2.0</td>
<td>4.0</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>4.0</td>
<td>4.0</td>
<td>120</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High Level Output Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V)</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V)</td>
<td>9.95</td>
<td>9.95</td>
<td>9.95</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V)</td>
<td>14.95</td>
<td>14.95</td>
<td>14.95</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low Level Input Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V, , V_{O} = 0.5V) or (4.5V)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{O} = 1.0V) or (9.0V)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{O} = 1.5V) or (13.5V)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>High Level Input Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V, , V_{O} = 0.4V)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{O} = 1.0V) or (9.0V)</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{O} = 1.5V) or (13.5V)</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>(V)</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Low Level Output Current (Note 3)</td>
<td>(V_{DD} = 5V, , V_{O} = 0.4V)</td>
<td>0.64</td>
<td>0.51</td>
<td>0.88</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{O} = 1.0V) or (9.0V)</td>
<td>1.6</td>
<td>1.3</td>
<td>2.25</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{O} = 1.5V)</td>
<td>4.2</td>
<td>3.4</td>
<td>8.8</td>
<td>2.4</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High Level Output Current (Note 3)</td>
<td>(V_{DD} = 5V, , V_{O} = 4.6V)</td>
<td>-0.64</td>
<td>-0.51</td>
<td>-0.88</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{O} = 9.5V)</td>
<td>-1.6</td>
<td>-1.3</td>
<td>-2.25</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{O} = 13.5V)</td>
<td>-4.2</td>
<td>-3.4</td>
<td>-8.8</td>
<td>-2.4</td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Input Current</td>
<td>(V_{DD} = 15V, , V_{IN} = 0V)</td>
<td>-0.1</td>
<td>-10 (\times 10^{-5})</td>
<td>-0.1</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{IN} = 15V)</td>
<td>0.1</td>
<td>10 (\times 10^{-5})</td>
<td>0.1</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions (Note 2)

- DC Supply Voltage \((V_{DD})\) \(+3 \, V_{DD} \) to \(+15 \, V_{DD}\)
- Input Voltage \((V_{IN})\) \(0 \, V_{DD} \) to \(V_{DD} \) \(V_{DC}\)
- Operating Temperature Range \((T_A)\) \(-55^\circ C \) to \(+125^\circ C\)

DC Electrical Characteristics \(\text{CD4013BC (Note 2)}\)

Symbol | Parameter | Conditions | \(-40^\circ C\) | \(+25^\circ C\) | \(+85^\circ C\) | Units |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD})</td>
<td>Quiescent Device Current</td>
<td>(V_{DD} = 5V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>4.0</td>
<td>4.0</td>
<td>30</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>8.0</td>
<td>8.0</td>
<td>60</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{IN} = V_{DD}) or (V_{SS})</td>
<td>16.0</td>
<td>16.0</td>
<td>120</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High Level Output Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V)</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V)</td>
<td>9.95</td>
<td>9.95</td>
<td>9.95</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V)</td>
<td>14.95</td>
<td>14.95</td>
<td>14.95</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low Level Input Voltage</td>
<td>(</td>
<td>I</td>
<td>< 1.0 , \mu A)</td>
<td>(V_{DD} = 5V, , V_{O} = 0.5V) or (4.5V)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 10V, , V_{O} = 1.0V) or (9.0V)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 15V, , V_{O} = 1.5V) or (13.5V)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>(V)</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

#### Symbol	Parameter	Conditions	-40°C	$+25^\circ\text{C}$	$+85^\circ\text{C}$	Units
V_{IH} | High Level Input Voltage | $|I_o| < 1.0\,\mu A$ | 3.5 | 3.5 | 3.5 | V
$V_{DD} = 5V$, $V_O = 0.5V$ or $4.5V$ | 7.0 | 7.0 | 7.0 | V
$V_{DD} = 10V$, $V_O = 1.0V$ or $9.0V$ | 11.0 | 11.0 | 11.0 | V
$V_{DD} = 15V$, $V_O = 1.5V$ or $13.5V$ | 3.5 | 0.44 | 0.88 | 0.36 | mA
I_{OL} | Low Level Output Current (Note 3) | $V_{DD} = 5V$, $V_O = 0.4V$ | 0.52 | 1.3 | 3.6 | mA
$V_{DD} = 10V$, $V_O = 0.5V$ | 1.1 | 2.25 | 8.8 | 0.9 | mA
$V_{DD} = 15V$, $V_O = 1.5V$ | 2.4 | mA
I_{OH} | High Level Output Current (Note 3) | $V_{DD} = 5V$, $V_O = 4.6V$ | 0.52 | 0.44 | 0.88 | 0.36 | mA
$V_{DD} = 10V$, $V_O = 9.5V$ | 1.3 | 1.1 | 2.3 | 0.9 | mA
$V_{DD} = 15V$, $V_O = 13.5V$ | 3.6 | 0.8 | 2.4 | mA
I_{IN} | Input Current | $V_{DD} = 15V$, $V_{IN} = 0V$ | 0.3 | 0.3 | 1.0 | μA
$V_{DD} = 15V$, $V_{IN} = 15V$ | 10$^{-5}$ | 0.3 | 1.0 | μA

Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of “Recommended Operating Conditions” and “Electrical Characteristics” provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are measured one output at a time.

AC Electrical Characteristics

#### Symbol	Parameter	Conditions	$V_{DD} = 5V$	$V_{DD} = 10V$	$V_{DD} = 15V$	Units
t_{PHL}, t_{PLH} | Propagation Delay Time | $V_{DD} = 5V$ | 200 | 100 | 100 | ns
t_{PHL} | Transition Time | $V_{DD} = 10V$ | 80 | 50 | 40 | ns
t_{PLH} | | $V_{DD} = 15V$ | 65 | 100 | 80 | ns
t_{WH} | Minimum Clock Pulse Width | $V_{DD} = 5V$ | 200 | 200 | 200 | ns
t_{WH} | | $V_{DD} = 10V$ | 100 | 100 | 100 | ns
t_{WH} | | $V_{DD} = 15V$ | 65 | 65 | 65 | ns
t_{RCL}, t_{FCL} | Maximum Clock Rise and Fall Time | $V_{DD} = 5V$ | 15 | 15 | 15 | μs
t_{RCL} | | $V_{DD} = 10V$ | 10 | 10 | 10 | μs
t_{FCL} | | $V_{DD} = 15V$ | 5 | 5 | 5 | μs
t_{SU} | Minimum Set-Up Time | $V_{DD} = 5V$ | 20 | 40 | 40 | ns
t_{SU} | | $V_{DD} = 10V$ | 15 | 30 | 30 | ns
t_{SU} | | $V_{DD} = 15V$ | 12 | 25 | 25 | ns
f_{CL} | Maximum Clock Frequency | $V_{DD} = 5V$ | 2.5 | 5 | MHz
f_{CL} | | $V_{DD} = 10V$ | 6.2 | 12.5 | MHz
f_{CL} | | $V_{DD} = 15V$ | 7.6 | 15.5 | MHz

SET AND RESET OPERATION

#### Symbol	Parameter	Conditions	$V_{DD} = 5V$	$V_{DD} = 10V$	$V_{DD} = 15V$	Units
$t_{PHL(R)}$, $t_{PLH(S)}$ | Propagation Delay Time | $V_{DD} = 5V$ | 150 | 65 | 45 | ns
$t_{PHL(R)}$ | | $V_{DD} = 10V$ | 90 | 65 | 45 | ns
$t_{PHL(S)}$ | | $V_{DD} = 15V$ | 300 | 130 | 90 | ns
$t_{WH(R)}$, $t_{WH(S)}$ | Minimum Set and Reset Pulse Width | $V_{DD} = 5V$ | 180 | 180 | 180 | ns
$t_{WH(R)}$ | | $V_{DD} = 10V$ | 80 | 80 | 80 | ns
$t_{WH(S)}$ | | $V_{DD} = 15V$ | 50 | 50 | 50 | ns
C_{IN} | Average Input Capacitance | Any Input | 5 | 7.5 | pF

AC Parameters are guaranteed by DC correlated testing.
Logic Diagram

Switching Time Waveforms
Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J)
Order Number CD4013BMJ or CD4013BCJ
NS Package Number J14A

Molded Dual-In-Line Package (N)
Order Number CD4013BMN or CD4013BCN
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.